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Abstract: This paper presents the results of an experimental study on a pulsating turbulent flow through conical diffusers with 

total divergence angles (2θ) of 12°, 16°, and 24°, whose inlet and exit were connected to long straight pipes. To examine the 

effects of the divergence angle and the nondimensional frequency on flow characteristics, experiments were systematically 

conducted using a hot-wire anemometry and a pressure transducer. Moreover, the pressure rise between the inlet and the exit of 

the diffuser was analyzed approximately under the assumption of a quasi-steady flow and expressed in the form of simple 

empirical equations in terms of the time-mean value, the amplitude, and the phase difference from the flow rate variation. The 

expressions are in good agreement with the experimental results and very useful in practice. With the increase in the Womersley 

number, α, and 2θ, the sinusoidal change in the phase-averaged velocity, W, with time becomes distorted, and the W distributions 

show a more complicated behavior. For the flow at α=10 in the diffusers with large 2θ, the distributions of W are depressed on the 

diffuser axis. In contrast, for the flow at α=20, W has a protruding distribution on the diffuser axis. 
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1. Introduction 

The objective of this study is experimentally investigating 

the characteristics of an unsteady turbulent flow in diffusers. 

To this end, we consider a volume-cycled pulsating flow as the 

subject of the flow problem and carry out pressure and 

velocity measurements for conical diffusers with divergence 

angles (2θ) of 12°, 16°, and 24°. We examine the flow 

behaviors of the pressure and velocity distributions and clarify 

the effects of the divergence angle and the unsteady flow 

parameters on them.  

Flow in diffusers occurs in the expansion passages in fluid 

machinery equipment and are also assumed to occur in 

cascades between the blades of pumps and compressors. Thus, 

the flow in diffusers is an important flow problem in fluid 

engineering. Therefore, they have been actively studied for 

over half a century [1, 2]. In the studies performed until the 

1980s, the recovery efficiency of the pressure, the flow loss in 

the diffuser geometries, and the effects of the inlet conditions 

on their characteristics were examined comprehensively. 

However, in the studies, the inlet flow to the diffusers was 

steady.  

On the other hand, a flow field in a diffuser of fluid 

machinery often becomes unsteady. For example, a 

periodically fluctuating flow enters a diffuser from the exit of 

a runner. Moreover, the flow rate varies with time when the 

loading condition of fluid machinery and the fluid resistance 

of a pipeline change owing to flow separation and 

reattachment. In addition, it is probable that such 

circumstances decrease the transport efficiency and increase 

vibration and noise. Furthermore, this may lead to serious 

problems and even breakdown. Thus, research on the unsteady 

flow in diffusers, in which the flow rate varies with time, is 

very important for practical use. However, it has been hardly 

investigated in the present context and left as a future problem. 

Nevertheless, Mizuno and Ohashi [3] and Mochizuki et al. [4] 

have experimentally studied an unsteady flow through a 

two-dimensional diffuser for an industrial fluid machinery. In 

the former study, a plane was oscillated, and in the latter study, 

a wake generated by a cylinder periodically flowed into a 

diffuser inlet. Thus, their studies aimed to grasp the features of 

a flow involving unsteady separation and/or to establish a 

method of controlling the flow [5]. Hence, an unsteady flow in 

a diffuser, whose flow rate changes periodically, was not 
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considered until recently to my knowledge. The following are 

some examples of studies related to a volume-cycled unsteady 

flow through passages similar to the conical diffusers in this 

study. There have been a few studies [6, 7] on an oscillating 

and pulsating flow through a constriction. However, in these 

studies, a sudden expansion pipe was considered as the 

conduit configuration. In addition, the flow entering the 

expansion part was assumed to be laminar [6].  

The above is a general view of the research situation in fluid 

engineering for conventional industry. Moreover, in the 2000s, 

the unsteady flow through a divergent passage and a diffuser 

attracted increasing interest for applications in new fields such 

as automotive catalysts, microdiffusers, and vocal folds. 

The flow distribution across a catalytic converter is very 

important to improve its effectiveness. Benjamin et al. [8], 

using a hot-wire anemometry, measured the distribution of a 

pulsating airflow within a system consisting of a section with 

divergence angles, 60° and 180°, and examined the effect of 

the pulsation on the flow uniformity. Moreover, King and 

Smith [9] and Mat Yamin et al. [10] reported on the uniformity 

of distributions of the flow in a wide-angled planar diffuser 

and downstream of catalyst monoliths, where measurements 

were carried out under engine operating conditions using a 

hot-wire anemometry and a cycle-resolved particle image 

velocimetry, respectively. The separation in an oscillating 

flow for a geometry with an adverse pressure gradient was 

studied, and also the separation in the accelerative phase was 

compared with that in the decelerative phase.  

