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Abstract: Two-dimensional steady-state buoyancy driven flows of thermo-dependent shear-thinning power-law fluid confined 

in a square cavity, submitted to cross uniform heat fluxes, has been conducted numerically using a finite difference technique. 

The parameters governing the problem are the thermo-dependence number m (0 ≤ � ≤ 10) and the ratio between the heat flux 

imposed on the vertical walls and that imposed on the horizontal ones represented by a (0 ≤ � ≤ 1), while the flow behavior 

index n is fixed at (� = 1.4) and the Rayleigh number at (�
 = 5000). The effects of these parameters on the flow structure 

and heat transfer characteristics have been analyzed. 
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1. Introduction 

Thermal buoyancy convection is a flow resulting from 

density variations within a non-isothermal fluid under the 

gravity effect. Such a phenomenon is of importance in 

various domains, which attracted many worldwide 

researchers, through the decades, to investigate it in many 

geometrical configurations and under various boundary 

conditions. Useful literature review can be found in the 

article and book by Ostrach [1] and Gebhart et al. [2], 

respectively, where most of the fluids considered are of 

Newtonian behavior. 

However, most of materials that are of interest in a variety 

of manufacturing processes, exhibit non-Newtonian 

behaviors, which implies that, the shear stress is not 

proportional to the shear rate [2]. According to Skelland [3], 

non-Newtonian fluids can be classified into three main 

groups, which are namely purely viscous, viscoelastic and 

time-dependent fluids. Purely viscous non-Newtonian fluids 

can be divided into two categories: shear-thinning or 

pseudo-plastic fluids and shear-thickening or dilatant fluids. 

For the formers (shear-thinning fluids), the viscosity is a 

decreasing function of the rate of shear. This property is 

specific to some complex solutions like ketchup, whipped 

cream, blood, paint, and nail polish. It is also a common 

property of polymer solutions and molten polymers. 

Pseudo-plasticity can be proved for example by shaking a 

bottle of ketchup, which leads to an unpredictable change in 

the viscosity of the content. The viscous force causes it to go 

from being thick like honey to flowing like water. For the 

latter (shear-thickening fluids), the viscosity increases with 

the rate of shear. The dilatant effect can readily be seen with 

a mixture of cornstarch and water, which acts in a 

counterintuitive way when thrown against a surface. 

On the other hand, during their thermal processing, 

non-Newtonian products are often subjected to natural 

convection flow, that is why such a phenomenon involving 

such fluids has been broadly investigated during the last three 

decades, but owing to their complex rheological behavior and 

their particular non-isothermal flow conditions further 

investigations should be undertaken in this area, especially 

when we know that most of them display strong temperature 

dependence, which constitutes another challenging problem 

to deal with. In fact, this effect makes difficult analytical 
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investigations even when flowing within simple geometries. 

Usually, the dependence of the properties on temperature is 

the most important effect. This leads to nonlinearity in the 

governing equations and couples the flow with the energy 

transport. Thus, the solution of the governing equations and 

the interpretation of experimental results become more 

involved than for constant property circumstances. Average 

constant property values at different reference conditions are 

frequently employed to simplify the solution. However, most 

manufacturing processes require the solution of the full 

variable-property problem for accurate predictions of the 

resulting transport [2]. 

To our best knowledge, most of the reported studies on 

natural convection involving non-Newtonian fluids ignored 

the dependence of the effective viscosity on temperature 

(thermo-dependence in other words). This can be a serious 

assumption, since in many cases this dependence has a 

significant influence on flow and heat transfer as proved, 

earlier, experimentally by Scirocco et al. [4] and numerically 

by Shin and Cho [5] whose results, of local Nusselt numbers 

for a polyacrylamide (Separan AP-273) solution, show 

70-300% heat transfer enhancement over those of a 

constant-property fluid. Indeed, according to these authors, 

the effective viscosity thermo-dependence engenders 

non-negligible modifications of the velocity fields and heat 

transfer. This is expressed by an augmentation of the velocity 

magnitude near the heated wall, where the viscosity is 

seriously reduced because of the high temperatures in this 

region, and the heat exchange rate. 

