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Abstract: This is to communicate a class of new exact solutions of the equations governing the steady plane motion of fluid 

with constant density, constant thermal conductivity but variable viscosity and body force term to the right-hand side of 

Navier-Stokes equations with moderate Peclet numbers. Exact solutions are obtained for Peclet numbers between zero and 

infinity except 2, for given one component of the body force using successive transformation technique and a new 

characterization for the streamlines. A temperature distribution formula, due to heat generation, is obtained when Peclet number 

is 4 other wise temperature distribution is found to be constant. The exact solutions are large in number as streamlines, velocity 

components, viscosity function, and energy function and temperature distribution in presence of body force exists for a huge 

number of the moderate Peclet number. 

Keywords: Variable Viscosity Fluids, Moderate Peclet Number, Navier-Stokes Equations with Body Force,  
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1. Introduction 

Theoretical study of fluid flow problem requires deriving 

the equations for law of conservation of mass, momentum and 

energy. The momentum equations are Navier-Stokes 

equations (NSE). The way in which it is derived, allows us to 

add body force term like centrifugal force, coriolis force, 

constant gravity force etc. to the right-hand side of it. The 

introduction of body force term is important for the study of 

large-scale fluid flow. In the presence of unknown external 

force the law of conservation of mass, momentum and energy 

in non-dimensional form for steady flow problem of fluid with 

constant density, constant thermal conductivity, constant 

specific heat but variable viscosity using following 

dimensionless parameters [1] 
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Where ( )j iF x=F is the body force per unit mass, 

( )( ), ( )i iu x v x=v  is the fluid velocity vector, ( )ip p x=  is 

pressure, ρ  is constant fluid density and ( )ixµ µ=  is 

viscosity, , , {1,2,3}i j k∈ . The dimensionless quantity eR , 

rP  and cE  are known as the Reynolds number, the Prandtl 

number and the Eckert number respectively. The product of 

eR  and rP  is Peclet number denoted by eP ′ . For the plane 

case , , {1,2}i j k∈ , 1x x= , 2x y= , 1v u=  2v v= , 

( )1 2( , ), ( , )F x y F x y=F , reduces the equations (1-3) to 

following 

xu + yv =0                                              (4) 

u
xu + v yu = 1F xp− +

e

1

R
[(2 ) { ( )} ]x x y x yu u vµ µ+ +                         (5) 

u
xv + v yv = 2F yp− +

e

1

R
[(2 ) { ( )} ]y y y x xv u vµ µ+ +                       (6) 

u
2

a

 
 
 

+ v yT =
1

eP ′
( )xx yyT T+  + 

c

e

E

R

2 2 2[2 ( ) ( ) ]x y y xu v u vµ µ+ + +                   (7) 

The solution of the equation (4) is a stream function 

( , )x yψ  such that the velocity components are  

( ) ( ), ,y xu v ψ ψ= = −v               (8) 

Like other mechanics, fluid dynamics also offers difficulties 

due to nonlinear nature of the NSE and it is extremely difficult 

to reach exact solutions. Therefore, theoretical scientists 

invent techniques to achieve exact solutions of basic equations 

of fluid dynamics. Those who are interested in solution 

techniques for a given Peclet number please refer to [3-5] and 

reference therein. Theorists have also devised some 

coordinates transformation techniques and dimension analysis 

methods for exact solutions to these equations. Readers 

interested in these methods/techniques may refer to [1-2, 6-9] 

and the references therein. 

This discourse determines a class of exact solutions to flow 

equations (5-7) using method of partial differentiation and 

successive transformation technique as applied in [1-2] and 

[6-8]. Firstly, the equations (5-7) are rewritten, through the 

partial differentiation technique, in terms of the vorticity 

function w  and the total energy function xT , the function 

A  and B defined as follow 

w = xv − yu                   (9) 

xT = p + 
1

2

2 2( )u v+ − 
e

1

R
yψ       (10) 

A = ( )y xu vµ + B = 4 xuµ          (11) 

Secondly, the resulting basic flow equations are 

transformed into curvilinear coordinate system ( , )φ ψ  

through transformation 

( , )x x φ ψ= , ( , )y y φ ψ=        (12) 

in terms of the coefficients of the first fundamental form 

2ds = ( , )E φ ψ 2dφ +2 ( , )F φ ψ dφ dψ + ( , )G φ ψ 2dψ                       (13) 

wherein 

E =
2 2x yφ φ+ , F = xφ xψ + yφ yψ , G =( xψ )2+( yψ )2                        (14) 

such that the Jacobian J = 
( , )

( , )

x y

φ ψ
∂
∂

of the transformation is 

non-zero and finite. 