There is a rapidly growing interest for the analysis of the 

flow in microdiffusers to optimize the performance of devices, 

and recent advances in the analysis of flow were surveyed by 

Nabavi [11]. Most of the studies on unsteady flows through 

microdiffusers have been carried out for planar microdiffusers 

[12, 13]. However, there have been only a few studies [14, 15] 

on conical microdiffusers, based on numerical analysis and 

experiments. In these studies, the flow rectification 

performance of conical diffusers was examined, but the 

investigation was limited to a laminar flow at a very low 

Reynolds number owing to the characteristics of the 

microdevice. In addition, the inlets and exits of microdiffusers 

are manufactured with various shapes and ports, depending on 

the application, in contrast to those with straight tubes. 

Therefore, no general findings have been reported. 

Research on a pulsating flow in a diffuser has been carried 

out to ascertain the behavior of the physiologically driven 

flow in the larynx. Erath and Plesniak [16, 17] investigated the 

pulsating flow through a one-sided diffuser and a divergent 

vocal-fold model under corresponding life-size conditions.  

Thus, there is a growing necessity for research on pulsating 

flow in conical diffusers. However, even in the studies of 

Benjamin et al. [8] and Wang and coworkers [14, 15] on 

conical diffusers, the velocity distributions for the diffusers 

were not provided, except for those at the inlet and exit planes. 

Therefore, studies that are more comprehensive are required. 

With this background, Sumida [18] carried out preliminary 

experiments on a pulsating turbulent flow in a conical diffuser 

with a divergence angle (2θ) of 12°. It was found that the 

distributions of the pressure and velocity exhibit complicated 

behaviors, which are different from those in a steady flow. 

Note that a divergence angle (2θ) of 6−8°, or 12° is known to 

be the optimum value for conical diffusers in internal flow 

systems [2]. In this case, the length in the axial direction of the 

diffuser becomes large. However, considering the need to fit 

the diffuser into a pipeline in practical use, the divergence 

angle is often increased to reduce the length of the diffuser. 

In this study, on the basis of the findings of the preceding 

report [18], the pulsating-flow problem is investigated for 

conical diffusers with larger angles of divergence. The 

velocity is measured by a hot-wire anemometry, and the 

distributions of the phase-averaged velocity are examined. 

Moreover, the time dependence of the pressure difference 

between the inlet and the exit of the diffusers is obtained 

experimentally and analyzed approximately under the 

assumption of a quasi-steady flow. Thereafter, the effects of 

the pulsation frequency and divergence angle on the flow 

characteristics are clarified in comparison with those in a 

steady flow. 

2. Experimental Apparatus and 

Procedure 

2.1. Experimental Apparatus 

A schematic diagram of the experimental apparatus 

employed in this experiment is shown in Fig. 1. The system 

consists of a pulsating-flow generator, a test diffuser, and 

devices for measuring velocity and pressure. The working 

fluid was air at room temperature. The volume-cycled 

pulsating flow was composed of a steady flow and an 

oscillating flow. The steady flow, i.e., a time-mean flow, was 

supplied through a surge tank by a 750 W suction blower, 

which ensured that the flow rate was independent of the 

superposed oscillations and the test diffusers. The 

volume-cycled oscillating flow, on the other hand, was 

supplied by a pneumatic piston cylinder reciprocating with a 

stepping motor. The diameter of the cylinder was 300 mm, and 

the stroke of the piston could be varied from 0 to 1000 mm. 

The cycle and amplitude of the oscillating flow were 

controlled and set using a personal computer (PC). Thus, the 

desired pulsating flow rate in the sinusoidal waveform was 

effectuated in the test diffuser, and the periodic flow rate, Q, 

 

Figure 1. Schematic diagram of the experimental apparatus. 
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Figure 2. Conical diffusers and coordinate system. 

Table 1. Dimensions of the test diffusers. 

Diffuser Divergence angle 2θ,° Length L, mm (L/d1) 

I 12 568 (7.1) 

II 16 427 (5.34) 

III 24 282 (3.53) 

is expressed as 

Q = Qta + Qos sinΘ               (1) 

Here, Θ (= ωt) is the phase angle; ω is the angular frequency 

of pulsation, and t is the time. Moreover, subscripts, ta and os, 

indicate the time mean and amplitude, respectively. 

