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Abstract: We have presented an elegant high energy quantum problem, namely, the full Dirac oscillator under axial 

magnetic field with its full solution. We have found the energy spectrum which is rich and at the same time has a novel 

structure. The quantized energy levels show coupling of the oscillator frequency with the Larmor frequency in the 2D surface 

where the electrons under consideration follow a 2D oscillator. The axis in which magnetic field is pointed, the electrons 

follow a 1D oscillator. There is also coupling between spin and orbital motion and also a coupling between a resultant effect of 

orbital and spin motion with Larmor precession. 
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1. Introduction 

Moshinsky and Szczepaniak [1] have introduced an 

interesting interaction in the Dirac equation such that the 

Dirac Hamiltonian is linear in both momentum and the 

coordinates. The resulting Dirac equation is known as Dirac 

oscillator because it turns into a harmonic oscillator with 

strong spin-orbit coupling in the non-relativistic limit. The 

oscillator is achieved by introducing the coupling in the 

Dirac equation as [1] 

( )[ ] Ψ+−=
∂
Ψ∂ 2

. mcrimpc
t

i ββωα ���
ℏ , 

where Ψ  is the four component bispinor corresponding to 

spin-half particle, like electron, c is the speed of light, α� and 

β  are standard representation of Dirac matrices, ω  is the 

classical frequency of the oscillator. When 0=ω , we 

recover the ordinary Dirac equation [2]. 

The Dirac oscillator plays a vital role in the depiction of 

relativistic many body problems [3-5] and super symmetric 

relativistic quantum mechanics [6-8]. Dirac oscillator 

framework is also proposed in quantum chromodynamics, 

mainly in connection with quark confinement models in 

baryons and mesons [9]. Most thrilling aspects of this 

oscillator are its association to quantum optics [10]. It also 

maps into Anti-Jaynes-Cummings model for describing the 

interaction of a atomic transition in two level systems [11-

13]. Moreover, a lot of attention and many physical 

applications in various branches of physics of this oscillator 

have been found, for example, in semiconductor physics 

[14], graphene [15] etc. An experimental demonstration of 

this oscillator has been initiated [16]. Equivalence has been 

found between the Dirac oscillator and a free particle in a 

rotating frame of reference [17]. Using previous results on 

the harmonic oscillator in a Snyder algebra, the Dirac 

oscillator with a minimal length is solved [18]. Recently, a 

tabletop implementation of a Dirac oscillator system based 

on a spin-orbit coupled ultracold atomic sample that allows 

for a direct observation of the corresponding analog of virtual 

pair creation on quantum measurement backaction has been 

proposed [19]. Last year, the propagator of a two dimensional 

Dirac oscillator in the presence of a uniform electric field is 

derived by a path integral technic [20]. 

In this context, we consider (3+1) dimensional Dirac 

oscillator in an external homogeneous magnetic field. We 

investigated mathematical formulation of the oscillator 
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problem and solved it. The quantized energy spectrum for up 

and down spin is derived. In the non-relativistic limit, this 

energy spectrum reduces to the spectrum of three 

dimensional harmonic oscillator with a spin-orbit 

contribution, when the magnetic field is absent. We present 

this problem and give a solution in section 2 and in section 3, 

we give a brief conclusion of the work. 

2. Dirac Oscillator in Magnetic Field 

In presence of an external magnetic field, the (3+1) 

dimensional Dirac oscillator is given by 

ψψββωα EmcrimA
c

e
pc =







 +






 −+ 2.
���� ,       (1) 

where A
�

 is vector potential and ( )0>− ee is the charge of 

the oscillator which is considered to be an electron here. We 

consider the uniform magnetic field to be along the z - 

direction and vector potential to be in the symmetric gauge as 








−= 0,
2

,
2

x
B

y
B

A
�

, where B is the magnetic field strength. 

Using the following standard form of α� and β : 









=

0

0 σ
σ

α
�

�
�

 

and 










−
=

I

I 0

0
β                                   (2) 

and two-component form for ψ as 









=

b

a

ψ
ψ

ψ ,                                (3) 

we obtain the following two simultaneous coupled equations: 

( ) ( ) abb mcErimcAepc ψψσωψσσ 2... −=++ ������
 (4) 

and 

( ) ( ) baa mcErimcAepc ψψσωψσσ 2... +=−+ ������
. (5) 

The system gives the following two equations 

( ) ( ) ( ) ( )[ ]primcAeApcepAcepc
����������������

.,.).().(..).().([ 22222 σσωσσσσσσ ++++  

( ) ( ) ( ) aa cmErcmArimce ψψσωσσω 4222222 ].)].(,.[ −=++ ������
                                           (6) 

and 

( ) ( ) ( ) ( ) ( )[ ]primcAeApcepAcepc
����������������

.,.).().(..).(.[ 22222 σσωσσσσσσ −+++  

( ) ( ) ( ) bb cmErcmArimce ψψσωσσω 4222222 ].)].(,.[ −=+− ������
.                   (7) 

One can easily show that 

( ) 22
. pp =��σ ,                                                                           (8) 

( ) ( ) zz BBLAppA σσσσσ ℏ
�������� +=+ ).(..).( ,                                                             (9) 

22).( AA =
��σ ,                                                                                 (10) 

( ) ( )[ ] ℏ
��

ℏ

����
iSL

i
pr 3.