Martin [10] defined the coordinate lines constantψ =  as 

streamlines and left the coordinate lines constantφ =
arbitrary in a study of fluid flow problem therefore the 

curvilinear coordinate ( , )φ ψ . These curvilinear coordinates 

system will be referred here as Martin’s coordinates system

( ),φ ψ . Let λ  be the angle between the tangent to the 

coordinate lines .constψ =  and the curves .constφ =  at a 

point ( , )P x y  then it is easy to write the equations (4-7), the 

function A , B  and w  into Martin’s system applying 

differential geometric technique. Let us skip these equations 

as they are already published in [1]. The arbitrary coordinate 
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lines constantφ =  of Martin’s coordinates system ( ),φ ψ  

can be defined in many ways. For example in the von-Mises 

coordinates system ( , )x ψ , the coordinate lines constantφ =  

is taken along x axis−  i.e. choosing function xφ =  and 

stream function ψ  of Martin’s coordinates as independent 

variables instead of y  and x  [11]. Similarly, the 

coordinates system ( ),r ψ  considers the coordinate lines 

constantφ =  as ( , )r x yφ =  and stream function ψ  of 

Martin’s coordinates as independent variables instead of y  

and x  [1-2, 6-8]. Rana Khalid Naeem, a Pakistani 

Mathematician, suggested the coordinates system ( ),r ψ  for 

the study [2] and unfortunately expired just after the 

publication [6] about the exact solutions of NSE in the absence 

of body force. This communication, intending the exact 

solutions of NSE in the presence of body force, is also 

focusing on the coordinates system ( ),r ψ , therefore it sets the 

coordinate lines constantφ = of Martin’s system, as follow 

( , )r x yφ =                      (15) 

where  

cosx r θ=  siny r θ=            (16) 

Let the characterization of streamlines is through the 

equation 

( )
( )

( )

f r

g r

θ ν ψ− =                  (17) 

where ( )f r  and ( ) 0g r ≠  are continuously differentiable 

functions and r , θ  the polar coordinates. The equation (17), 

without loss of generality, implies 

( ) ( ) ( )f r g rθ ν ψ= +            (18) 

When the streamlines are characterized by equation (18), 

exact solutions in presence of body force are obtained for the 

case when both ( ) 0g r′ = and ( ) 0ν ψ′′ =  keeping the 

function ( )f r  arbitrary in [1]. In [7], exact solutions in 

presence of body force are obtained for the case when 

( ) 0g r′ =  but ( ) 0ν ψ′′ ≠  keeping the function ( )f r  

arbitrary. Similarly, [8] used the functions ( ) 0g r′ ≠  and 

( ) 0ν ψ′′ =  in order to find exact solutions in presence of body 

force. The aim in this communication is to achieve exact 

solutions in presence of body force taking ( ) 0g r′ ≠  and 

( ) 0ν ψ′′ ≠  for a function ( )f r . 

Utilizing (15-16), the basic flow equations are transform 

from Martin’s coordinates system to the coordinates system

( , )r ψ , the vorticity function w , the function A  and B  are 

following [1-2] 

eR w− = 2eR J F− + eR Lψ – rJA + 1E Aψ− + Bψ                                (19) 

0= ( )1 2 1eR F F E+ − – e rR L +
(2 )A E

J

ψ −
+ 1rA E − –

1E B

J

ψ−
                    (20) 

r rJ T 2 1E− − rTν ν ′ +
2

( )
E

T
J

νν ν ′ +
2 1
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E
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E

ψ
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4
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µ
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A = 2 2
r g

µ
ν ′

[ [ ]( ) ( ) )rg rf f rg g ν′′ ′ ′′ ′+ + + –{ }2 2

2
1 ( )r f g

νν
ν

′′ ′ ′− +  ′ 
– 2 ( )( )r f g rg gν′ ′ ′+ + ]           (23) 

B = 2 2

4

r g

µ
ν ′ 2

( ) ( )rg g r f g
νν
ν

′′  ′ ′ ′− + + +  ′  
                                  (24) 

E = [ ]221 ( ) ( ) ( )r f r g r ν ψ′ ′+ +                                         (25) 

( ) ( )J rg r ν ψ′=                                                 (26) 

where the non-zero body force ( )1 2( , ), ( , )F r F rψ ψ=F  in ( , )r ψ  coordinates. 
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Differentiating equation (19) with respect to r , differentiating equation (20) with respect to ψ  and the function L satisfying 

the natural condition r rL Lψ ψ= , following additional compatibility equation is constructed  

r rJA – 2 1 rE A ψ− –
(2 )E

A
J

ψ ψ
−

+
2 1

r r

E
A J

E

ψ 
− 

− 
+

2

(2 )

