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Abstract: The Suluh river basin is subjected to land use and land cover change due to population pressure, improper farming 
practices, lack of alternative non-farm activities, and rugged topography. Yet, land use/land cover change detection and its 
driving factors have not been applied in the study area. Thus, the current study detected land use and land use change and 
identified the drivers for it in the Suluh river basin, the northern highland part of Ethiopia. Landsat image data and Ancillary 
data sources were used to achieve the objectives. With the aid software’s of eCognition Developer 9.2 and IDRISI Selva 17.3, 
images were classified and changes were detected. Both qualitative and quantitative data were analyzed. According to the 
study's findings, between 1990 and 2018, cultivated land expanded by 7.98%, plantation land by 43.7%, built up land by 
135.5%, and bar land by 9.8%. A decline trend was found to exist for water bodies by 79.6%, pasture land by 48.6%, shrub and 
bush land by 61.7%, and forest land by 576.7%. Thus, in order to implement sustainable land management practices in the 
Suluh river basin, land use planners should take into account information about land use and land cover change, as well as the 
corresponding drivers. 

Keywords: Change Detection, Drivers, Fuzzy Classification, Image Segmentation, Multi-Spectral Resolution,  
Suluh River Basin 

 

1. Introduction 

Land use/land cover (hereafter LULC) change analysis is 
crucial information for many applications [1, 50, 60]. For 
example, it can be used to predict future changes, comprehend 
past LULC changes, and carry out resource management 
operations [14, 16, 20]. Today, land as a resource becomes the 
focus of intensified competition from a variety of uses [24] as 
part of global environmental issues [52, 53, 72]. LULC 
changes have always there [42] but a rapid LULC change on 

the current time [11, 52] and as an effect that changes the 
interaction between the earth systems [53, 60, 64, 75]. The 
main factor contributing to LULC alterations in Africa was 
acknowledged to be the conversion of vegetation cover into 
cultivated land [90]. 

Investigations into LULC change detection have been 
conducted in several regions of Ethiopia, with varying results. 
Thus, the majority of LULC changes in Ethiopia were from 
natural forests to agricultural land [6, 7, 25, 36, 76, 85, 95] 
mainly caused by human causes [8, 13, 58, 86, 95]. In 
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contrast, a small number of studies in a separate region of 
Ethiopia suggested that sustainable land management had 
improved the vegetation cover [8, 38] due to sustainable land 
management [3, 82]. The assumption of conversion of the 
vegetative cover into agricultural land is not always valid as 
per of various studies. The issue has to be empirically 
investigated at the level of regional catchments, such as the 
Suluh river basin (hereafter SRB). 

Using remote sensing data, there are many techniques 
enable to make image classification and LULC change 
detection [15, 27, 48, 49, 62]. The classic (hard) image 
classification approach as one part of image classification 
only uses spectral information thereby has less accuracy in 
classifying multispectral images [30]. Soft image 
classification has been depicting better accuracy in 
heterogeneous LULC, continuous nature of geographic 
features, fragmented lands, and diverse and rugged 
topography [95]. For instance, object-based [57, 87] 
classification methods which are based on fuzzy logic are 
preferable mainly because these methods use spectral, spatial, 
texture, and contextual, in classifying spectral information 
[26, 30, 65, 67] and The main use of this soft classifier [2, 4, 
24, 49] gives classes' descriptions and giving a membership 
for each class to express uncertainty [49, 54, 77, 83]. Given 
that LULC types are nebulous phenomena, numerous 
academics have argued that fuzzy sets should be used to 
detect LULC dynamics rather than Boolean sets [16, 20, 46]. 

The majority of research in Ethiopia was conducted by [5, 
11, 13, 23, 29, 51, 66, 80, 84, 94] were followed the pixel-
based way of digital image classification and LULC change 
analysis. Past investigations produced scant evidence due to 

methodological shortcomings [80]. And, their overall 
accuracy from recent reports was not excellent as possible 
[81, 89]. This is because hard image classification faces the 
problem of mixed pixels, similar spectral information in 
some features, the continuous nature of the geographic 
phenomenon, and a lack of exact boundaries among LULC 
classes [32, 30]. Many researchers have talked about the need 
to improve classification accuracy for LULC studies 
throughout the nation [35, 58, 8, 89]. 

