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Abstract: There is no minimal uncertainty in position measurement in the Heisenberg uncertainty principle is to be 

considered as the minimum of space resolution, whereas numerous theories of quantum gravity predict the existence of a lower 

bound to the possible resolution of distances. The minimal length is considered commonly by a modification of the Heisenberg 

uncertainty principle into the generalized uncertainty principle (GUP). The application of GUP modifies every equation of 

motion of quantum mechanics and consequently, a new window of research has opened to study quantum mechanical problems 

under the framework of GUP. In this article, we present an exact solution of the Dirac equation with a combined static electric 

and magnetic field under the framework of GUP and obtain exact energy spectrums. The spectrums manifest a super-symmetry 

for the sufficient large magnetic field intensity compared to the electric field intensity. The methodology of the solution is 

designed for convenient implementation of the key property of the harmonic oscillator, the kinetic and potential energy parts of 

the Hamiltonian are of equal weight. An obligation for the existence of the solution is found that the magnetic field is stronger 

than the electric field. Our obtained result is confirmed by rendering energy levels of a relativistic electron in an external 

normal magnetic field, found in the literature.  
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1. Introduction 

A fundamental length in the Planck length scale has 

appeared in the perspective of the string theory through the 

observation that a string cannot probe the distances that are 

smaller than its length [1-6]. The holographic principle [7], 

black hole physics [8] and non-commutative geometries [9] 

all strongly support the appearance of the fundamental 

length. From the viewpoint of quantum mechanics, this 

fundamental length has shown up as an extra uncertainty for 

measurement in a position [10-13]. Therefore, the ordinary 

canonical commutation relation between the operators of 

position and momentum turns into a modified form,

( )2[ , ] 1x p i pβ= +ℏ , where the deformation parameter β  

has a small positive value. This reformed commutation 

relation leads to a modification in the Heisenberg uncertainty 

relation as
2(1 )

2
x p pβ∆ ∆ ≥ + ∆ℏ

. This adjusted uncertainty 

product obviously implies the lower bound of uncertainty in 

a position measurement minx β∆ = ℏ . This modified 

uncertainty product is typically known as the generalized 

uncertainty principle (GUP) [14], or minimal length 

uncertainty relation. Consequently, in configuration space 

momentum operator becomes 

2

1
3

p i i
x x

β ∂ ∂ = − + −  ∂ ∂   

ℏ ℏ

and the position operator persists the same as ordinary 

operator x [11] due to GUP. 
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The perception of the GUP provides a suitable framework 

for the unification of quantum mechanics and general 

relativity under the dominion of quantum gravity [15]. 

Besides, this framework of GUP could be of excessive 

attention in both relativistic and non-relativistic quantum 

mechanics. An astonishing aspect of the conception is that 

this minimal length can regularize unexpected divergences in 

the quantum field theory [16]. The notion of GUP can 

moreover offer a best latest framework for an effective 

narrative of complex systems for example several collective 

excitations in solid or composite particles and quasi-particles, 

for example, nucleons, nuclei, and molecules [13]. In fact, it 

is conjectured that this fundamental length may be 

interpreted as an intrinsic gage depicting the finite size of the 

measured system and its structure under revision [16]. A 

minimal length is obviously found to be operative in each 

quantum system when the non-pointness of the constituent 

parts of the system like an electron, nucleon, etc. whose 

positions are determined is accounted for within the 

framework of quantum measurement [17]. One of the 

significances of the GUP is that it represents the fascinating 

UV/IR mixing: when p∆  is large (ultraviolet (UV)), x∆ is 

proportional to p∆  and hence is also large (infrared (IR)). 

This kind of relationship is found in non-commutative 

quantum field theory [18] and in Ads/CFT correspondence 

[19]. The meaning of UV/IR mixing is physics of short 

distance can be probed by the physics of long distance. 