4
.,. +=σσ ,                                                                              (11) 

where electron spin σ�ℏ
�

2
=S , 

( ) )].(..[)].(),.[( 2 rBrBirAr
⌢�⌢������� σσσσ −=                                                            (12) 

and 

( ) 22
. rr =��σ .                                                                                         (13) 

Using these, Eqs. (6) and (7) can be cast into 
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( ) SL
mc

AeLceBrcmpc ZZ

��

ℏ
ℏ .

4
[

2
22222222 ωσω −++++

 

( ) ( ) aaz mccmErBrBrmce ψωψσσω ℏ
⌢�⌢� 24222 3)]].(.[ +−=−−                                         (14) 

and 

( ) SL
mc

AeLceBrcmpc ZZ

��

ℏ
ℏ .

4
[

2
22222222 ωσω +++++

 

( ) ( ) bbz mccmErBrBrmce ψωψσσω ℏ
⌢�⌢� 24222 3)]].(.[ −−=−+ .                             (15) 

Since B
�

is along the z-direction, and in magnetic field spin of an electron precesses around B
�

, the effective component of 

σ�  is zσ . Hence, the second term within the square bracket in the 6th term of the both equations should reduce as follows: 

( ) θσσ 2cos).(. BrBr z=⌢
�⌢�

, 

where θ is the azimuthal angle. 

Then we have 

( ) SL
mc

r
Be

LceBrcmpc ZZ

��

ℏ
ℏ .

4
sin

4
[

2
22

22
222222 ωθσω −++++  

( ) aaz mccmEBrmce ψωψθωσ ℏ
242222 3]sin +−=−                                              (16) 

and 

( ) SL
mc

r
Be

LceBrcmpc ZZ

��

ℏ
ℏ .

4
sin

4
[

2
22

22
222222 ωθσω +++++  

( ) bbz mccmEBrmce ψωψθωσ ℏ
242222 3]sin −−=+ .                                    (17) 

The first two terms of the left hand side of Eqs. (16) and 

(17) constitute Hamiltonian of 3 dinensoinal harmonic 

oscillator. Third term reveals an interaction between z 

component of total magnetic moment and the magnetic field 

and the fourth term reveals interaction between electric 

charge and the magnetic field. The fifth term appears due to 

spin-orbit interaction and sixth term due to an interaction 

between electron spin and magnetic field. 

We can find closed form solution of Eqs. (16) and (17) 

using either ( ) >
s

l

m

m

lY χφθ , basis or >
s

l

m

im
e χφ

basis, 

where the quantum number lm  is associated with the 

eigenfunctions 
φlim

e of zL and 
ss msmz mS χχ ℏ= ,

2

1±=sm . In both of those bases, the eigen value of SL
��

. is 

sl mm2
ℏ . We prefer now to work with the >

s

l

m

im
e χφ

basis. 

Since the system possesses cylindrical symmetry, in 

cylindrical coordinates ρ, φ and z, where 
222 yx +=ρ , 

Eqs. (16) and (17) can be written respectively as 

( )zzLceBzcmcm
z

c σωρω
φρρ

ρ
ρρ

ℏℏ ++++














∂
∂+

∂
∂+









∂
∂

∂
∂− 22222222

2

2

22

22 11
 

 ( ) aaz mccmEBmceSL
mcBe ψωψρωσωρ ℏ

��

ℏ

24222
2

2
22

3.
4

4
+−=




−−+                           (18) 

and 

( )zzLceBzcmcm
z

c σωρω
φρρ

ρ
ρρ

ℏℏ ++++














∂
∂+

∂
∂+









∂
∂

∂
∂− 22222222

2

2

22

22 11
 

( ) bbz mccmEBmceSL
mcBe ψωψρωσωρ ℏ

��

ℏ

24222
2

2
22

3.
4

4
−−=




+++ .                          (19) 
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As the equations involve partial derivatives of ρ and z and operators of z-component of angular momentum and spin, we 

take the solutions in the form: 