SRB as part of the Ethiopian northern highland and Tekeze 
river basin (Figure 1) is known for its long history of human 
settlement, very ancient farming system, and war zone which 
exposed it to deforestation, very severe land degradation, and 
then the expanding desertification [5]. Additionally, it has 
heterogonous features, fragmented LULC dominantly 
substance agriculture, and rugged topography. SRB is 
subjected to LULC change. Crisp (hard) LULC 
categorization and analytic technique was employed in a few 
investigations in the Tekeze river basin done by [3, 5, 51, 96]. 
But, vagueness in the boundaries and the continuous nature 
of LULC classes are the major problems that affect LULC 
classification and change analysis. Therefore, this study was 
conducted; first, to improve the accuracy of LULC 
classification of land sat image TM (1990), ETM+ (2002), 
and OLI–TIRS (2018) images using the fuzzy approach in 
the SRB. Second, to detect LULC change and assesses its 
driving factors in SRB. In order to achieve sustainable 
environmental restoration and resource management, we 
anticipate that the findings of this study will be able to 
provide policymakers and land managers with useful 
information. 

 

Figure 1. Location map of Suluh river basin in Tigray, northern Ethiopia. 
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2. Materials and Methods 

2.1. The Study Area: Suluh River Basin 

SRB is found the northeastern part of the Tigray region, 
northern Ethiopia. SRB's location spans latitudes of 
39°24'59.06" and 39°26'22.73", and longitudes of 13°38'18.27" 
and 14°13'53.29", respectively (Figure 1). SRB covers an area of 
roughly 930 km2 and ranges in elevation from 1700 to 3,298 
meters above sea level. The study's watershed is located in four 
districts in Tigray's Eastern and South Eastern zones: Tsaeda 

Emba, Hawuzen, Kiltie Awlealo, and Degua Tembien. 

 

Figure 2. Total annual rainfall (RF) and Mean Temperature (T) of the Suluh 

River Basin for the period 1988-2018 (sources station data). 

SRB falls under the category of semi-arid climate. May 
and June are the warmest months, while December and 
January are the coldest. From 1988 through 2018, the 
average annual rainfall total and temperature were 420.4 mm 
and 17.5°C, respectively (Figure 2). The mono-modal rainfall 
distribution spans the months of June through early 
September. The hydrological situation of SRB is dendritic 
drainage pattern [96]. Trap basalt makes up 2.8% of the 
basin's geology, followed by granite and shale at 1.8%, 
metamorphic rock at 28.9%, limestone at 13.9%, and 
sandstone at 52.7%. Haplic lixisols make up 41.4% of the 
soil in the SRB area, followed by lithic leptosols (22.7%), 
eutric leptosols (17.8%), chromic cambisols (15.6%), and 
vertic cambisols (2.5%) [96]. 

According the Ethiopian census of 2007 the population 
density of SRB was 142 persons/km2 [18]. The main crops 
are cultivated in highlands (barley, wheat, maize, teff, and 

pulses) and lowlands (Sorghum). Cultivation is done using 
the traditional ox-drawn plow [3, 5, 73]. Due to a decrease 
in vegetation biomass and crop residue, there is a crisis in 
the supply of feed for livestock (including cattle, sheep, 
goats, donkeys, and chickens). The vast majority of the 
regions are intensively farmed, which causes overgrazing 
and deforestation. The primary methods of land 
management in SRB include the construction of stone 
terraces, micro dams, enclosures, and communal woodlots 
as well as the enforcement of used laws and grazing land 
limits and reduced burning activities [51, 96, 79]. 

 
Figure 3. Flow chart that shows the procedures for LULC change Analysis. 

2.2. Sources of Data 

Free satellite photos from the 1990s (Landsat-5 TM), 2002 
(Landsat-7 ETM+), and 2018 (Landsat-8 OLI-TIRS) were 
used for the LULC change study of SRB in accordance with 
the methods depicted in Figure 3. These files, which included 
free access to land sat data, were obtained from the National 
Aeronautics and Space Administration. The 30 meter pixel 
size of the Landsat-7 ETM+ 2002 and Landsat-8 OLI-TIRS 
2018 was resampled to a 30 meter pixel size. Aster imagery-
based 30-meter Digital Elevation Model (DEM) was also 
used. Additionally, auxiliary data were used (Table 1). Three 
villages from the top, middle, and lower SRB (Guahgot, 

Abrha Atsbaha, and Adi lal) were specifically chosen from 
the primary sources. 

Table 1. The characteristics of land sat satellite data. 