The framework of the GUP has caused new implications in 

solving quantum- mechanical problems from the beginning 

of the present century. A great amount of work has been 

devoted to study the effect of the GUP on quantum-

mechanical problems: The implications of the framework of 

GUP on the equation of motion for simple harmonic motion 

have been discussed in [20]. The exact solution of harmonic 

oscillators Schrödinger equation in D-dimensions has been 

presented in [21]. Some features of a bouncing particle in 

Earth’s gravitational field under GUP are studied in [22]. The 

modification to the quadrupole moment of deuteron brought 

by the generalized uncertainty principle is calculated and an 

estimation of the minimal length is found in [23]. The 

approximate energy levels for hydrogen in presence of 

nonzero minimal length in coordinate space have been gained 

in [24]. The elastic scattering problem for the Yukawa and 

the Coulomb potential is studied in [25]. The classical limit 

of the motion of a particle in a central force potential is 

investigated in [26]. The modification of quantization of the 

electromagnetic field for GUP has been analyzed in [27]. The 

amendment due to GUP to the energy ground state of the 

deuteron, where Yukawa potential is the binding force 

between the nucleons, is estimated in [28]. The implications 

of the GUP on cosmology have been discussed in [29]. The 

(2 + 1)-dimensional Dirac oscillator under a magnetic field in 

the presence of a minimal length is investigated in [30]. The 

free particle Dirac equation through GUP is solved in [31]. 

The minimal length framework is inserted in the Dirac 

equation in [32], where an exact spectrum of a one-

dimensional Dirac oscillator has been deduced. Dirac 

oscillator in momentum representation has been solved in 

[33]. An approximate leading influence of the GUP on the 

energy spectrum of 1D Dirac equation with a linear scalar 

potential has been obtained in [34]. The exact scenario of a 

Dirac particle confined by a mixed vector-scalar linear 

potential in [35] and a linear scalar potential in [36] has been 

explored. The wave equation for a relativistic electron in 

two-dimensional electron gas with a normal external 

magnetic field has been solved exactly in [37]. The 

compatibility of noncommutative algebra with GUP for 

graphene is discussed in [38]. Construction and exploration 

of the observable consequences of GUP in relativistic 

quantum field theory are exposed in [39]. A quantum field 

theoretic toy model built on GUP is formulated in [40]. 

In this article, we propose an exact solution of the Dirac 

equation with a combined static electric and magnetic field in 

the context of the GUP and along in the context of the usual 

Heisenberg uncertainty principle. The task expresses a 

relativistic electron that moves in the x-y plane in the 

presence of a mutual perpendicular electric and magnetic 

field, where the electric field is in the y-axis and the magnetic 

field in the z-axis. The uniform electric field is implemented 

by a scalar potential and the uniform magnetic field is 

executed by a right selected of the gauge field. The 

performance of the exact solution depends on the knowledge 

of the energy spectrum of the harmonic oscillator with GUP. 

The fundamental property of the harmonic oscillator, kinetic 

and potential energy parts of the Hamiltonian are of equal 

weight is used. The solution of the Dirac equation with a 

combined static electric and magnetic field within the 

framework of GUP shown here is of curiosity since it gives a 

model of a two-dimensional electron gas system in presence 

of a mutual perpendicular static electric and magnetic field 

and has various applications in advanced solid-state physics. 

The present work is of much interest since it offers a suitable 

framework for the exploration of phenomenological aspects 

of quantum gravity proposals. 

The arrangement of the article is as follows: In section 2, 

we formulate Dirac equation for the electron in presence of a 

combined static electric and magnetic field by an appropriate 

choice of the scalar and vector potential giving rise to an 

electric and magnetic field respectively and two coupled 

differential equations are obtained. We then solve the 

differential equations in the context of the ordinary 

Heisenberg algebra in sub section 2.1 and of a modified 

algebra for the GUP in sub section 2.2, where the energy 

spectrums are obtained exactly. The ending section 3 gives a 

brief conclusion. 

2. Exact Solution of the Dirac Equation 

with a Combined Static Electric and 

Magnetic Field 

In the presence of an external electromagnetic field, the 

Dirac equation for an electron of mass m, charge ( 0)e e− >  

moving with linear momentum p
�

is [41]  
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2( , )
( , )

x t e
i c A e mc x t

t i c

ψ α φ β ψ
 ∂  = ⋅ ∇ + − +  ∂   

�
��� �ℏ

ℏ ,  (1) 

where,α�  and β  are Dirac matrices, φ scalar potential, A
�

 the 

vector potential, c the speed of light and ( , )x tψ �

 
is a four-

component spinor. In the case of stationary states, we can write 

( , ) ( )

Et
i

x t x eψ ψ
−

= ℏ
� �

.                              (2) 

Using this in equation (1), we obtain 

2
( ) ( )

e
c p A e mc x E x

c
α φ β ψ ψ

  ⋅ + − + =  
  

�� � � �
.     (3) 

We consider that a relativistic electron is moving in x-y 

plane with a uniform velocity. A uniform electric field is 

applied in y-axis and a uniform magnetic field normal to the x-

y plane that is along z-axis. The scalar and vector potentials are 

yφ ε= −                                     (4) 

and 

0xA B y= − , 0Y ZA A= = ,                  (5) 

where ε  and 0B  are electric and the magnetic field strength 

respectively. 