2 1

r
J E EE

A
JE J

ψ ψ
ψ

− 
− + + 

− 
 –

1
r

E B
B

J

ψ

ψ

 − − 
  

= e rR w  +

( )1 2 1eR F F E
ψ

+ − ( )2e r
R J F−                                    (27) 

2. Exact Solution 

The compatibility equation (27) involves functions A  and 

B  which depends upon the viscosity function µ , ( )f r , 

( )g r  and ( )ν ψ  which in general is difficult to solve 

analytically. The elimination of µ  from the function A  and

B  found some time be helpful in solving the compatibility 

equation, see [1, 6-7], and some time it may not see [8]. 

Luckily a relation between the function A  and B  is found 

feasible for the class of flows under consideration. As the case 

under consideration requires ( ) 0ν ψ′′ ≠  and ( ) 0g r′ ≠  

therefore setting 

( ) eψν ψ =                   (28) 

c
g

r
=                       (29) 

in equations (22-24) leads to 

( ) lnf r r b= +                (30) 

where c  and b  are constant. Equations (22-24) on 

utilization equations (28-30) provides 

w =
2 2

2 1

( )c e
ψ

  
     

            (31)  
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2

c e
ψ

µ 2c

r
1

ce

r

ψ 
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and 

B =
2

4

c e
ψ

µ 1
1

c e

r e

ψ

ψ
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It is easy to eliminate the viscosity function µ  from 

equation (32) and equation (33) and find following relation 

between the function A  and B  

B =
2r

A
c eψ
−

              (34) 

Substituting equation (28-30) and equation (34), the 

equation (27) reduces to 

r rc e Aψ
– 2 1 r

ce re
A

r c

ψ ψ

ψ
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ψψ
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2
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R F

r

ψ

ψ
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( )2e

r
R ce Fψ−                     (35) 

The equation (35) involves three functions A , 1F  and 2F  in two independent variables andr ψ therefore, setting 

2(1 )e

ce
R F

r

ψ

ψ

 
−  

 
( )2e

r
R ce Fψ− =0                                 (36) 

implies 

eR 2F = eR

r

1
ln

e
Q r

r c

ψ 
+  

 
                                    (37) 

for arbitrary function 
1

ln
e

Q r
r c

ψ 
+  

 
. Equation (37) on substituting in equation (35) gives 
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( )1eR F ψ = r rc e Aψ
– 2 1 r

ce re
A

r c

ψ ψ

ψ

− 
− −  

 
+

2

2 2

2 2 2ce e re
A

r cr c

ψ ψ ψ

ψψ
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− + + −  
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+ 
2

r

ce re
A

r c

ψ ψ− 
−  

 
+

2

2

6 2re e
A
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ψ ψ

ψ

− − 
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  

2

2

4re
A

c

ψ−
−                        (38) 

The following selection of the form of the function A  is found helpful in finding the function 1F  from equation (38) 

( , ) ( ) ( )A r R r Sψ ψ=                                        (39) 

The equation (38) on substituting (39) gives 

1eR F = c R e Sdψ ψ′′∫
cR

e S
r

ψ′
− ∫ 2

cR
e S

r

ψ+ ∫
2 2

2
c r

e e R S
r c

ψ ψ−  ′+ − + + 
 

 

2

2 2

2 2c r
e e RS

r r c

ψ ψ− + − − + 
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2

2 2

2 2c r
e e e RS

cr c

ψ ψ ψ− −  ′+ + − 
 

+ 1( )K r               (40) 

where 1( )K r  is a function of integration. Defining the 

functions 1F  and 2F  by equation (40) and equation (37) 

respectively the compatibility equation (27) is satisfied. 

The viscosity from either equation (32) or equation (33) is 

following 

µ =–
2

ce rψ
1

1
ce

r

ψ −
 

−  
 

( ) ( )R r S ψ      (41) 

The function L satisfying both the momentum equations 

(19-20) is 

eR L =
2

2

eR
e

c

ψ− 
 
 

12
( )

b r
R r e

c

ψ−− 1

ln
( )eR r

b cR r e
r

ψ ′+ − 
 

+

2

22

ecR e

r

ψ
 

1b R+ + 1

( )
2

R r
b dr

r∫
( )2
ln

2

eR r

c
+ + 2b + 1( )K r dr∫                              (42) 

where 1b  and 2b  are constants and the compatibility of momentum equation requires the arbitrary function Q  to be a linear 

function that is 

1
ln

e
Q r

r c

ψ 
+  

 
=

1
ln

e
r

r c

ψ 
+  

 
                                  (43) 

