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Abstract: The advection diffusion equation (ADE) is solved in two directions to obtain the crosswind integrated 

concentration. The solution is solved using separation variables technique and considering the wind speed depends on the 

vertical height and eddy diffusivity depends on downwind and vertical distances. Comparing between the two predicted 

concentrations and observed concentration data are taken on the Copenhagen in Denmark. 
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1. Introduction 

The analytical solution of the atmospheric diffusion 

equation has been containing different shaped depending on 

Gaussian and non-Gaussian solutions. An analytical solution 

with power law for the wind speed and eddy diffusivity with 

the realistic assumption was studied by [1] the solution has 

been implemented in the KAPPA-G model [2],and [3] 

extended the solution of [1] under boundary conditions 

suitable for dry deposition at the ground. The mathematics 

of atmospheric dispersion modeling is studied by [4]. In the 

analytical solutions of the diffusion-advection equation, 

assuming constant along the whole planetary boundary layer 

(PBL) or following a power law was studied by [5-7], [2] 

and [8].   

Estimating of crosswind integrated Gaussian and 

non-Gaussian concentration through different dispersion 

schemes is studied by [9]. Analytical solution of diffusion 

equation in two dimensions using two forms of eddy 

diffusivities is studied by [9]  

In this paper the advection diffusion equation (ADE) is 

solved in two directions to obtain crosswind integrated 

ground level concentration in unstable conditions. We use 

separation variables technique and considering the wind 

speed and eddy diffusivity depends on the vertical height 

and downwind distance. We compare between observed data 

from Copenhagen (Denmark) and predicted concentration 

data using statistical technique.   

2. Analytical Method 

Time dependent advection – diffusion equation is written 

as [10] 

( ) ( ) ( ) ( ) ( ), , , , , , , , , ,∂ ∂ ∂ ∂ ∂     ∂ ∂ ∂+ = + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
x y z

C x y z C x y z C x y z C x y z C x y z
u K K K

t x x x y y z z
 

For steady state, taking ( ), ,
0

∂
=

∂
C x y z

t
 and the diffusion in 

the x-axis direction is assumed to be zero compared with the 

adjective in the same directions, hence: 

( ) ( ) ( ), , , , , ,
( ) Fy z

C x y z C x y z C x y z
u K K

x y y z z

∂ ∂ ∂ ∂ ∂= +  ∂ ∂ ∂ ∂ ∂ 
   (1) 

where: ( ), ,C x y z  is the average concentration of air 

pollution (µg/m
3
) in three dimension. u is the mean wind 

speed in x-direction (m/s). 
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yK  and zK are the eddy diffusivities coefficients which 

are function in x-direction (m
2
/s) i,e  

x y z
K K K= = . 

Integrating the equation (1) with respect to y from -∞ to ∞ 

at a point ��, �� of the atmospheric advection–diffusion 

equation is written in the form [11]; 

( ) ( ) ( )( )
2

2

, ,
, , , , Fy z

C x y z
u C x y z dy K K C x y z dy

x y z

∞ ∞

−∞ −∞

∂∂ = + ∂
∂ ∂

∂∫ ∫∂    (2) 

Let ( ) ( ),, ,yC C x y z dyx z

∞

−∞

= ∫            (3) 

where ( ),yC x z is the normalized crosswind integrated 

concentration. Note that the value of concentration tends to 

zero at far distance i.e. ( ), ,
0

y

C x y z
K

y

∂
=

∂  

(4)  

Substituting by equations (3) and (4) in Eq. (2) it was 

getting: 

( ) ( ),
( )

,y y

z

C C
u k x

x z

x z

z

z x∂ ∂∂=
∂ ∂ ∂

          (5) 

( ) ( )2

2
( )

, ,y y

z

C C
u k x

x

x z z

z

x
=

∂
∂

∂
∂

            (6) 

let the solution of Eq. (6) in the form: 

( )
0

( (, ) )y n n
n

C x zx z X Z
∞

=

=∑             (7) 