For the electron, we can write the equation (3) as 

( ) ( ) ( )2  , ,  ,x x y y x xc p c p e A e y mc x y E x yα α α ε β ψ ψ+ + + + =  (6) 

A standard representation of Dirac matrices for two spatial 

dimensions is 

0 1

1 0
x xα σ  

= =  
 

, 

0

0
y y

i

i
α σ

− 
= =  

 
                              (7) 

and 

1 0

0 1
zβ σ  

= =  − 
,                              (8) 

where ( ), ,i i x y zσ =  are the 2 2× Pauli matrices and a two 

component form for ψ  is 

1

2

ψ
ψ

ψ
 

=  
 

,                                  (9) 

which is a spinor mixing spin-up and down-components with 

positive and negative energy. Using the representation of 

Dirac matrices and the spinor, we obtain the following 

coupled equations: 

( ) ( ) ( ) ( )2
0 2 1 ,  ,x ycp icp eB y x y E e y mc x yψ ε ψ− − = − − , (10) 

and 

( ) ( ) ( ) ( )2
0 1 2 ,  ,x ycp icp eB y x y E e y mc x yψ ε ψ+ − = − + . (11) 

Putting the value of 2ψ from equation (11) in equation 

(10) and putting the value of 1ψ  from equation (10) in 

equation (11), the following two coupled equations can be 

obtained: 

( ) ( ) ( )22 2 2 2 2 2 2 2 4
0 0 0 1 1 2 [ , ]  ,    [ ] ,x x y yc p ceB p y e B y c p iceB y p x y E e y m c x yψ ε ψ − + + − = − −

 
                (12) 

and 

( ) ( ) ( )22 2 2 2 2 2 2 2 4
0 0 0 2 2 2 [ , ]  ,    [ ] ,x x y yc p ceB p y e B y c p iceB y p x y E e y m c x yψ ε ψ − + + + = − −

 
.            (13) 

In deriving stages of the equations (12) and (13), we have assumed that [ , ] [ , ] 0x y xp p y p= = . 

2.1. Perspective of the Ordinary Heisenberg Uncertainty Principle 

Now we focus to the problem of solving equations (12) and (13) in the framework of ordinary Heisenberg algebra. Using the 

Heisenberg algebra [ , ] , ,y x yy p i p i p i
x y

∂ ∂= = − = −
∂ ∂

ℏ ℏ ℏ and considering the solutions as 

( ) ( )1 1

1
,

2

x

i
xp

x y e yψ ψ
π

= ℏ                                                                   (14) 

and 

( ) ( )2 2

1
,

2

x

i
xp

x y e yψ ψ
π

= ℏ ,                                                                   (15) 
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equation (12) and (13) can be cast into 

( )
( ) ( ) ( )

( ) ( )
2

2 2 2 22
0 02 2 2 20 0

1 12 22 2 2 2 2
0 0

xx
y x

e B cB p EcB p E eBE
p y y m c p y

cc ce B c B

ε εε ψ ψ
ε ε

    − −−    + − = − − − +    − −        

ℏ
        (16) 

and 

( )
( ) ( ) ( )

( ) ( )
2

2 2 2 22
0 02 2 2 20 0

2 22 22 2 2 2 2
0 0

xx
y x

e B cB p EcB p E eBE
p y y m c p y

cc ce B c B

ε εε ψ ψ
ε ε

    − −−    + − = − + − +    − −        

ℏ
.      (17) 

Let us write ( )
0

2 2
0

xcB p E
y y

e B

ε
ε

−′ = −
−

. Under the variable conversion y yp i i p
y y

∂ ∂ ′= − = − =
′∂ ∂

ℏ ℏ . We divide both sides of 

equations (16) and (17) by 2m, then we have 

( ) ( )
( ) ( )

22 22 2
02 2 0

1 12 2 2 2
0

1

2 2 2 2 22 2

y xx
p cB p EeB pE mc

m y y y
m cm mmc mc B

ε
ω ψ ψ

ε

  ′ − ′ ′ ′ + = − − − +
   −    

ℏ
,                  (18) 

and 

( ) ( )
( ) ( )