Three conical diffusers were employed in the present study, 

as shown in Fig. 2, together with the coordinate system. The 

origin of the coordinate system is the diffuser axis at the inlet 

of the diffuser; z is the length measured along the diffuser axis 

from the diffuser inlet; Rz is the distance between the diffuser 

axis and the wall along the r-axis. The divergence angle, 2θ, 

and the diffuser axial length, L, are given in Table 1. The 

diffusers were constructed from three to five transparent 

acrylic blocks, which were accurately manufactured by a 

machining process. The blocks were connected via a slip ring, 

which had static pressure holes of 0.8 mm diameter spaced 90° 

apart and a small hole to insert a hot-wire probe. The 

diameters at the inlet and exit of the diffusers were d1=80 mm 

and d2 =200 mm, respectively, with an area ratio of 6.25, 

calculated using m [= (d2 /d1)
2], where subscripts 1 and 2 

denote the values in the upstream and downstream tubes, 

respectively. The divergence angles (2θ) of the diffusers I to 

III were 12°, 16°, and 24°, respectively, which give an ideal 

pressure coefficient of the diffuser, Cp,th = 0.97, which is 

written as Cp,th =1−m
−2

. The straight transparent glass tubes 

with lengths of 3700 mm (=46.3d1) and 4200 mm (=21d2) 

were connected to the inlet and the exit of the diffuser, 

respectively. 

2.2. Measurement Procedures 

Measurements were carried out for static pressure, p, on the 

wall and velocity, w, in the axial direction. The wall static 

pressure was obtained using a diffusive-type semiconductor 

pressure transducer (Toyoda MFG, DD102-0.1F). The 

measuring positions were set at 9 to 11 streamwise stations 

between z= −22.1d1 in the upstream straight tube and z =21.9d1 

in the downstream one. In the experiment, the instantaneous 

pressure, p, at each position was concretely obtained as the 

pressure difference, p−pref, from the reference pressure, pref, at 

z/d1= −2 in the upstream tube. Furthermore, the 

phase-averaged value, P−Pref, was calculated, and its 

distribution in the z-direction was examined. 

On the other hand, the axial-velocity measurements were 

performed using a constant-temperature hot-wire anemometry 

(Kanomax, System 7112) with a temperature compensation 

circuit. An I-type probe with a tungsten wire of 5 µm diameter 

and an active length of 1 mm was used. The probe was 

calibrated using a circular nozzle with an area of 1960 mm
2
. 

The hot-wire probe was mounted on a traversing device 

controlled by a PC and aligned at a prescribed position with an 

accuracy within 0.05 mm. The velocity, w, was obtained at six, 

five, and four stations for the diffusers from I to III, 

respectively. In addition, w was measured at z/d1= −2 in the 

upstream tube and at a section 2.5d1 downstream from the 

diffuser exit. The voltage output from the anemometry was 

sampled using the PC synchronously with a time-marker 

signal that indicates the position of the piston. The data at each 

measuring point were obtained for 200−500 pulsation cycles 

and 360 data per cycle were sampled at equal time intervals.  

From the collected data, the phase-averaged velocity, W, 

and turbulence intensity, w’, were obtained. However, it is 

known that the velocities in the pulsating turbulent flow will 

have very complex distributions. In this study, we investigate 

the phase-averaged velocity W. To obtain W at each phase, the 

data of the cycles were superimposed and ensemble 

phase-averaged velocity into one cycle. This procedure was 

also applied to the phase-averaged value, P, of the wall static 

pressure, p. 

In the pulsating-flow measurements, it is important to 

consider the effect of averaging over the pulsation cycles on W 

and w’. To determine this effect, preliminary measurements 

were carried out at intermediate stations of each diffuser and at 

z= −2d1 in the upstream tube. The obtained results confirmed 

that averaging over 200 cycles has no effect on W. The scatter 

in the results increased slightly with increasing divergence 

angle, but remained less than 4% for W. However, in the 

hot-wire measurement, we cannot easily accurately determine 

the direction of the flow at a position and time when the ratio 

of the radial component to the axial component of the velocity 

is large. For such a case, a certain amount of error is 

unavoidable [19], particularly near the wall. Furthermore, we 

also verified that the flow properties were symmetric with 

respect to the diffuser axis. In addition, the time-dependent 

flow rate, which was calculated by integrating the velocity 

measured at z/d1= −2 over the cross section, was confirmed to 

be highly sinusoidal and in good agreement with Eq. (1). That 

is, the difference between the obtained and prescribed flow 

rates was less than approximately 4%. For the steady-flow 

measurements, the hot-wire signals were sampled at 100 Hz 

with a recording length of 30 s. 