For simplicity Eq. (7) can be written in the form  

         ( ) ( ) ), (
y n n

C xx z zX Z=                   (8) 

 Substituting by Eq. (8) in Eq. (6) it was getting: 

( ) ( ) ( ) ( )2

2
( )

n n

n z n

X x d Z z
uZ z k x

d
x X

dx dz
=          (9) 

Dividing Eq. (9) by ( ) ( ) ( )z n n
k x X x Z z  then: 

( )
( )

( )
( )2

2

1 1

( )

n n

z n n

X x d Z zu

k x X x d Z z

d

x dz
=            (10) 

Let 

( )
( )

( )
( )2

2

2

1 1

( )

n n

n

z n n

X x d Z zu

k x X x dx Z z dz

d
β= = −       (11) 

( )
( ) 21

( )

n

n

z n

dX xu

k x X x dx
β= −           (12) 

And  

( )
( )2

2

2

1 n

n

n

d Z z

Z z dz
β= −              (13) 

( )
( ) ( )21 n z

n

n

X x k x

X x dx

d

u
β= −           (14) 

Then 

( )
( )

( )2n z

n

n

X x k x
dx

d

X x u
β= −               (15) 

⇒ ( ) ( )
2

0
ln ln

x
n

n z nX x k x dx
u

β α− ′ ′= +∫        (16) 

⇒  ( ) ( )
2

0
ln ln

x
n

n n zX x k x dx
u

βα − ′ ′− = ∫  

( ) ( )
2

0
ln ln

x
n

n n zX x k x dx
u

βα − ′ ′− = ∫ ⇒  
( ) ( )

2

0
ln

x
n n

z

n

X x
k x dx

u

β
α

− ′ ′= ∫

⇒ ( ) ( )
2

0

x
n

zk x dx
u

n nX x e

β

α
− ′ ′∫=    (17) 

Eq. (13) can be solved as following: 

( ) ( )
2

2

2
0

n

n n

d Z z
Z z

dz
β+ =            (18) 

Eq (18) is simple harmonic equation has solution in the 

form:  

( ) ( ) ( )sin cosn n n n nZ z a z b zβ β= +        (19) 

Equation (6) is subjected to the following boundary 

conditions: 

1-It is assumed that the pollutants are reflected at the 

ground surface i.e 

( )yC x, z
0

z

∂
=

∂
 at z=0               (20) 

The flux at the top the mixing layer can be given by 

( )yC x, z
0

z

∂
=

∂
 at z=h             (21) 

where h is the mixing height. 

The mass continuity is written in the form: 

( )( , )y suC x z Q z hδ= −  at 0x =    (22) 

where Q  is the source strength, δ is Dirac delta 

function and sh is the stake height.  Then the general 

solution becomes: 

( ) ( ) ( ) ( )( )
2

0 sin c, os

x
n

z

n n n

k x x

n

d
u

y n a zc x e zz b

β

β βα
− ′ ′∫ +=    (23) 

 Applying the condition (20), then Eq. (23) becomes: 

( ) ( ) ( )( )
2

0 sin cos 0

x
n

zk x

n n n

x
u

n

d

ne
z

a z b z

β

α β β
− ′ ′ ∂∫ + =

∂
  (24) 

( ) ( )cos sin 0n n n n n na z b zβ β β β− =      (25) 
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At 0 0 0
n n n

z a aβ= ⇒ = ⇒ =          (26) 

The equation (19) becomes:  

( ) ( )cosn n nZ z b zβ=             (27) 

Then equation (23) is written in the form: 

( ) ( ) ( )( )
2

0 cos,

x
n

zk

n n

x dx
u

y nc x z be z

β

βα
− ′ ′∫=     (28) 

Applying the condition (21) then Eq. (28) can be written 

in the form: 
( ) ( )( )