22 22 2
02 2 0

2 22 2 2 2
0

1

2 2 2 2 22 2

y xx
p cB p EeB pE mc

m y y y
m cm mmc mc B

ε
ω ψ ψ

ε

  ′ − ′ ′ ′ + = − + − +
   −    

ℏ
,                      (19) 

where 

2 2
0e B

mc

ε
ω
 −
 =
 
 

is an angular frequency in e.s.u. Both equations, (18) and (19), are the simple harmonic oscillators 

Schrödinger equations having frequencyω . Hence for equation (18), we have 

( )
( ) ( )

222 2
00

2 2 2 2
0

2 1
2 2 2 22 2

xx
cB p EeB pE mc

n
cm mmc mc B

ε ω
ε

 − − − − + = +
 −  

ℏ ℏ
.                                     (20) 

This equation gives the following quadratic equation for energy 

( ) ( )
3

2 2 2 3 2 2 2 2 4 2 2 4 2 2 22
0 0 0 0 0 02 2 1 0.x xB E cB p E ceB ceB n ce B B m c m c c pε ε ε ε ε− + − − + − − + + =ℏ ℏ ℏ                (21) 

From this quadratic equation, the spectrum of 1ψ  is given by 

( )

3
2 2 22

2 4
0 0

0 0 0 0

 2 1 1 1 1 ,

=0,1,2....

n xE cp n eB c m c eB c
B B B B

n

ε ε ε ε
 

            = ± + − + + − −         
              

ℏ ℏ
                      (22) 

For equation (19), we have 

( )
( ) ( )

222 2
00

2 2 2 2
0

2 1
2 2 2 22 2

xx
cB p EeB pE mc

n
cm mmc mc B

ε ω
ε

 −  ′− + − + = +
 −  

ℏ ℏ
.                                  (23) 

This equation gives the following quadratic equation for energy 
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( ) ( )
3

2 2 2 3 2 2 2 2 4 2 2 4 2 2 22
0 0 0 0 0 02 2 1 0.x xB E cB p E ceB ceB n ce B B m c m c c pε ε ε ε ε′− − + − + − − + + =ℏ ℏ ℏ                   (24) 

From this quadratic equation, the spectrum of 2ψ  is given by 

( )

3
2 2 22

2 4
0 0

0 0 0 0

 2 1 1 1 1 ,

n =0,1,2....     

n xE cp n eB c m c eB c
B B B B

ε ε ε ε
′

 
            ′= ± + − − + − +         

              

′

ℏ ℏ
                        (25) 

The exact form of ( )1 ,x yψ  and ( )2 ,x yψ are 

( ) ( )
0

1 1 2 2
0

1
,

2

x

i
xp

x
n

cB p E
x y e y

e B

εψ ψ
π ε

 − = −
  −
 

ℏ ,                                                             (26) 

and 

( ) ( )
0

2 2 ' 2 2
0

1
,

2

x

i
xp

x
n

cB p E
x y e y

e B

εψ ψ
π ε

 − = −
  −
 

ℏ ,                                                              (27) 

respectively, where ( )1n yψ ′ and ( )2n yψ ′ ′  are the wave functions of simple harmonic oscillator. 

2.2. Perspective of the Generalized Uncertainty Principle 

In this section, we will focus to the problem of solving Equations (12) and (13) under the perspective of the generalized 

Heisenberg algebra. Using the generalized commutation relation, ( )2[ , ] 1y yy p i pβ= +ℏ  in equation (12) and (13), we obtain 

respectively 

( ) ( )2 2 2 2 2 2 2 2 2 2 2 2 2 4
0 0 0 1 0 1[ 2 ] ,    (E 2 ) ,   x x y yc p ceB p y e B y c p ceB p x y e Ey e y m c ceB x yε εβ ψ ψ− + + + = − + − −ℏ ℏ     (28) 

and 

( ) ( )2 2 2 2 2 2 2 2 2 2 2 2 2 4
0 0 0 2 0 2[ 2 ] ,    (E 2 ) ,  .x x y yc p ceB p y e B y c p ceB p x y e Ey e y m c ceB x yβ ψ ε ε ψ− + + − = − + − +ℏ ℏ     (29) 

Let us assume the solutions as 

( ) ( )1 1

1
,

2

x

x y e y

i
xp

ψ ψ
π

= ℏ ,                                                              (30) 

and 

( ) ( )2 2

1
,  ,

2

x

x y e y

i
xp

ψ ψ
π

= ℏ                                                                (31) 