Sensor Path / row Acquisition time Spatial Resolution Resolution Sensor 

Landsat TM 169/50 February/1990 30 m TM 
Landsat ETM+ 169/50 February/2002 15 m ETM+ 
Landsat OLI-TIRS 169/50 February/2018 15 m OLI-TIRS 
Aster DEM   30 m  
Topo-sheet map   1:50000  
Field data   Nov.2017-Jan 2018  
Road, rivers and town map   
District boundary   
Village boundary   

 

And, one focus group discussion was prepared and 6 persons participated in each group discussion. The 
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participants were 3 male and 2 female residents as well as 
one village development agent (Natural resources 
management expert). A field assessment using Global 
Positioning System (GPS) was carried out in 2018. Four 
agricultural and natural resource officers were selected 
purposely from each district. 

2.2.1. Data Processing 

To ensure uniformity amongst datasets during analysis, all 
data were projected using the Universal Transverse Mercator 
projection system zone 370 N and datum of the World 
Geodetic System 84 (WGS84). Using ERDAS 2014 software; 
a thorough pre-processing and processing were performed. 

2.2.2. Image Segmentation 

Object-based image analysis needs image segmentation 
[21, 98]. For segmentation, a multi-resolution segmentation 
was chosen since it maximizes object homogeneity while 
minimizing average heterogeneity for a specified number of 
objects [30, 93]. The edited image layer mixing tool of 
histogram equalizing [21] and six layers mixing were 
selected. We gave an image layer weight two for the near-
infrared band and one for other bands. We used scale 
parameters (3), shape (0.8), and compactness (0.6) (Table 2). 

Table 2. Parameters used for different images in each segmentation level. 

Sensor Sc Sh Cm Resolution 

Landsat TM 3 0.8 0.6 
Landsat ETM+ 3 0.8 0.6 
Landsat OLI-TIRS 3 0.8 0.6 

Note: Scale (Sc); Shape (Sh); and Compactness (Cm) 

Table 3. LULC types and their descriptions. 

LU/LC classes Descriptions 

Cultivated land 
Areas covered by crops in both irrigation and 
subsistence farming. 

Forest land Areas covered by forests mainly better canopy 

Grazing land 
Areas covered by grasses including the closed and 
free grazing land 

Shrubs -bush 
land 

This category contains low woody plants that typically 
grow vertically and are less than three meters tall with 
many stems. 

Bare land 
Vacant spaces with little to no vegetation cover that 
may also have exposed soil or bedrock. 

Built up land Areas for construction sites and towns 

Plantation land 
Areas composed of Cactus, Eucalyptus globules and 
Cupresus spp. 

Water body 
Includes lakes (both man-made and natural lakes), 
rivers, and reserves, among other things. 

2.2.3. Fuzzy Classification in eCognition Developer 

In this study, we used eCognition Developer 9.2 for 
nearest neighbor fuzzy classification. Fuzzy classification 
(Eq. 1) was chosen for the analysis of image objects in 
eCognition because translating feature values into fuzzy 
values, provides adaptable feature [26, 32, 42, 97] and 
enables the formulation of complex descriptions [54, 77, 98]. 

A={(X, µA(x));x ϵ X}, Where µA →[0,1]            (1) 

Where A=fuzzy set X=a space of objects X=elements 

belonging to space X µ – membership function. 
The basic steps for nearest neighbor fuzzy-based image 

classification in eCognition include the following steps. The 
first step is building of knowledge base by defining 
information classes under the class hierarchy and giving class 
descriptions. We designed eight LULC classes (cultivated, 
bar, built up, grazing, plantation, shrub and bush, water body, 
and forest land) based on Table 3. 

The second step is defining the classification condition for 
each class, nearest neighbor as the classifier is inserted for 
each class [21]. For the LULC class we used logical operator 
"and (min)” as well as description of the LULC classes 
classifier was defined as standard nearest neighbor (here after 
SNN). And, the "mean value" of the selected feature (6 bands 
from TM and ETM+ and 7 bands for OLI-TRIS) was used. 

The third step is declaring sample objects [21]. Using the 
nearest neighbor as the classifier is similar to supervised 
classifications and therefore 20 training areas were selected 
from each sample of LULC classes. The final step is 
classification. Before running we applied the edit SNN by 
selecting object features, layer value, and mean. Next, for all 
the classes a classifier SNN algorithm was applied [24]. 

