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Abstract: It has been observed that when the gauge fields are present on the link, fermion propagation is possible in the 

weak coupling limit due to the dominance of the hopping term, which corresponds to the colour gauge interaction in the lattice 

QCD formulation. The production of low energy skyrmionic excitation at the fermionic site destroys the underlying 

antiferromagnetic order. In the continuum limit, the kinetic term in the lattice QCD corresponds to the rearrangement of the 

fermionic constituents through their propagation within the confined domain of the bound stateconfigurations of the interacting 

system which gives rise to a running coupling constant leading to asymptotic freedom. When one can assign a colour to a 

particular quantum number of a fermionic component in a limited state, it shows that QCD may be thought of as a generalised 

non-Abelian gauge field theory since these degrees of freedom play a part in the restricted area of the system and examines the 

continuous limit of the Hubbard-like model and the weak coupling limit that results from the abolition of the antiferromagnetic 

order and fermion propagation. This is equivalent to the non-Abelian color gauge field interaction. It is noted that the 

generalised spin fluctuation may be linked to the colour gauge field. This formalism's discovery of pseudoscalar Goldstone 

bosons associated with chiral symmetry breaking is in line with (3+1)D continuum QCD. 
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1. Introduction 

In this note, it will emphasize that the generalised 

Hubbard-like model [1] that describes a correlated system is 

a replica of the lattice QCD's weak coupling model. The 

analogy between the ground state of lattice QCD and the 

generalised antiferromagnet in the strong coupling limit is 

explained by the fact that the Hubbard-like model reduces to 

an antiferromagnet in the strong coupling limit with half 

filling. Then using the D-theory it is shown that the 

continuum limit of the antiferromagnetic spin system is 

equivalent to the principal chiral model of QCD which 

incorporates dimensional reduction. Again the weak coupling 

limit of lattice QCD where the fermion kinetic term allows 

fermion propagation finds its relevance in the hopping term 

of the Hubbard-like model. To this goal, the Hubbard-like 

model's Hamiltonian has been defined here in terms of 

generalised fermions with flavour and colour degrees of 

freedom. Since the colour degrees of freedom are 

constrained, it stands to reason that the system will be 

relevant for a fermion bound state. As a result, the bound 

state configurations of the interacting system will be the only 

place where fermion propagation can occur. It should be 

noted that the constituent fermions in the bound state are 

repelled hard in this situation by the on-site repulsion term in 

the standard Hubbard model. In the weak coupling limit the 

underlying antiferromagnetic order in the lattice QCD is 

destroyed by the creation of low energy skyrmionic 

excitation at the fermionic position in the lattice which drives 

the fermion propagation from one site to the other [2]. This 

shows how the colour gauge field interacts with the link 

where the gauge field is located. The colour change that 

corresponds to the colour gauge transformation occurs as 

fermions move from one site to another. The rearrangement 

of fermionic elements through their propagation within the 

constrained domain of the bound state configurations of the 

interacting system corresponds to the kinetic term in the 

lattice QCD in the continuous limit. It is discovered that this 

produces a running coupling constant that results in 

asymptotic freedom. The interaction with non-Abelian colour 

gauge fields is analogous to this. The spin fluctuation of the 
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fermionic elements may be related to the colour gauge fields. 

This suggests that QCD may be considered to bea 

generalized non-Abelian gauge field theory when one can 

assign color to a specific quantum number of a fermionic 

constituent in a bound state such that these degrees of 

freedom have their role in the confined region of the system. 

The corresponding non-Abelian gauge field theory has the 

gauge group ( )CSU N , CN being the number of colors. In 

accordance with the accepted observation, the current 

formalism also implies that the Goldstone bosons associated 

with the chiral symmetry breaking in QCD are pseudoscalars. 

In this section, we'll look at the Hubbard-like model's 

continuum limit as well as the weak coupling limit that 

occurs when the antiferromagnetic order is abolished and 

fermion propagation occurs. 

2. Theoretical Background 

A. Weak Coupling Theory and a Model Similar to Hubbard 

Model 

In the strong coupling limit and at half-filling, now have 

argued that the Hubbard-like model reduces to the 

antiferromagnetic system, which is equivalent to the main 

chiral model of QCD. However, when the antiferromagnetic 

order parameter is eliminated, the weak coupling theory 

deviates from this. Fermions will be able to jump between sites 

as a result of this. In the weak coupling limit of lattice QCD, 

the fermion kinetic energy term will be quite important. By 

creating a topological defect, suchas the low energy 

skyrmionic excitation at each point of the fermionic site, which 

acts as amagnetic field for the carrier, it is possible to destroy 

the underlying antiferromagnetic order parameter [2]. 

To study lattice QCD, now first consider that the fermionic 

field ,
a

iαψ resides on the site i andtransforms under the color 

gauge group ( )CSU N  

, ,
a b

i ab iUα αψ ψ→                                (1) 

The fermions also transform under the global flavor gauge 

group SU (NF). 

, ,
a

i ig β
α αβ αψ ψ→ , ( )Fg SU N∈                   (2) 

The degrees of freedom of lattice QCD are the gauge fields 

abU which are unitary operators and the associated color 

electric fields abE both of which live on the links ij〈 〉 of the 

lattice and transform as 

†
ij i ij jU V U V→ , †

ij i ij jE V E V→                 (3) 

The reflection conditions are 

†
ij jiU U=                                  (4) 

†
ji ij ij ijE U E U= −                             (5) 

The QCD Hamiltonian on the lattice is given by 

H = ∑ [��,�
�	

��
����,�

� + ℎ. �. +
��

�
∑ (���

�)�
��
�

��� ]���� +
�

���
∑� [Π" + Π"	]                                         (6) 

Here now have assumed that the gauge group is ( )CU N

[3-5]. The first sum over links ij〈 〉 is the fermionic kinetic 

energy and total electric energy respectively and the second 

over plaquettes � is the magnetic energy. The kinetic energy 

term must have phase which produces an effective (1)U  

magnetic flux per plaquette [6-7]. The electric fields ijE are 

Lie algebra valued operators and can be expanded in terms of 

the generators of ( )CU N  

2
1

0

CN

A A
ij ij

A

E E T

−

=

= ∑                             (7) 

Here 
0T is the unit matrix which corresponds to the 

generator of (1)U  and 
AT are the generators of ( )CSU N . 