Before the hot-wire measurements, to gain insight into the 

pulsating flow features, a visualization experiment using 

water was executed for the diffusers with d1=22 mm. The flow 

was visualized by a solid tracer method with spherical 

polystyrene particles having a diameter of approximately 0.2 

mm, used as tracers. A sheet of halogen light, with a width of 

1.5 mm, illuminated the flow in the horizontal plane including 

the diffuser axis. The illuminated fluid layers were 

photographed from above by a high-speed camera (Photron, 
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FASTCAM-NET 500). Thus, we investigated how the 

distributions of, W, change in the axial direction and with time 

depending on the flow conditions.  

2.3. Experimental Conditions 

As mentioned in the introduction, to my knowledge, there 

has been no research on the pulsating flow of a conical diffuser, 

the inlet and exit of which are connected to straight tubes, 

except for the author’s work [18]. Hence, this study will 

provide fundamental information for the present field. The 

flow conditions were chosen with reference to previous 

studies [20−23] on the pulsating flow in a straight tube and a 

bend. These conditions were as follows: 

Womersley number α = (d1/2)(ω/ν)
1/2 = 10−40, 

mean Reynolds number Reta = Wa1,ta d1/ν =15000−30000, 

oscillatory Reynolds number Reos = Wa1,os d1/ν =10000, 

(flow rate ratio η = Wa1,os /Wa1,ta = 0.33−0.67). 

Here, ν is the kinematic viscosity of the fluid, and the 

subscript, a, denotes the cross-sectional average. 

3. Results and Discussion 

3.1. Pressure Characteristics 

In diffusers, for steady flow, the kinetic energy of the flow 

converts into pressure, and then the static pressure rises in the 

downstream direction. Figure 3 shows the distributions of the 

wall static pressure in the steady flow for the three diffusers. In 

the figure, the pressures, P, are normalized by the dynamic 

pressure, ρWa1
2
/2, in the upstream tube, and it is expressed in the 

form of the pressure coefficient, Cp, which is defined as 

Cp=(P-Pref)/(ρWa1
2
/2), with ρ being the density of the fluid. The 

positions indicated by arrows show the exit of each diffuser. 

Moreover, the dash-dotted lines denote the pressure distributions 

in the axial direction theoretically obtained using the Bernoulli’s 

theorem. When the angle of divergence becomes large, flow 

separation occurs, resulting in the wall static pressure taking a 

considerably lower value than the theoretical value. The pressure 

in each diffuser is recovered in the downstream straight tube. 

Figure 3. Longitudinal distributions of wall static pressure for steady flow at 

Re =20000. The arrow, ↑: diffuser exits. 

Although a value of z/d1 at which the pressure distribution 

shows a peak is not apparent, it can be considered that the 

pressure has almost ceased to rise at the station, 5d1, 

downstream from the exit of each diffuser, i.e., at z= +5d1.  

On the other hand, for the pulsating flow with a periodic 

change in the flow rate, the drop and rise of the pressure in the 

longitudinal direction are required to accelerate and decelerate 

the fluid, respectively, with time. Hence, the amplitude of the 

pressure variation is predicted to be proportional to the 

pulsation frequency, ω. Consequently, the pressure 

distribution in the diffuser, varying with time, is complex. 

3.1.1. Distribution of Wall Static Pressure and Its Variation 

with Time 

Figure 4 shows an example of the wall static pressure, P, for 

Tube Ι with 2θ = 12° for the pulsating flow. Here, Cp is the 

pressure coefficient and defined as Cp = (P-Pref) / (ρ Wa1,ta
2
 /2). In 

the figure, the broken line indicates the time-averaged value, and 

the chain line indicates the result for a steady flow at the same 

Reynolds number, Reta. In the upstream tube, Cp changes by the 

phase leads of approximately 85° against the flow rate variation. 

The time-averaged value of Cp is slightly larger than one for the 

steady flow at Re=2000. On the other hand, the pressure in the 

diffuser rises with an increase of z/d1, except for a part of the 

period (Θ≈300°) when it shows a gentle favorable gradient. 

We examine the pressure rise, ∆PL, along the length L, i.e., 

between the inlet and the exit of the diffuser. The 

representative result is shown in Fig. 5, in which ∆PL is 

nondimensionalized by the dynamic pressure based on Wa1,ta 

 

Figure 4. Longitudinal distribution of wall static pressure (2θ=12°, α=20, 

Reta =20000, η= 0.5). ○: Θ=0°, ●: Θ=90°, ∆: Θ=180°, ▲: Θ=270°, - - -: 

time-averaged,  - : steady flow (Re=20000). 