Most of studies having dealt with such an effect, for 

non-Newtonian fluids, were concerned with mixed 

convection in ducts. For instance, in the case of 

shear-thinning fluids, Sirocco et al. [4] and Shin and Cho [5] 

observed experimentally and numerically, respectively, that 

the enhancement of the heat transfer from the heated wall is 

due to an increase of the velocity gradient near the wall, 

which they attributed to the combined effect of the 

thermo-dependence and the shear-thinning behavior of the 

effective viscosity. Such an effect was also observed by Shin 

et al. [5] and Sohn et al. [6] for a viscoelastic fluid and, 

recently, by Nouar [7] for a viscoplastic fluid. For natural 

convection phenomenon in such media, the literature review 

does not show an important number of investigations carried 

out in this area, especially for simple geometries such as 

square and rectangular cavities. Among the few studies 

conducted in this context, we can cite that of Turki [8], who 

found that, for power-law fluids filling a rectangular cavity 

differentially heated from the vertical sides, the consistency 

thermo-dependence affects substantially the flow structure 

and the local heat transfer but not significantly the overall 

one. Lately, Solomatov and Barr [9, 10] examined 

numerically such an effect, for the same types of fluids as 

those considered by Turki [8], on the onset of the 

Rayleigh-Bénard convection and found that a decrease of the 

viscosity with the temperature anticipates the convection 

onset. 

It appears from what precedes that more work on the issue 

is called for. Therefore, our goal is to contribute to a better 

understanding of the thermo-dependence effects on thermal 

buoyancy convection in such media. Accordingly, a 

numerical study is performed to investigate the 

temperature-dependent viscosity effect on natural convection 

flow and heat transfer in a square cavity confining 

non-Newtonian power-law fluids and subjected to cross 

uniform densities of heat flux. 

2. Mathematical Formulation 

2.1. Problem Statement and Viscosity Model 

The geometry under consideration is sketched in Fig. 1. It 

consists of a two-dimensional square enclosure of size 

�′ � �′ subjected to cross uniform densities of heat flux, q' 

and aq'. 

 

Figure 1. Sketch of the geometry and coordinates system. 

The non-Newtonian fluids considered here are those whose 

rheological behaviors can be approached by the power-law 

model, due to Ostwald-de Waele, which, in terms of laminar 

effective viscosity, can be written as follows: 
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The two empirical parameters n�	and k� appearing in (1), 

are the flow behavior and consistency indices, respectively. 

They are, in general, functions of the temperature, but in most 

of cases the temperature-dependence of n�  can be ignored 

(n� = �) since it is weak compared to that of k� [4,7], which 

is described by the Frank-Kamenetski exponential law [11]: 

�� = �,-./��-�0�1                 (2) 

reflecting the viscosity diminution with the temperature, 

where b is an exponent related to the flow energy activation 

and the universal gas constant, and 2′3  is a reference 

temperature. 

Note that for n = 1 the behavior is Newtonian and the 

consistency is just the viscosity. For 0 4 � 4 1, the effective 

viscosity decreases with the amount of deformation and the 

behavior is shear-thinning. Conversely, for � 5 1 , the 

viscosity increases with the amount of shearing, which implies 

that, the fluid behavior is shear-thickening. 
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2.2. Governing Equations and Boundary Conditions 

On the basis of the assumptions commonly adopted in 

natural convection problems and using the characteristic 

scales �6 , �6�/8 , 	8/�6 , 8/�6� , 	96�6/:  and 8 , which 

correspond respectively to length, time, velocity, vorticity, 

temperature and stream function, the dimensionless governing 

equations for Boussinesq-temperature-dependent viscosity 

fluids, written in terms of vorticity, Ω, temperature, T, and 

stream function, ψ, are as follows: 

where 

�Ω
�< + ���Ω�

�� + ��!Ω�
�" ==3>�
∇�Ω + 2∇@@A�
. ∇@@AΩB + CΩ ,    (3) 

��
�< + �����

�� + ��!��
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and 

∇�ψ = −Ω,                  (5) 

where 

E = Fψ
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FG - 

F�
FI , 

CΩ = =3 JK�)LM��) − �)LM
�") N KF!FG + FO

FIN − 2 �
)LM
FGFI KFOFG − FP

FINQ + =3�
 FRFG  

and �
=e-TR �2 ������	�
� + ��!�"	�

�# + ����" + �!
���

�$
�%'(�
)  

For the present problem, the appropriate non-dimensional 

boundary conditions are: 

E = H = ψ = ��
�� + � = 0	for U = 0 and U = 1      (6) 

E = H = ψ = ��
�"  1 = 0	for V = 0 and V = 1       (7) 

Note that the major disadvantage of this formulation lies in 

the fact that Ω is unknown at the boundaries. To overcome 

such a difficulty, the Woods formulation has been adopted for 

stability and accuracy reasons [12]. 

In addition to the flow behavior index, n, and the ratio 

between heat fluxes, a, three other dimensionless parameters 

appear in the above equations, namely, the Pearson, 

generalized Prandtl and Rayleigh numbers defined, 

respectively, as: 

� = − W
X&
YX&
Y� = −

YZ[(X&/X)
Y� 	,           (8) 

=3 = (X/\)]�)')%
^)'%

 and �
 = _`]�)%a)b�
(X/\)^%c  

The Pearson number (8), which is a new dimensionless 

quantity taking place in this study, measures the effect of 

temperature change on the effective viscosity. 