2

0 cos 0

x
n

zk x dx
u

n n nb
d

dz
ze

β

βα
− ′ ′

=∫  

( ) ( )sin 0 sin 0n n n n n nb z bAt z h hβ β β β−= ⇒ = ⇒ − =

( ) ( )sin 0 sin 0
n n n n n n

b zz h b hβ β β β− = ⇒ −⇒ ==  

;n h nβ π⇒ =  0,1,2,........n =  

,n

n
Then

h

πβ⇒ =
 

( ) cos
n n

n
Z z b z

h

π =  
 

 0at n =  0 0β⇒ =     (29) 

We can write the general solution in the form:
 

( )
1

( ) ( ), ( ) ( )y o no n

n

C x Z z X x ZX zx z
∞

=

= +∑    (30)
 

Eq. (30) can be written in the form: 

( ) 0

1

( ), ( )
∞

=

= +∑y n n
n

x zC M x zX Zα      (31) 

( ) ( ) ( )
2

0

0

1

cos,

x
n

zk x dx
u

n ny n

n

c x z b zM e

β

α αβ
−∞ ′ ′

=

∫= +∑ (32) 

0 0
,

n n n
Let R M b Rα α= =  

( )
( )

2 2

2 0

0

1

os, c

x

z

n
k x dx

h u
y

n

n

n
R z

h
c x z R e

ππ −∞ ′ ′

=

∫= +  
 
 

∑      (33) 

Using condition (22), one can get: 
   

( )
( )

2 2

2 0

0

1

cos

x

z

n
k x dx

h u
s

n

n

Q
R e

u
R z

h
z h

n
π

δπ −∞ ′ ′

=

 
+ =
 

∫ −∑    (34) 

( )
( )

2 2

2 0

0

1

cos

x

z

n
k x dx

h u
s

n

n

Q
R e

u
R z

h
z h

n
π

δπ −∞ ′ ′

=

 
+ =
 

∫ −∑    (35) 

Integrating with respect to z  from 0z =  to z h=  

( )0

10 0 0

cosn

h h h

s

n

n Q
R dz z h dR z dz

h
z

u

π δ
∞

=

 
 


+ = −


∑∫ ∫ ∫
 

( ) ( )0

1 0

sin

h

s

n

n

Q
R h z h dz

u

h
R n

n
π δ

π

∞

=

⇒ + = −∑ ∫     (36) 

But 

 ( )sin 0nπ = 0

Q
R h

u
⇒ =             (37) 

Equation (35) becomes:  

( )
1

cos
n s

n

n
R z

h

Q Q
z h

uh u
δπ∞

=

 + = 


−


∑      (38) 

Multiplying by 
cos

n
z

h

π 
 
 

and integrating with respect to 

z  from 0z =  to h:  

( )
0

2

01 0

cos cos cos (39)

h h

s

n

h

n

n nQ Q
dz dz z h dz

uh u

n
z R z z

h h h

π π πδ
∞

=

     
     
     

  + = − 
 

∑∫ ∫∫  

( )
001

1 2
sin 1 cos cos

2

∞

=

      +      
     

+ −


=∑ ∫∫
h

sn

n

h
Q Q

dz z h
h n n n

z R z z
n h

z
u h h

d
h u

π π π
π

δ  (40) 

2
o s c, c o s

2

   
⇒ =   

 
=

 

n

s n s

R h n n
h R h

h h

Q Q
th e n

u u h

π π
  (41) 

The general solution becomes: 

( )
( )

2 2

2 0

1

, 1 2 cos cos

x

z

n
k x dx

s h u
y

n

n hQ n z
c x z e

uh h h

ππ π −∞ ′ ′

=

   ∫ = +    
   

∑  (42) 

The value of the crosswind integrated concentration at 

ground put 0z =  in Eq. (42), one can get: 

( )
( )

2 2

2 0

1

,0 1 2 cos

x

z

n
k x dx

s h u
y

n

n hQ
c x e

uh h

ππ −∞ ′ ′

=

   ∫= +  
  

∑
 

(43) 

The value of the crosswind integrated concentration at 

ground source, put 0sh =  in Eq. (42), one can get: 