Equation (21) on utilizing equation (28-33) simplifies to 

r rc e Tψ 2 1
c e

r

ψ 
− −  
 

rTψ +
2

2 2e ce
T

c r r

ψ ψ

ψ ψ

− 
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+ e r

c e
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r
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2e

c

ψ− 
−  
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Tψ
=

2

1 2 2

1
2 ( )c r

re e c e
b E P R r

c rc r

ψ ψ ψ− − 
− − + −  

 
                   (44) 

Right hand side of equation (44) suggests searching for a solution of the form 

2
1 2 3 4( , ) ( ) ( ) ( ) ( )T r T r T r e T r e T r eψ ψ ψψ − −= + + +                             (45) 

Equation (44) on substituting equation (45) reduces to 

3
412T e

c

ψ−
 

234
4 4

48
4 e

TT
T P T e

r c

ψ−
′
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34 4 4
4 32

24 4
(2 )e

T ecT cT cT
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r r rr
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−
−

′
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3cT ′′+ 3cT

r

′
− 3

2

cT

r
+ 1eP T′ ′−  

2 1
1 2

2
(2 )e

T cT
cT P T e

r r

ψ
′

′ ′′ ′+ − + − + 
 

 

22 2
2 2

3cT cT
cT e

r r

ψ′ ′′+ + + 
 

=

2

1 2 2

1
2 ( )c r

c e e re
b E P R r

r cr c

ψ ψ ψ− − 
− − − +  

 
           (46) 

Equation (46) on comparing the like coefficients on both side and solving the resulting equations simultaneously 

concludes to 

4T =0                                                    (47) 

0R t rα=  where 
( 4 )

(2 )

e

e

P

P
α ′

′

− +
=

−
, when 2eP ′ ≠                             (48) 

1
1 32

2

c

e

E b R
T r R dr b

R r

  ′= − + +  
  
∫                                  (49) 

4
2

b
T

r
=                                                (50) 

1
3

2

c rE P b
T r R

c
= −                                          (51) 

where 3b , 4b  and 0t  are arbitrary constants and  

1eP C′
31 0 4 4

2

c
e

e

cE m t
r P

R

α α α ′ − − +  =0                              (52) 

The solution equation (52) will be discussed on the choice ofα , when α  is zero and when it is not.  

For the case 0α =  (or 4eP ′ = ) the equations (47-51) simplifies to 

0 0R t r tα= = ,
1 0

4

2 c

e

c E b t
b

R
= ,

1 0
1 3

2 ln
( ) c

e

E b t r
T r b

R
= + , 

1 0
2

2 1
( ) c

e

c E b t
T r

R r
= , 

1 0
3

2

c rE P b t
T r

c
= − and 4 0T =  

and from equation (45) the temperature formula due to heat generation is 

1 0
3 ln

2

c rE b t P c e r
T b r

r c e

ψ

ψ

  = + + − 
  

                                (53) 

For the case 0α ≠  (or 4eP ′ ≠  ) the equations (38-42) 

simplifies to 

4 0b = , 1 0b = , 0R t rα= , 

1 3( )T r b= , 2 ( ) 0T r = , 3 0T = , and 4 0T =  

and the temperature due to heat generation is constant as it is 

obvious from equation (45) 

2T b=                   (54) 

Thus viscosity from (41), pressure from (10) using (42) and 

velocity from equation (8) for ( )0,eP ′ ∈ ∞  except 2eP ′ =  

and temperature form equation (53) when 4eP ′ =  and from 

(54) when 4eP ′ ≠  is obtained. 

3. Conclusions 

In this communication, a class of new exact solutions of 

the equations governing the steady plane motion of fluid of 

constant density, constant thermal conductivity but variable 

viscosity in presence of body force term for moderate 

Peclet numbers ( )0,eP ′ ∈ ∞  except 2eP ′ =  for given one 

component of the body force is obtained. The streamline 

.constψ =  for class of flows under consideration is found to 
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be ln
c e

b r
r

ψ
θ = + +  in polar coordinates r , θ . A 

temperature distribution formula

1 0
3 ln

2

c rE b t P c e r
T b r

r c e

ψ

ψ

  = + + − 
  

 is identified, due to 

heat generation, when 4eP ′ =  otherwise the temperature 

due to heat generation found to remain constant. As, 

streamlines, velocity components, viscosity function, and 

the energy function and temperature distribution in the 

presence of body force for all moderate Peclet number can 

be constructed therefore this shows a large number of exact 

solutions to the flow problem. 
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