( ) ( )
2

1
−=

=
s

l

m

im

aaa ezGF χρψ φ                                                                       (20) 

and 

( ) ( )
2

1
=

=
s

l

m

im

bbb ezGF χρψ φ .                                                                       (21) 

Then we get from Eq. (18) 

( )
( ) 2222

22

2

2

2222

4

11 ρωω
ρρ

ρρ
ρρρ 








++++









∂
∂

∂
∂− cmBmce

eBm
c

F
c

F

la

a

ℏℏ  

( )
( ) ωω ℏℏ

24222222

2

2
22 3

1
mccmEzcm

z

zG

zG
c a

a

+−=+
∂

∂
−  ( ) ℏℏ ll mmcmceB ω221 −−− .       (22) 

Let 

( ) λωω =−−−+− ℏℏℏ ll mmcmceBmccmE 22422 213 ,                                        (23) 

where λ is a constant. Hence, the Eq. (22) demands 

( )
( )

=∈+− 2222

2

2

22 1
zcm

dz

zGd

zG
c a

a

ωℏ                                                            (24) 

where ∈  is another constant. Then we have 

( ) ( ) ( )ρρωωρ
ρρ

ρρ
ρρ aa

la FcmBmce
eB

F
m

c
d

dF

d

d
c 2222

22

2

2
2222

4

1








++++







− ℏℏ . ( ) ( ) 0=−∈+ ρλ aF . (25) 

Multiplying Eq. (24) by 
22

1

mc
, we have 

( ) ( ) ( )zG
mc

zGzm
dz

zGd

m
aa

a

2

22

2

22

22

1

2

∈=+− ωℏ
.                                                  (26) 

This is the simple harmonic oscillator Schrogringer equation and hence, 

2

2

1
2 mcn ωℏ







 +∈= , ...2,1,0=n                                                            (27) 

and ( )zGa is the wave function of simple harmonic oscillator. 

Eq. (25) can be written as 

( ) ( ) ( ) ( )ρρωωρ
ρρ

ρ
ρρ

ρ
aa

laa F
m

c

Bme

c

eB
F

m

d

dF

d

Fd 2

2

22

222

22

2

2

2

2

4

1








++−−+
ℏℏℏ

 ( ) ( ) 0
1

22
=∈−+ ρλ aF

c ℏ
         (28) 

Now, performing a change of variable 

ρωωξ 4
2

22

222

22

4 ℏℏℏ

m

c

Bme

c

eB ++= ,                                                                (29) 

we obtain from Eq. (28) 
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( ) ( ) ( ) ( ) ( ) 0
1 2

2

2

2

2

=+−−+ ξξξξ
ξξ

ξ
ξξ

ξ
aaa

laa DFFF
m

d

dF

d

Fd
,                                           (30) 

where 

2

22

222

22
22

4 ℏℏℏ
ℏ

ωω
λ

m

c

Bme

c

eB
c

D

++

∈−=
.                                                               (31) 

According to [21], the corresponding solutions are 

( )12 += ND , ....2,1,0=N                                                                     (32) 

and 

( ) ( )ξξ
ξ

l

l

m

kma fAeF +

−
=

2

2

1

,                                                                           (33) 

where A is a normalization constant and ( )ξl

l

m

kmf + satisfy the equation 

( ) ( ) ( ) ( ) 01
2

2

=+−++ +
++ ξ
ξ

ξ
ξ

ξ
ξ

ξ km

m

km

l

m

km

l

l

l

l

l kf
d

df
m

d

fd
,                                          (34) 

( )








−=−=
egeroddanisNfor

N

egerevenanisNfor
N

mNk l

int,
2

1
........2,1,0

int,
2

............2,1,0

2

1
                             (35) 

and lm  can take ( ) 12 +N values for an even intiger N  and 1+N values for an odd intiger N . 

Equation (32) gives the energy spectrum of the (3+1) dimensional Dirac oscillator in presence of magnetic field: 

( ) ( ) ( ) 






 −+






 −+






 ++++=− LllL mmnNmccmE ωωωωω ℏℏℏℏ 1
2

3

2

1
12 2422

2

1−=smfor ,         (36) 

where the Larmor frequency Lω is 

mc

eB
L

2
=ω .                                                                                   (37) 

The Larmor frequency occurs in the energy spectrum due to interaction between electric charge and the magnetic field. The 

third term in the square bracket of Eq. (36) appears for spin-orbit coupling and the fourth term for an interaction between total 

magnetic moment and the magnetic field. 