2.3. Heat Transfer 

The steady solution has been used to calculate the average 

Nusselt number in the horizontal and vertical directions, 

respectively, defined as: 

dEe = 
b�]�
c∆�g�hhhhhh = i

∆�ghhhhh	                (9) 

dE! = b�]�
c∆�j�hhhhhhh = W

∆�jhhhhhh	               (10) 

where ∆2!hhhhh is the average temperature difference between the 

two vertical walls and ∆2ehhhhh  is the average temperature 

difference between the two horizontal walls. 

Here, given the nature of the cross- thermal, the global 

Nusselt number is introduced by the following equation: 

dE_ = dEe  dE!	            (11) 

to explain the heat exchange between the thermally active 

walls. 

2.4. Heatlines Formulation 

The visualization of the paths followed by the heat flow 

through the enclosure requires the use of the heatlines concept, 

which consists of lines of constant heat function, H, that are 

defined, according to Kimura and Bejan [13], from the 

following equations 

�]
�" = E2 −

��
�� , − �]

�� = H2 −
��
�"          (12) 

whose derivation, with respect to x and y, and combination 

give rise to 

�)]
��)  

�)]
�") = −

�!�
��  

���
�"            (13) 

To obtain the boundary conditions associated with (13), an 

integration of (12), along the four cavity walls, is necessary, 

which gives: 

�(0, V) = �(0,0) for U = 0              (14) 

�(U, 1) = �(0,1) − U for V = 1           (15) 

�(1, V) = �(1,1) for U = 1             (16) 

�(U, 0) = �(1,0)  1 − U for V = 0        (17) 

Finally, the solution of (13) yields the values of H, in the 

computational domain, whose contour plots provide the 

heatline patterns. Note that only the differences between the 

values of H are required instead of its intrinsic ones, which 

offers the possibility to choose �(0,0) = 0 as an arbitrary 

reference value for H. 

3. Solution Procedure 

The two-dimensional governing equations have been 

discretized using the second order central finite difference 

methodology with a regular mesh size. The integration of (3) 

and (4) has been performed with the Alternating Direction 

Implicit method (ADI), originally used for Newtonian fluids 

and successfully experimented for non-Newtonian power-law 

fluids [8,14-15].To satisfy the mass conservation, (5) has been 
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solved by a Point Successive Over Relaxation method (PSOR) 

with an optimum relaxation factor calculated by the Frankel 

formula [12]. A grid of 81×81 has been required for obtaining 

adequate results. At each time step, δt, which has been chosen 

between 10-l and 10-m  (depending on the values of the 

parameters a and m), the convergence criterion 

J∑ oψp,qra(-ψp,qr op,q
∑ oψp,qra(op,q Q 4 10-m  has been satisfied for ψ  , where 

ψs,tX  is the value of the stream function at the node �u, v� for 

the kth iteration level. 

The numerical results from the code have been validated 

using the benchmark data of de Vahl Davis [16], Turki [8] and 

Ouertatani [17] for natural convection of Newtonian and 

non-Newtonian fluids in square enclosures with differentially 

heated vertical walls and an excellent agreement was obtained 

(see Table 2 of Ref. [18] and Ref. [19] ). 

4. Results and Discussion 

As was reported in the past by [15], the convection is rather 

insensitive to Pr variations, provided that this parameter is 

large enough as it is the case for the non-Newtonian fluids and 

for a large category of fluids having a Newtonian behavior. 

Therefore, Pr is not considered as an influencing parameter in 

this study and the simulations are conducted with =3 → ∞ , 

i.e. by neglecting the inertia terms on the left hand side of (3) 

owing to their negligible contribution. To examine the cross 

fluxes and the thermo-dependency effects, the results 

presented here are related to a = 0, 0.2, 0.5, 0.7, 0.9 and 1, � = 0 and 10, � = 1.4 and �
 � 5. 10y. 

Hence, as can be seen from Fig. 2, displaying streamlines 

(left), isotherms (middle) and heatlines (right), the flow is, in 

general, unicellular and clockwise, but loses its symmetry 

with an increasing m for all the values of a. Also, the 

streamlines become more crowded in the region neighboring 

the left lower corner, which means that the flow is intensified 

as a result of the viscosity decrease in such a region, giving 

rise to a stagnation zone which tends to be reduced near the 

right upper corner and to be extended next to the left upper one 

with an increasing a, while for � � 0 , the effect of a is such 

that the streamlines become almost parallel to the central part 

of each wall. 