2.2.4. Accuracy Assessment 

Assessment of classification accuracy is necessary before 
it is complete [91] and accuracy evaluation was conducted 
[19, 61, 68]. ArcGIS 10.5 was used to construct 480 random 
sample points (60 samples for each LULC class) in order to 
conduct an accuracy assessment for the classified images. 
From the related Google Earth images, reference points for 
the categorized images from 1990, 2002, and 2018 were 
gathered (i.e. 05 February 1990; 21 February 2002, and 28 
February 2018, respectively). 

Then, the classified images were compared with the 
reference images through an error matrix [6, 33, 76, 78]. In 
this study, overall accuracy (Eq2) and Kappa coefficient 
(Eq3) were used to assess the accuracy of the classified 
images. Such methods were applied by [12, 29, 51, 66]. 

OA =
�

�
∗ 100                           (2) 

Where, OA is overall accuracy, x is number of correct 
values in diagonals of the matrix, and y is total number of 
values taken as a reference point. 

K=�∑ 	

 −�

�� ∑ (	
 × 	 + 1)�


�� /	�2 −
	∑ 	

 −�


�� ∑ (	
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��                 (3) 

Where: r = is the number of rows in the matrix 
Xii = is the number of observations in rows i and column I 

(along the major diagonal) Xi+ = the marginal total of row i 
(right of the matrix) 

Xi+1 are the marginal totals of column i (bottom of the matrix) 
N is the total number of observations. K= kappa coefficient 

2.2.5. LULC Change Analysis 

The LULC classes were compared in three periods (1990-
2002, 2002-2018, and 1990-2018). Change analysis was 
presented percentages (eq.4) and square kilometers (eq.5) 
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adopted from [36, 57]. 

Percent of change =
���

�
∗ 100	                  (4) 

Rate of change �
���

�
                         (5) 

Where, X is area of LULC (km2) in time 2, Y is area of 
LULC (km2) in time 1, Z is Time interval between X and Y 
in years. 

LULC conversion matrix between 1990 and 2018 was 
generated using ArcGIS 10.5 software and compiled in a 
matrix table, and the values were presented in terms of 
percentage and square kilometers. The qualitative 
information collect using were analyzed qualitatively. 

3. Results 

3.1. Accuracy Assessment 

According to Table 4, the classification image's accuracy in 
2018 was 90.06% for overall accuracy and 0.886 for the Kappa 
coefficient. The total accuracy of the classified image in 2002 
was 89.8% for overall accuracy, and the Kappa coefficient was 
0.883 (Table 4). The classified image's accuracy in 1990 was 
87.12% for overall accuracy, and 0.852 for the Kappa 
coefficient (Table 4). The accuracy of the three classified maps, 
as reported by the user and producer, ranges from 56% for bare 
lands in 1990 to 100% for water in 2018 and 55% for cultivated 
land in 1990 to 100% for water in 2018, respectively. 

Table 4. Summary of error matrixes for the classified images of 1990, 2002 and 2018. 

LULC classes 
1990 2002 2018 

User Accuracy Producer Accuracy User Accuracy Producer Accuracy User Accuracy Producer Accuracy 

BL 56% 100% 65% 100% 65% 100% 
BUL 88% 100% 89% 100% 90% 100% 
CL 100% 55% 100% 56% 100% 56% 
FL 100% 94% 100% 100% 100% 100% 
GL 100% 94% 100% 100% 100% 100% 
PL 86% 100% 88% 100% 88% 100% 
SBL 78% 100% 79% 100% 80% 100% 
WB 94% 100% 100% 100% 100% 100% 
Overall Accuracy 87.12121212 89.79592 90.06623 
Kappa Accuracy 0.852591473 0.883327 0.886472 

3.2. LULC Classification and Analysis of SRB 

A. LULC classification (1990) and Analysis between 1990 and 2002. 

 

Figure 4. Classified images (LULC maps) for 1990, 2002 and 2018 years. 



 International Journal of Environmental Protection and Policy 2023; 11(1): 10-20 15 
 

 

Table 5 and Figure 4 indicated that, in the year of 1990, CL 
(350.5 km2) and SBL (219.4 km2) shares the largest coverage 
of the LULC type while BUL (12.7 km2) and WB (7.5 km2) 
accounted for the lowest coverage. As Table 4 show that 
LULC classes like FL, GL, PL, SBL, and WB showed a 
decrement from 1990 to 2002 by 23.3 km2, 167.04km2, 41.64 
km2, 3.34 km2, 6.4 km2and 35.5 km2, respectively. Elder priest 
respondents claimed that in church forests in 1990, there was a 
better distribution and composition of vegetation. BL, BUL, 
and CL areas increased between 1990 and 2002 by 8.77 km2, 
229.62 km2, and 3.73 km2, respectively. The panelists from the 
focus group agreed that CL in SRB exhibits high growth. It 
was also revealed in a planning interview with the district 
office of agricultural and rural development that the LULCC 
has been hampered by the population density in the river basin. 