Using 

2

1
3

xp i i
x x

β ∂ ∂ = − + −  ∂ ∂   

ℏ ℏ and 

2

1
3

yp i i
y y

β  ∂ ∂
 = − + − ∂ ∂   

ℏ ℏ  and performing some algebraic operations, one 

easily can find that 
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( ) ( )3
1 1

1
,

3 2

x

x x xp x y p p e y

i
xpβψ ψ

π
 = + 
 

ℏ ,                                                  (32) 

( ) ( )
2

2 3
1 1

1
,

3 2

x

x x xp x y p p e y

i
xpβψ ψ

π
 = + 
 

ℏ ,                                                     (33) 

( ) ( )2 2
1 1

1
,

2

x

y yp x y e p y

i
xp

ψ ψ
π

= ℏ ,                                                              (34) 

( ) ( )3
2 2

1
,

3 2

x

x x xp x y p p e y

i
xpβψ ψ

π
 = + 
 

ℏ ,                                                      (35) 

( ) ( )
2

2 3
2 2

1
,

3 2

x

x x xp x y p p e y

i
xpβψ ψ

π
 = + 
 

ℏ ,                                                   (36) 

and 

( ) ( )2 2
2 2

1
,

2

x

y yp x y e p y

i
xp

ψ ψ
π

= ℏ .                                                            (37) 

Using these, equation (28) and (29) can be cast into 

( )
( ) ( )

( ) ( )

2

3
2 2 2 0

020
12 2 2

0

2

3
2 02

2 2 30
12 2 2 2

0

3
1

3
     

3

x x

y

x x

x x

cB p p E
e BeB

p y y
c c e B

cB p p E
eBE

m c p p y
c c c B

β
εε

β ψ
ε

β
ε

β
ψ

ε

    + −   −      + + −     −  
  

   

    + −           = − − − + +    −  



ℏ

ℏ

                          (38) 

and 

( )
( ) ( )

( ) ( )

2

3
2 2 2 0

020
22 2 2

0

2

3
2 02

2 2 30
22 2 2 2

0

3
1

3
 .   

3

x x

y

x x

x x

cB p p Ee BeB
p y y

c c e B

cB p p E
eBE

m c p p y
cc c B

β εε
β ψ

ε

β ε
β ψ

ε

    + −  −     − + −   
  −  

    

   + −       = − + − + +   
  − 




ℏ

ℏ

                        (39) 
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After dividing both sides of equations (38) and (39) by 2m, the equations are turned into  
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                          (40) 

and 
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                          (41) 

Let us set 
2 2

0
e B

mc

ε
ω

−
=  (an angular frequency in e.s.u) which imposes a requirement for the existence of the solution that 

the magnetic field intensity must be greater than the electric field intensity, 
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Then equations (40) and (41) can be turned into the form as 
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It is noticeable that 01
eB

c
β± ℏ are dimensionless factors 

and both factors occur as a multiplication of kinetic energy 

operator 
2

2

p
y

m

′ 
 
 

, one is in equation (44) and other in 

equation (45). Obviously, equation (44) and (45) both are 

deformed Harmonic Oscillator apart from the dimensionless 

factors. Therefore, we can make use of the aspect of 

harmonic oscillator, the kinetic and potential energy parts 

of the Hamiltonian are of equal weight, for obtaining 

energy spectrums. The property also retains classically. To 

find the energy levels of 1ψ and 2ψ , the aspect can be 

applied in the following method [36]: Divide the harmonic 

oscillator energy spectra due to GUP into two halves and 

multiply the one half by 01
eB

c
β+ ℏ  for equation (44) and 

01
eB

c
β− ℏ for equation (45). The harmonic oscillator 

energy levels due to GUP are [21]  

2 2
21 1

,   0,1, 2....
2 2 2

n

m
E n n n n
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ℏ                                                  (46) 

Using the treatment as stated, the following equation is found for equation (44): 
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                (47) 

Up to 1
st
 order in β, nE ′  is given by  
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.                                      (48) 

Replacing nE ′  andω by their values, we get the following quadratic equation of energy 
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   (49) 

From this quadratic equation, the spectrum of 1ψ is given by 
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  n = 0, 1, 2,….        (50) 

Again using the treatment as stated, the following equation is found for equation (45): 
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         (51) 

Up to 1
st
 order in β, nE′′  is given by  
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                                   (52) 

Replacing nE′′  andω  by their values, we get the following quadratic equation of energy 
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The quadratic equation (53) gives the spectrum of 2ψ as 

��′ = � ��� + 	3 ���� 
�� ± ���2�′ + 1� �1 − 
�
������ − 1� ℏ���� + ��� �1 − 
�

���� + ℏ���� � 
���� 
+ "�′� + �′ + #�$ 	ℏ������ "1 − %&

'(&$� − "�′ + #�$ 	ℏ������ "1 − %&
'(&$)&*

+&  ,   �′ = 0,1,2...                            (54) 

The equations (50) and (54) give the exact energy 

spectrums of the Dirac equation leaded by GUP with a 

combined static electric and magnetic field. The spectrums 

(equation (50) and (54)) manifest a broken super-symmetry. 