 

Figure 5. Differenc between pressure at the inlet and the exit of the diffuser 

(2θ=12°, α=20, Reta =20000, η= 0.5). ←: steady flow (Re=20000). 
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in the upstream tube. In the figure, the broken line denotes the 

result that is theoretically obtained using the Bernoulli’s 

theorem for a quasi-steady flow. It is expressed as 

∆PL,th / (ρ Wa1,ta
2
 /2) = (1 +η sinΘ)

2 
(1− m

-2
).    (2) 

Moreover, the symbol, ←, indicates the pressure rise, ∆PL,s, 

for the steady flow at Re=20000, with the same cross-sectional 

averaged velocity, Wa1,ta. The pressure rise, ∆PL, in the 

pulsating flow changes almost in a sinusoidal manner. 

However, it gets behind the variation of the flow rate. The 

phase difference,Φ, between the fundamental waveform of 

∆PL and Q becomes large with the increase in the Womersley 

number. Here, the ∆PL waveform is developed using the 

Fourier series, denoted by the solid line in Fig. 5. Incidentally, 

Φ changes approximately from -5° to -60° when α increases 

from 10 to 40, as shown later in Fig. 7. On the other hand, ∆PL 

has a value lower than the theoretical one for the quasi-steady 

flow. Furthermore, ∆PL takes approximately zero values for 

the phases, 230~340°, with a small flow rate. 

As mentioned previously, for the pulsating flow in the 

diffusers, the pressure at the exit of the diffuser rises, when the 

cross-sectional averaged velocity is large; moreover, it is in a 

decelerative phase. That is, ∆PL becomes large from the latter 

half of the accelerative phase to the middle of the decelerative 

phase (Θ≈50~180°) as seen in Fig. 5. In contrast, Cp exhibits a 

small change in the axial direction from the ending of the 

decelerative phase to the first half of the accelerative phase (Θ 

≈ 230~330°). Accordingly, the kinetic energy, which needs to 

be converted to pressure, is small; hence, to accelerate the 

fluid in the axial direction, the pressure should be reduced at 

the downstream. Therefore, it can be understood that the 

pressure distribution at the beginning of the accelerative phase 

shows a larger favorable gradient for the higher Womersley 

number at which the fluid is strongly accelerated in the 

streamwise direction. 

Furthermore, considering practical use, it is desirable to 

establish a convenient expression for the pressure rise, ∆PL, 

for the pulsating flow. Hence, we introduce an approximate 

analysis by assuming the quasi-steady state and considering an 

unsteady inertia force. In the analysis, we use the 

one-dimensional equation of unsteady motion. Thus, in the 

next paragraph, we perform an approximate analysis of ∆PL. 

3.1.2. Approximate Analysis Concerning the Pressure Rise 

∆PL 

The equation of one-dimensional fluid motion is expressed 

as 

,
1

ρρ
wa

a
a F

z

W
W

t

W

z

P +
∂

∂+
∂

∂=
∂
∂−           (3) 

where Wa is the cross-sectional averaged velocity. In the above 

equation, the third term, Fw, in the right hand side represents 

the pressure losses in the section of ∆z, which are due to the 

divergence of the tube and the wall friction of the fluid. When 

Wa is expressed by the flow rate, Q, and the cross-sectional A, 

i.e.  

{ } ,tan)/2(1
2

11 θdzAA +=          (4) 

Eq. (3) is written as 
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Substituting Eqs. (1) and (4) into Q and A in Eq. (5), 

respectively, and integrating its equation in the section from z 

=0 to L, we can obtain the expression of the pressure rise, ∆PL. 

For steady flow, the pressure rise, ∆PL,s, is derived as  

.
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1
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m
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Here, the first term in the right hand side shows the 

theoretical pressure rise obtained from the Bernoulli’s 

theorem. Moreover, the second term denotes the pressure drop 

due to the flow losses, written as 

2

1
0 2

a

L

w WdzF
ρζ=∫               (7) 

with the pressure loss coefficient, ζ. Thus, the following 

expression for ∆PL,s is given:  

.
1

1
2 2

2

1
, 







 −−=∆ ζρ
m

W
P a

sL           (8) 

On the other hand, when Eq. (5) is integrated for the 

pulsating flow, we apply the following relation in the 

quasi-steady flow to the third term in the right hand side. 
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As a result, the expression of ∆PL is obtained as 
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In the above equation, ζ and ∆PL,s, represent the pressure 

loss coefficient (Eq. (7)) and the pressure rise (Eq. (8)), 

respectively, in the case of steady flow with the same flow rate 

as the mean value, Reta, of the pulsating flow.  