( ) ( )
2 2

2 0

1

, 1 2 cos

x

z

n
k x dx

h u
y

n

Q n z
c x z e

uh h

ππ −∞ ′ ′

=

  ∫ = +   
  

∑  (44) 

Let the eddy diffusivity in the form: 
 

( )zk x uxα=                 (45) 

Where "u" is the mean wind speed in x-direction (m/s) 

described in region 0 z h≤ ≤ , h is the mixing height and 

α is the turbulence intensity is taken in the form 

( )2
/

w
uα σ=  (54) where 

w
σ  is the standard deviation 

for vertical velocity. Then 

( )
2

w
z

k x x
u

σ=                    (46) 

Substituting from equation (46) in equation (42), then the 

general equation becomes: 

( )
2 2 2 2

2 22

1

, 1 2 cos cos
w

n x

s h u
y

n

n hQ n z
c x z e

uh h h

π σπ π −∞

=

    = +    
   

∑   (47) 

put 0z =  in Eq. (47), one can get: 
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( )
2 2 2 2

2 22

1

,0 1 2 cos
w

n x

s h u
y

n

n hQ
c x e

uh h

π σπ −∞

=

  = +  
  

∑         (48) 

3. Validation 

The used data was observed from the atmospheric 

diffusion experiments conducted at the northern part of 

Copenhagen, Denmark, under neutral and unstable 

conditions by [12] and [13]. Fig. (1) Shows that the 

predicted normalized crosswind integrated concentrations 

values of the present predicted model are good to the 

observed data as the Gaussian predicted model.  Fig. (2) 

Shows that the present predicted data is nearer to the 

observed concentrations data than the predicted Gaussian 

model. 

 

Figure 1. The variation of the two predicted and observed models via 

downwind distances. 

From the two figures, we find that there is agreement 

between the predicted normalized crosswind integrated 

concentrations of present model with the observed 

normalized crosswind integrated concentrations as the 

predicted Gaussian model.  

 
Figure 2. The variation between the predicted models and observed 

concentrations data. 

4. Statistical Method 

Now, the statistical method is presented and comparison 

between predicted and observed results will be offered by 

[14]. The following standard statistical performance 

measures that characterize the agreement between 

prediction (Cp =Cpred/Q) and observations (Co=Cobs/Q):  

Normalized Mean Square Error �NMSE� � �C� � C���

�C�C��  

��� !"#$�% &"�' ��&� � �() � (*�
+0.5�() / (*�0 

(#��1%�!"#$ (#122" "1$! �(34�

� 1
67

8�(*9 � (*� : �()9 � ()�
�;*;)

<=

9>?
 

�� !#� #2 @A# ��B(2� � 0.5 D (*
()

D 2.0 

Where σp and σo are the standard deviations of Cp and Co 

respectively. Here the over bars indicate the average over all 

measurements. A perfect model would have the following 

idealized performance: NMSE = FB = 0 and COR = 1.0. 

Table 1. Comparison between our two predicted models according to 

standard statistical Performance measure. 

Models NMSE FB COR FAC2 

Present model  0.22 -0.19 0.60 1.38 

Gaussian model  0.58 0.58 0.80 0.59 

From the statistical method (Table 1), we find that the two 

models are inside a factor of two with observed data.  

Regarding to NMSE and FB, the present predicted model is 

better good with observed data than the Gaussian model.  

The correlation of present predicated model equals (0.60) 

and Gaussian model equals (0.80). 

5. Conclusions 

The predicted crosswind integrated concentrations of the 

two predicted models are inside a factor of two with 

observed concentration data. One finds that there is 

agreement between the present predicted normalized 

crosswind integrated concentrations model with the 

observed normalized crosswind integrated concentrations 

than the Gaussian predicted model with respect to 

normalized square error and fraction bias (NMSE and FB). 
The correlation of present predicated model equals (0.60) 

and Gaussian model equals (0.80). 
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