B. LULC classification (2002) and Analysis between 2002 
and 2018 

As it is indicated in Table 5 and Figure 5, in 2002 the 
largest shares of LULC types were captured by CL accounts 
at 62.5%, SBL accounts at 23.2% and the smallest coverage 
was occupied by WB accounts at 0.1% and FL accounts at 
0.07%. BUL by13.5 km2, FL by 9.64 km2, GL by 76.7 km2, 
PL by 62.06 km2, and WB by 0.39 km2 showed an increment 
from 2002 to 2018 (Table 5 and Figure 4). Data gained from 
the focus group panelist and development agents also 
confirmed the main causes of natural resources degradation 
were clearing and selling of wood, free grazing practices and 
expansions of farmland, people attending their daily life by 
consuming bulky natural resources, lack of community 
awareness, due to conflict of interest, lack of construction 
materials, lack of technical recommendations, and ignorance 
by respective officials. A reduction of BL by 0.66 km2, CL 
km2 and SBL km2 was shown from 2002 to 2018. Data 
gained from the elder farmers also confirmed that the dry-up 

of Suluh River occurred in 2002 years. 

 

Figure 5. Trends of LULC changes in SRB. 

C. LULC classification (2018) and Analysis between 1990 
and 2018 

Table 5 and Figure 4 show that in 2018 the largest 
LULC classes were occupied by CL and GL while the 
smallest classes were captured by FL and WB. As shown 
in Table 4 and Figure 5 BU by 9.8%, BUL by 135.5%, PL 
by 43.7%, and CL by 7.98% showed an incensement in 
between 1990-2018. As some farmers interviewed 
affirmed BL shows an incensement. FGD indicated that 
proximate and underlined factors lead to LULC change in 
SRB. FL by 57.67%, GL by 48.6%, SBL by 61.7%, and 
WB by 79.6% revealed a reduction in between 1990-2018. 
The data gained from the interviewee showed that most of 
the formerly WB were drying up. Field observation was 
made in September 2018 and expansion of PL like 
Eucalyptus, Cactus Ruta chalenpensis, Rhummus 

prinoldes, and coffee were observed. 

Table 5. Classified images for 1990, 2002 and 2018 years and LULC changes between 1990-2002, 2002-2018 and 1990- 2018 in km2 and percentage. 

Classes 
LULC area (km2) Change (km2) Change (%) 

1990 2002 2018 1990-02 2002-2018 1990-18 1990-02 2002-2018 1990-18 

BL 82.47 91.24 90.56 8.77 -0.66 8.1 10.63 -0.73 9.83 
BUL 12.7 16.42 29.9 3.73 13.47 17.2 29.39 82.04 135.53 
C L 350.87 580.5 550.81 229.61 -29.68 199.94 65.44 -5.11 56.98 
FL 24.4 0.68 10.32 -23.69 9.64 -14.04 -97.22 1425.79 -57.64 
GL 185.94 18.9 95.59 -167.04 76.69 -90.35 -89.84 405.84 -48.59 
PL 46.74 5.1 67.17 -41.64 62.06 20.42 -89.08 1217.01 43.69 
SBL 219.4 216.06 84.13 -3.34 -131.93 -135.27 -1.52 -61.06 -61.66 
WB 7.6 1.2 1.54 -6.4 0.39 -6.01 -84.76 33.88 -79.6 
Total 930.02 930.02 930.02 

 

Note: Forest land (FL), cultivated land (CL), shrub-bush land (SBL), built up land (BU), grazing land (GL), bare land (BL), plantation land (PL) and water 
body (WB) 

The change matrix analysis shows that 16% of the land 
within SRB experienced LULC changes whereas 84% 
remains unchanged between 1990–2018 years (Table 6). 
Accordingly Bar land by 9.8%, built upland by 135.5%, 
plantation land by 43.7%, and cultivated land by 7.98% had 
shown an increasing trend in between 1990–2018 years. 
While, forest land by 57.67%, grazing land by 48.6%, shrub 

and bush land by 61.7%, and water body by 79.6% revealed a 
reduction trend over the 28 years. As data gained from focus 
group discussants confirmed that the proximate (increase of 
farming activity, built-up area and infrastructure expansion, 
lack of diverse livelihood strategies, unemployment, and 
drought) and underlined (population pressure and poverty) 
drivers were leads to LULC change in SRB. 
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Table 6. Summary of LULC change matrix in ha from 1990 to 2018. 