First, we consider the time-averaged pressure rise, ∆PL,ta. 

From the approximate analysis,  

∆PL,ta = f0 ∆PL,s.                (12) 
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∆PL,ta takes a large value, which is f0 times as much as that 

of the steady flow, being independent of the Womersley 

number, α. The illustration of the results is omitted because of 

limited space, and refer to Fig. 4. 

Secondly, we discuss the varying components of ∆PL. 

Furthermore, as clearly seen from Fig. 5 and the approximate 

expressions of Eqs. (10) and (11), the second or higher-order 

components are small, approximately η/4 as compared with 

the first one. Therefore, we examine the amplitude value, 

∆PL,os, and the phase difference, Φ, of the first component. For 

∆PL,os, we define the coefficient as 

κ = ∆PL,os /(ρWa1,os
2
/2) .             (13) 

In the approximate analysis, κ is expressed as 

.)1(
1

1

2

2
fm ς

η
κ −−= −

            (14) 

Figure 6 shows the results. They are plotted with the 

characteristic number of α2
/Reta as abscissa against ηκ as 

ordinate, which is taken from the viewpoint that κ varies 

inversely with η. The solid lines indicate the approximate 

results for Reta = 20000, in which the values measured in the 

steady flow are used for ζ. The measurement data accurately 

shows the dependence on the flow parameters as denoted by 

the approximate analysis. That is, ηκ increases almost in 

proportion to α2
/Reta as an unsteady inertia force is intensified 

 

Figure 6. Relationship between ηκ and α2/Reta. Lines denote the results of Eq. 

(14). 

 

Figure 7. Relationship between Φ and α2/Reta. Lines denote the results of Eq. 

(11). 

with an increase in α. Furthermore, ∆PL,os, which is required for 

the deceleration and the acceleration of the flow, proportionately 

increases with L, as the fluid mass involved in the divergent 

section multiplies with the smaller 2θ and the longer, L. 

Next we consider the phase difference Φ between ∆PL,os and 

the flow rate variation. The experimental results are given in Fig. 

7. Each line in the figure denotes the approximate expression Φ1 

of Eq. (11) for Reta = 20000. According to the approximate 

results, Φ at 2θ =12° is a little more negative than one for 

another. Nevertheless, the experimental results show that the 

divergence angle 2θ has little effect on Φ. Consequently, the 

phase lag becomes large with an increase of α2
/Reta, and it 

changes almost according to the expression Eq. (11). 

3.2. Velocity Characteristics 

In this section, we extract a feature of the phase-averaged 

velocity characteristics of the pulsating flow in the diffusers 

from the results obtained by the I-type hot-wire probe. In the 

discussion, observations obtained by a smoke wire method 

and by the solid tracer method using water are used for 

reference data. In the hot-wire measurement with the I-type 

probe, the measurement accuracy deteriorates in the following 

cases: 1) in the region from the outer edge of the flow into the 

conical diffuser to the neighborhood of the wall; 2) the flow at 

a position and time when the ratio of the radial component of 

the velocity to the axial component is large. This is because it 

is hard to distinguish the flow direction in such cases, as 

described in section 2.2. 

3.2.1. Changes in Centerline Velocity with Time 

Initially, we will explain the outline of the flow features by 

focusing on the velocity along the diffuser axis. Figure 8 

shows the changes in the phase-averaged velocity along the 

diffuser axis, Wc, with time at the exits of the diffusers. The 

centerline velocity, Wc, at z/d1= −2 in the upstream straight 

tube changes in a sinusoidal manner with a phase lag of 

approximately 5° from the flow rate variation. However, the 

flow in the diffuser extends further towards the wall as 2θ 

decreases. Consequently, Wc at the diffuser exit is decreased, 

and the phase lag of the Wc waveform relative to the flow rate 

variation is increased slightly. The phase lags obtained from 

the fundamental component derived from the expansion of the 

Fourier series are approximately 35° and 20° for 2θ=12° and 

24°, respectively. In addition, the phase lags correspond to the 

time required for the fluid flowing into the diffuser at the 

maximum flow rate to reach the diffuser exit.  

 

Figure 8. Waveforms of phase-averaged velocity Wc on the diffuser axis at 

diffuser exits (α =20, Reta =20000, η = 0.5). 
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Moreover, as z/d1 increases, the flow state in each diffuser is 

divided into two parts of a period with a large Wc and another 

period. This can be seen from the change in the turbulence 

intensity. Therefore, the sinusoidal Wc waveform becomes 

distorted. To examine the distortion, we introduce the velocity 

ratio, ε, given by the following equation: 

ε = (Wc,max − Wc,min) / (2Wc,ta),           (15) 

where subscripts max and min indicate the maximum and 

minimum values in a cycle, respectively. The obtained results 

are shown in Fig. 9, in which each symbol ↓ denotes the 

position of a diffuser exit. The ratio, ε, at α=20 is larger than 

that at α=10. For the diffusers with 2θ=16° and 24°, the 

distortion is largest near the exit. 