As for the isotherms, they seem to be closely spaced and 

less distorted in the stagnation region when m passes from 0 to 

10 depending on a, whose increase leads to their rotation in the 

clockwise direction. 

On the other hand, in order to have a microscopic 

description of the heat transfer process, which is different 

from the conventional Nusselt number that describes 

macroscopically such a phenomenon, a heatlines analysis is 

required. Hence, with comparison to the iso-consistent case 

(� � 0), the heatlines corresponding to the case �� � 10� 

present more distortion, which indicates that the path followed 

by the heat flow to reach the cold wall is more complicated in 

the rheological sub-layer. Therefore, the heat transfer is 

expected to be deteriorated in such a situation. Like the 

isotherms, an increase of a leads to a deviation of the heatlines 

in the clockwise direction whatever the value of m. 

Moreover, Fig. 3, in which are depicted the variations of 

dE_, show that this quantity increase with a. In addition, the 

same figure shows an increase in heat transfer with m, and this 

is clearer if a increases. 

In addition, fig. 4-5 presenting the profiles of the stream 

function, ψ, (left) and temperature, T, (right), at mi-height of 

the cavity along the horizontal direction, x and along the 

vertical direction, y respectively, complete the understanding 

of the thermo-dependency effects on the dynamic and thermal 

fields. In fact, an increase of m causes displacement of hollow 

ψ to the left, and a flattening trend, approaching the cold wall, 

thus justifying the presence of a stagnant zone. These results 

are also approved by the linearity of the curve T close to the 

cold wall. 

 

Figure 2. Streamlines (left), isotherms (medium) and heatlines (right) for 

�
 � 5. 10y  , 	� � 1.4  and � � 0  (black solid line), � � 10  (red 

dashdot line) and various value of a. 
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Figure 3. Evolution of the global Nusselt number according to a for	�
 =5. 10y,	� � 1.4, � � 0, and � � 10. 

 

Figure 4. profiles of the stream function, ψ, (left) and temperature, T, (right), 

at mi-height of the cavity along the horizontal direction, x. 

 

Figure 5. profiles of the stream function, ψ, (left) and temperature, T, (right), 

at mi-height of the cavity along the horizontal direction, y. 

5. Conclusion 

A numerical investigation of steady thermal convection in a 

square enclosure, filled with shear- thickening power-law 

fluids and submitted to cross uniform heat fluxes, is performed. 

The exponential model, due to Frank-Kamenetski, for the 

viscosity variation with the temperature, is used. The study is 

focused particularly on combined effects of the ratio between 

the cross heat fluxes and the thermo-dependency parameter 

(Pearson number) on the flow and thermal fields, and the 

resulting heat transfer. It emerges that the thermo-dependent 

behavior affects natural convection heat transfer depending on 

the proportion of the cross heat fluxes. 

Nomenclature 

b: temperature coefficient. 

g: acceleration due to gravity ( )2
m s  

H ′ : height or width of the enclosure (m) 

k: consistency index for a power-law fluid at the reference 

temperature ( )n
Pa s⋅  

m: thermo-dependence number 

n: flow behavior index for a power-law fluid at the reference 

temperature 

Nuh: the horizontal average Nusselt number. 

Nuv: the vertical average Nusselt number. 

Nug: the global average Nusselt number. 

Pr: generalised Prandtl number. 

q′ : constant density of heat flux ( )2
W m  

Ra: generalised Rayleigh number. 

T: dimensionless temperature, ( )( )*

rT T T∆′ ′= −  

rT ′ : reference temperature at the geometric centre of the 

enclosure (K) 
*T∆ : characteristic temperature ( )λq H′ ′=  (K) ( )u,v  

dimensionless horizontal and vertical velocities 

( ) ( )( )u ,v Hα′ ′ ′=  

( )x,y : dimensionless horizontal and vertical coordinates 

( )( )x , y H′ ′ ′=  

Greek symbols 

α : thermal diffusivity of fluid at the reference temperature 

( )sm2
 

β: thermal expansion coefficient of fluid at the reference 

temperature ( )1 K  

λ: thermal conductivity of fluid at the reference temperature 

( )W m C⋅°  

µ: dynamic viscosity for a Newtonian fluid at the reference 

temperature ( )Pa s⋅  

aµ : dimensionless effective viscosity of fluid. 

ρ: density of fluid at the reference temperature ( )3
kg m  
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: dimensionless vorticity, ( )( )2Ω Hα′ ′=  

: dimensionless stream function, ( )ψ α′=  

Superscript 

': dimensional variables 

Subscripts 

a: effective variable 

max: maximum value 

r: reference value taken at the cavity centre 
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