From To BL BUL CL FL GL PL SBL WB Total (2018)b 

BL 8.6 0.1 2.3 0 0 0 0 0 11 
BUL 0 0.1 0.1 0 0 0 0 0 0.2 
C L 29.6 0.4 735.6 0.1 4.4 27.0 1.4 0.5 799 
FL 0 0 0.2 0.3 0.3 0.4 0.1 0 1.2 
GL 0 0 1.5 0.1 2.1 0.3 0 0 4 
PL 0 0 4.8 0.5 0.3 18.7 2.2 0 26.5 
SBL 0 0 21.6 1 0.1 46.8 17.6 0.1 87.2 
WB 0 0 0.4 0 0 0.5 0.1 0 1.1 
Total (1990)a 38.2 0.6 766.5 2 7.1 93.5 21.4 0.6 930.02 Km2 

a Row total sums the amount of land for each LULC types of the initial study year (1990); b column total sums the amount of land that was converted to each 
LULC types of the year 2018. The bold diagonal values represent the area of each class that remains unchanged while the off diagonal values represent the 
change area. 

4. Discussion 

Eight LULC types were retrieved in SRB using the 
fuzzy classification method, and the LULC type 
classification from Landsat images saves resources. We 
discovered that the kappa coefficient results were 
extremely accurate. This is due to the method's capacity to 
depict the data's imprecision by allowing pixels to have a 
probability of belonging (membership) in more than one 
class LULC type classification from Landsat image saves 
resources and eight [31, 45, 63, 70, 83, 87, 88]. Our 
current study of LULC classification using fuzzy 
classification were shown better accuracy than prior 
studies following pixel-based classification method with 
similar geographical settings and Land sat imageries 
conducted by [25, 81, 89]. The finding agrees with the 
studies conducted out of Ethiopia like [2, 15, 45, 70, 77, 
83]. Researchers like [41, 42, 59, 63, 77, 83] affirmed that 
the fuzzy classification approach is applicable for the 
medium resolution of multispectral land sat images. 

BUL, CL, BL, and PL showed an increment trends in 
between 1990-2018 in Suluh river basin at the cost of FL, 
WB, GL, and SBL. Similar results were confirmed by [5, 9, 
10, 12, 22, 24, 27, 28, 34, 37, 39, 47, 51, 85]. Some evidence 
to the contrary indicated that improved vegetation cover was 
observed as a result of sustainable land management [11, 38, 
69, 71, 82]. In the above studies, there was a difference in the 
percentage of LULC classes, in the assigning of LULC types, 
and their way of classification. 

Throughout Ethiopia, the factors that are driving LULC 
change vary from region to region. For instance, human 
drivers identified by [9, 40, 43, 44, 55, 56]; [17, 18] 
identified population growth and land degradation; poverty, 
food insecurity population, slope, livestock, and distances 
from various infrastructures indicated by [74, 92]; and [36] 
also identified population pressure, income growth, and 
declining productivity. In the instance of SRB, the underlined 
(population pressure and poverty) and proximal (increased 
farming activity, built-up area and infrastructure expansion, 
lack of various livelihood strategies, unemployment, and 
drought) factors were what caused LULC change. 

5. Conclusions and Recommendations 

LULC classifications using a fuzzy approach in SRB 
were performed for the years 1990, 2002, and 2018. 
Despite the medium image resolution, high degree of 
heterogeneity and fragmented and rugged topography in 
the study area, general classification accuracy ranges from 
88-90% and 0.87-0.89 for overall and kappa coefficient 
has been achieved, respectively. The results showed that 
between 1990 and 2018, bar land increased by 9.8%, 
developed upland increased by 135.5%, plantation land 
increased by 43.7%, and cultivated land increased by 
7.98%. While water bodies by 79.6%, shrub and bush land 
by 61.7%, pasture land by 48.6%, and forest land by 56.77% 
showed an upward trend throughout the 28 years, 
respectively. The LULC changes in SRB were caused by 
an increase in farming activities, an increase in built-up 
area and infrastructure, a lack of various livelihood 
strategies, unemployment and drought, population 
pressure, and poverty. Therefore, taking into account LULC 
dynamics data and the corresponding identified causes will 
aid land use stakeholders in developing better land use 
planning in SRB. 
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