 

Figure 9. Distribution of velocity ratio ε along the diffuser axis z/d1 (Reta 

=20000, η = 0.5). 

3.2.2. Distributions of Phase-Averaged Velocity 

Figures 10 to 13 show distributions of W, which is 

normalized by the time and cross-sectional-averaged 

velocities in the upstream tube, Wa1,ta, for Reta=20000 and 

η=0.5. Illustrations are given for four representative phases in 

a pulsation cycle.  

When the flow enters the diffuser, the main current entrains 

the surrounding fluid at its boundary, and the shear layer there 

develops into massive ring-shaped vortices. At that time, a 

strong adverse pressure gradient appears on the diffuser wall 

immediately behind the inlet. Thus, the fluid near the wall in 

the vicinity of the inlet corner is forced to flow towards the 

boundary of the main current. The massive vortices, which 

rotate downstream from the inlet, move in the radial direction 

owing to the pushing of the fluid in the accelerative phase. 

Consequently, the radial position with the maximum velocity 

shifts from the diffuser axis towards the wall as z/d1 increases. 

Such a state can be seen in the flows with α=10 for the 

diffusers with 2θ=16° and 24°, the distributions of which are 

shown in Figs. 10 and 11. In the figures, the above-mentioned 

velocity distributions can be recognized at a phase angle of 

Θ≈90° with a large flow rate after the acceleration phase. It is 

interesting that a characteristic distribution appears in the 

pulsating flow at a rather low Womersley number in the above 

diffusers with large divergence angles of 2θ=16° and 24°. 

 

Figure 10. Distributions of W (2θ =16°, α =10, Reta =20000, η = 0.5). ○: Θ=0°, ●: Θ=90°, ∆: Θ=180°, ▲: Θ=270°. 

 

Figure 11. Distributions of W (2θ =24°, α =10, Reta =20000, η = 0.5). ○: Θ=0°, ●: Θ=90°, ∆: Θ=180°, ▲: Θ=270°. 
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Figure 12. Distributions of W (2θ =16°, α =20, Reta =20000, η = 0.5). ○: Θ=0°, ●: Θ=90°, ∆: Θ=180°, ▲: Θ=270°. 

 

Figure 13. Distributions of W (2θ =12°, α =20, Reta =20000, η = 0.5). ○: Θ=0°, ●: Θ=90°, ∆: Θ=180°, ▲: Θ=270°. 

On the other hand, for the case of α=20, as shown in Fig. 12, 

the period of the variation of the flow rate is reduced to a 

quarter of that for α=10. Thus, even if the fluid flows in the 

acceleration state into the diffuser, there is insufficient time for 

the shear layer of the main current to develop into massive 

vortices. Meanwhile, the phase advances into the decelerative 

phase in which the flow rate decreases. Therefore, the radial 

position of the maximum value of W still remains on the 

diffuser axis throughout the cycle. On the other hand, the 

phase difference between the varying component of the local 

velocity and the flow rate becomes larger in the cross section. 

Hence, the W distributions in the accelerative and decelerative 

phases differ noticeably in shape. To consider the case of 

phases with the same instantaneous flow rate, we compare the 

distribution at Θ=0° with that at Θ=180°. In the former, as the 

pressure does not change significantly in the streamwise 

direction, the distribution is flat in the central part of the cross 

section. In contrast, when Θ=180°, at which the pressure 

increases with z/d1, the velocity decreases near the wall and so 

the distribution develops a protruding shape.  

For the diffuser with a small divergence angle of 2θ=12°, 

the W distribution with α=10 changes with time along the 

diffuser axis, similar to case in the steady flow (not shown 

owing to limited space). However, for α=20, the velocity 

distribution develops a protruding shape with increasing Θ for 

Θ≈0−270°, as seen in Fig. 13. 

3.2.3. Estimate of Backward Flow Rate 

In Figs. 10 to 12, a backward flow is observed near the wall, 

depending on the phase. In such a case, the flow rate obtained 

by integrating the velocity distributions measured using the 

I-type probe becomes more excessive than that suggested 

using Eq. (1). However, using the two values, we can 

approximately estimate the backward flow rate. 