We see that a remarkable significance of the minimal 

observable length is the attendance of a square of quantum 

number in the energy spectrums, since it is a feature of a 

particle in confined potential. If the GUP parameter 0β =  is 

set in the equations (50) and (54) then they reproduce the 

equations (22) and (25) respectively. 

In absence of electric field, that is, when only magnetic 

field is presence, the expression of energy spectrum of 1ψ
cuts to 

( ) ( )22 4 2 2 2
0 02 1 1 ,    0,1,2...nE n eB c m c n e B nβ= ± + + + + =ℏ ℏ                                            (55) 

and the expression of energy spectrum of 2ψ  cuts to 

��′ = ±/2�′ℏ���� + ��� + �′�	ℏ������,   �′ = 0,1,2. ..                                           (56) 

which fully coincide with the expression of the energy 

spectrums of a relativistic electron in an external uniform 

magnetic field under the perception of the nonzero minimal 

length [37]. 

When magnetic field intensity is large enough compared to 

the electric field intensity i.e., 0   B ε>> , we can neglect the 

terms of higher order of 
0B

ε
 containing in both equations 

(50) and (54). In this case, therefore, the spectrum of 1ψ is 

given by 

�� = � "�� + 0� ���$ %'( ± /2�� + 1�ℏ���� + ��� + �� + 1��	ℏ������,   � = 0,1,2. ..                         (57) 

and the spectrum of 2ψ  is given by 

��′ = � "�� + 0� ���$ %'( ± /2�′ℏ���� + ��� + �′�	ℏ������,   �′ = 0,1,2. ..                             (58) 

Now, the �� given by equation (57) is exactly the same as ��′ given by equation (58) except that ��′ holds an additional 

level, the ground state with 0n ′ = . Therefore, 1ψ & 2ψ  

form a super-symmetric partner, where magnetic field 

intensity is sufficiently large compared to the electric field 

intensity. 

3. Conclusion 

In this article, we have formulated the problem of the 

Dirac equation for an electron in presence of a combined 

stationary electric and magnetic field by an appropriate 

setting of a scalar potential for the electric field and a gauge 

field for the magnetic field, leading to two coupled 

differential equations. These equations have been solved 

through analogy with quantum harmonic oscillator under the 

ordinary Heisenberg uncertainty relation and under the 

minimal length uncertainty relation separately, although the 

chief attention of this article is to do solve the coupled 

equations within the GUP framework. The coupled equations 

can be cast into the form of the harmonic oscillator under 

GUP with an additional dimensionless factor that occurs as a 

multiplication of kinetic energy operator. Implementing the 

property of harmonic oscillator, the kinetic and potential 

energy fragments of Hamiltonian are equal in weight, we 

have gained the energy spectrums of the coupled equations 

under GUP. The energy levels can be reduced correctly to the 

ordinary result by setting the deformation parameter is zero. 
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The accuracy of the obtained result is confirmed by rendering 

the energy levels of the relativistic electron in presence of 

normal magnetic field by putting the electric field intensity

0ε = . A requirement for the existence of the solution is 

found that the magnetic field intensity must be greater than 

the electric field intensity. Unlike the traditional case without 

GUP, the exact energy spectrums of the electron show 
2

n -

dependency as the spectrums of the particles in confining 

potentials that is a remarkable significance which is a result 

due to the existence of a lower bound of uncertainty in 

position. The spectrums reveal a manifestation of broken 

super-symmetry. When magnetic field intensity is large 

enough compared to the electric field intensity, the spectrums 

reveal a manifestation of super-symmetry. 

In brief, we have explored a solution of the (2+1) 

dimensional Dirac equation with a combined stationary 

electric and magnetic field under the influence of the 

Generalized Uncertainty Principle and obtained the exact 

energy levels. This article thus describes a relativistic 

electron in a combined external stationary electric and 

magnetic field under the GUP scenario. 
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