Now, the other component of ψ is 

( ) ( ) ( ) ( )
2

1

2

1
==

==
s

l

s

l

m

im

bb
m

im

bbb ezGFezGF χξχρψ φφ
 ( ) ( )

2

1
2

1 2

=+

−
′=

s

ll

l m

im

b

m

km ezGfeA χξ φξ
             (38) 

and the corresponding energy spectrum is 

( ) ( ) ( ) 






 ++






 ++






 ++++=− LllL mmnNmccmE ωωωωω ℏℏℏℏ 1
2

3

2

1
12 2422

 

2

1=smfor .                                                                         (39) 

For 0=B  
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














 −+






 ++=− ωω ℏℏ
2

3

2

3
2 2422

lmnNmccmE  

2

1

2

3

2

3
2 2 −=















 −+






 +′= sl mformnmc ωω ℏℏ                                          (40) 

and 
















 ++






 ++=− ωω ℏℏ
2

3

2

3
2 2422

lmnNmccmE  

2

1

2

3

2

3
2 2 =















 ++






 +′= sl mformnmc ωω ℏℏ ,                                            (41) 

where 

....2,1,0=+=′ nNn                                                                      (42) 

These (Eqs. (40) and (41)) are of the same nature as in spherically symmetric Dirac oscillator [22]; the difference occurred 

only because of the cylindrical symmetry we have assumed from the very beginning of the solution procedure. 

The non relativistic limit of the energy spectrum is obtained by setting KmcE += 2 with the consideration 2mcK << and 

we get 

( ) ( ) ( ) LllL mmnNK ωωωωω ℏℏℏℏ 1
2

3

2

1
1 −+







 −+






 ++++=  
2

1−=smfor                            (43) 

and 

( ) ( ) ( ) LllL mmnNK ωωωωω ℏℏℏℏ 1
2

3

2

1
1 ++







 ++






 ++++=  
2

1=smfor .                        (44) 

For 0=B  

2

1

2

3

2

3 −=






 −+






 +′= sl mformnK ωω ℏℏ                                                            (45) 

and 

2

1

2

3

2

3 =






 ++






 +′= sl mformnK ωω ℏℏ .                                                          (46) 

Except spin-orbit contribution terms ωℏ






 −
2

3
lm  in Eq. (45) and ωℏ







 +
2

3
lm  in Eq. (46), these are exactly the energy 

spectrum of 3D non-relativistic harmonic oscillator. 

If we take the solutions in the form: 

( ) ( )
2

1
=

=
s

l

m

im

aaa ezGF χρψ φ
                                                                            (47) 

and 

( ) ( )
2

1
−=

=
s

l

m

im

bbb ezGF χρψ φ
,                                                                          (48) 

the corresponding energy spectrum of aψ and bψ are given by respectively as 
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( ) ( ) ( ) 






 ++






 +−






 ++−+=− LllL mmnNmccmE ωωωωω ℏℏℏℏ 1
2

3

2

1
12 2422

 

2

1=smfor                                                                              (49) 

and 

( ) ( ) ( ) 






 −+






 −−






 ++−+=− LllL mmnNmccmE ωωωωω ℏℏℏℏ 1
2

3

2

1
12 2422

 

2

1−=smfor .                                                                             (50) 

3. Conclusion 

We have solved the (3+1) Dirac oscillator with magnetic 

field and found the energy spectrum. The system is 

cylindrically symmetric: there are basically two oscillators, 

one is a 2D oscillator in the x-y plane and the other is a 1D 

oscillator in the z - direction. The energy spectrum shows this 

splitting exactly. Moreover, there appears an oscillation 

which is basically a Larmor precession, coupled (i) with the 

2D oscillator in x-y plane and (ii) coupled with a net effect of 

orbital and spin angular momentum. The 2nd coupling is 

shown in the last term in Eqs. (36) and (39) or (49) and (50). 

There is also spin-orbit coupling coupled with the Dirac 

oscillator in the third term in Eqs. (36) and (39) or (49) and 

(50). The non-relativistic limit of the energy spectrum is 

rightly that of 3D harmonic oscillators plus spin-orbit 

coupling. Everything appeared smoothly in our calculation 

because of the initial decomposition of the problem by a 

cylindrical symmetry. In the absence of magnetic field, the 

problem shows characteristics of a 3D Dirac oscillator as can 

be verified with what is available in literature. The energy 

spectrum is novel and rich. This oscillator might find 

application in quantum optics. The system can easily be 

manipulated using photon beams or electromagnetic signal 

and made to absorb and emit radiation with energy ωℏ  or 

Lωℏ  or ( )Lωω +ℏ or ( )Lωω −ℏ . This is clear from the 

expression of the energy levels. 

In conclusion, a very attractive quantum system has been 

elucidated which is a 3D Dirac oscillator immersed in axial 

magnetic field. 
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