Figure 14 shows an example of the variation of the 

backward flow rate, q, along the diffuser axis for 2θ=16°. For 

α=10, q is large in the first stage of the decelerative phase. At 

the station of z/d1=3.9 near the diffuser exit, the backward 

flow rate appears to be 30% of the instantaneous flow rate, Q. 

This flow in the negative direction is attributed to the massive 

vortices at the outer edge of the main current approaching the 

wall and due to a strong adverse pressure gradient. On the 

other hand, q for α=20 is half of that for α=10. Therefore, a 

decrease in q reduces the energy loss, and this causes ∆PL,ta to 

increase. 

The reduction of the backward flow rate at the diffuser exit 

implies that the uniformity of the velocity distribution is high. 

The result wherein the flow uniformity increases with the 

pulsation frequency was also obtained in the experiment 

conducted by Benjamin et al. [8], which was carried out at 

reasonably high frequencies for a 60° conical diffuser. 

Consequently, the time-averaged pressure rise increases, and 

the pressure loss decreases as the pulsation frequency 

increases.  

 

Figure 14. Backward flow rate relative to given axial flow rate (2θ =16°, Reta 

=20000, η = 0.5, Θ = 90°). 
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4. Conclusions 

The characteristics of the conical diffusers with divergence 

angles of 2θ=12°, 16°, and 24° were investigated 

experimentally for pulsating turbulent flows. The effects of 

the nondimensional flow parameters and the divergence angle 

on the flow field have been examined. The principal findings 

of this study are summarized as follows: 

(1)  The approximate expressions for the pressure rise, ∆pL, 

between the inlet and the exit of the diffuser are in good 

agreement with the experimental results. These are 

practically very useful. 

(2)  The time-mean pressure rise is larger than that in the 

steady flow, increasing in proportion to the flow rate 

ratio, η. The amplitude of, ∆pL, is larger for smaller 

divergence angles. Its value and the phase lag from the 

flow rate depends and increases with the characteristic 

number, α2
/Reta. 

(3)  The distribution of the pressure coefficient, Cp, along 

the tube axis is high in the phase from the latter half of 

the acceleration to the middle of the deceleration. On 

the other hand, it is low in the rest of the phases. 

(4)  The sinusoidal change in the phase-averaged velocity 

with time becomes distorted as the fluid proceeds in the 

diffuser, and its degree increases with an increase in α 

and 2θ. Thereby the distributions of W vary in a highly 

complicated manner with time. In addition, lower the 

value of α and larger the value of 2θ, higher will be the 

backward flow rate. 

(5)  For the flow with α=10 in the diffusers with large 

divergence angles of 2θ=16° and 24°, the radial position 

with the maximum velocity shifts towards the wall for 

the phases with a large flow rate, and the W distribution 

is depressed on the diffuser axis. On the other hand, for 

the flow at α=20, W takes a maximum value on the 

diffuser axis throughout the cycle and shows a profile 

swelling in the central part of the cross section when the 

flow rate increases.  
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Nomenclature 

Cp: pressure coefficient =(P-Pref)/(ρWa1,ta
2
/2) 

d1, d2: diameters at the inlet and exit of the diffuser, 

respectively 

L: diffuser axial length 

m: area ratio 

p: instantaneous pressure  

P: phase-averaged pressure 

q: backward flow rate 

Q: flow rate 

r, z: coordinate system 

Rz: distance between the diffuser axis and the wall 

Reos: oscillatory Reynolds number = Wa1,os d1 /ν 

Reta: mean Reynolds number =Wa1,ta d1 /ν 

t: time 

w: instantaneous axial velocity 

w’: turbulence intensity 

W: phase-averaged axial velocity 

α: Womersley number (nondimensional frequency) = (d1/2) 

(ω/ν)
1/2

 

∆PL: pressure rise between L 

ε: velocity ratio =(Wc,max−Wc,min)/(2Wc,ta) 

ζ: pressure loss coefficient 

η: flow rate ratio = Wa1,os /Wa1,ta  

2θ: divergence angle 

Θ: phase angle = ωt  

κ: nondimensional amplitude of the pressure rise 

ν, ρ: kinematic viscosity and density of fluid 

ω: angular frequency 

Φ: phase difference  

Subscripts 

a: cross-sectional averaged value 

c: value on the diffuser axis 

max, min: maximum and minimum values, respectively  

q, s: quasi-steady and steady flows, respectively 

ref: reference quantity at z/d1= −2 

ta, os: time mean and amplitude values  

th: ideal value  

1, 2: values in the upstream and downstream tubes, 

respectively 
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