The electric energy in the Hamiltonian is the sum over the 

gauge group Laplacians which act on the color gauge degrees 

of freedom associated with each link. The magnetic energy 

corresponds to the Wilson energy function for a gauge field. 

The lattice formulation of the fermion kinetic energy 

implies staggered fermions [8]. These staggered fermions 

have a relativistic continuum limit when their density is 
1

2
 of 

the maximum that is allowed by Fermi statistics which is 

2

C FN N
 in the present case. On the lattice, staggered 

fermions do not have any continuum chiral symmetry. They 

have a discrete chiral symme- try which is associated with 

the translation by one site. This forbids explicit fermion mass 

term [8, 9]. A fermion mass term is a staggered density 

operator 

, ,

, ,

( 1) inA a A A
i i i i

β
α αβ α αβ αβ

α β γ αβ
ψ τ ψ ψ τ ψ τ µ≈ − =∑ ∑ ∑         (8) 

Thus the antiferromagnetic order parameterand the order 

parameter for chiral symmetry breaking with a flavor vector 

condensate are identical. In fact in the strong coupling limit 
2e α→  the problem of finding the ground state of lattice 

QCD is identical to that of solving the generalized 

antiferromagnet where Neel order plays the role of chiral 

symmetry breaking. The strong coupling limit effectively 

supresses fermion propagation as the fermion kinetic term in 

the Hamiltonian becomes subdominant. 

In the continuum model of the antiferomagnetic spin 

system the effective action may be taken in Euclidean time 

dimension as 
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2 4 1S M d xTr g gµ µ
−= − ∂ ∂∫                     (9) 

with M being a constant having the dimension of mass. 

Now note that the action (9) corresponds to the nonlinear 

sigma model describing a skyrmion. In fact we can add a 

topological term to this so that now write 

2 4 1S M d x g g Nµ µ
−= − ∂ ∂ + Γ∫                    (10) 

where Γ is the Wess-Zumino term 

5 1 1 1 1 1

2

1
[ ]

240
d x Tr g gg gg gg gg gµνλσρ µ ν λ σ ρε

π
− − − − −Γ = ∂ ∂ ∂ ∂ ∂∫                                             (11) 

the physical space-time being the boundary of a five 

dimensional manifold. The coefficient of Γ given by N is an 

integer so that the relevant skyrmion has a consistent 

statistics. 

At each point of the fermionic site, now take into account 

these low energy skyrmionic excitations. The 

antiferromagnetic order, which is only valid under the 

Hubbard-like model's strong coupling and half-filling limits, 

will be destroyed as a result. This will enable fermion 

propagation between two sites. This is equivalent to the 

colour gauge field interaction in lattice QCD when the gauge 

fields are on the link. The colour change that is connected to 

the colour gauge transformation occurs together with fermion 

propagation. It should be noted that fermion doubling on a 

lattice is an issue we face. However, the inability of chiral 

anomalies on a lattice to exist is what leads to the doubling 

dilemma [10]. However as the chiral anomaly is responsible 

for the generation of mass as well as Pontryagin index which 

is associated with the charge [11], the nonexistence of chiral 

anomaly on a lattice suggests that we cannot have well 

defined local charge as well local mass of a fermion on a 

lattice [10]. As a result, the fermions on a lattice will have 

both staggered mass and charge. It is possible to think of the 

correlation between an antiferromagnet's staggered mass 

density and staggered magnetization as an equivalent of 

lattice QCD with an antiferromagnet, which is only true in 

the strong coupling limit. 

It has been noted that the hard core repulsion, which 

represents the on-site repulsion, will be subdominant when 

hopping is considerable in the Hubbard-like model for vast 

distances (low energy area). This suggests that fermions will 

transfer between sites. This circumstance suggests that 

fermions will hopp within the lattice sites with change in 

colours that occur through an interaction with the colour 

gauge fields residing on the link when we view it in terms of 

lattice QCD. 

Now define a generalized spin operator in the algebra of 

( )FSU N , FN being the number of flavors. 

†A a A
aS β

α αβψ τ ψ=                            (12) 

Where †a
αψ  and a

βψ are the creation and destruction 

operators of fermion oscillators which satisfy the algebra. 

{ }†
, ,,a b
i ab ijjα αββψ ψ δ δ δ=                      (13) 

Now denote the indices α , β = 1, 2,....., FN , the flavor 

index, a, b = 1, 2,......., CN color index and i , j  are spatial 

positions. 

The color gauge field may be associated with spin 

fluctuation when the generalized spin is defined as (12). The 

low energy skyrmionic excitation at each site of the fermion 

will drive this fermion propagation by destroying the 

underlying antiferromagnetic order. Again at short distance 

(high energy region) the on-site repulsion will dominate and 

this will suppress fermionic propagation and thus will drive 

the system towards a noninteracting regime leading to 

asymptotic freedom. Now may mention here that the 

Goldstone bosons associated with chiral symmetry breaking 

in this formalism will be pseudoscalars. This results from the 

fact that the separation of the flavour symmetry group into 

left-handed and right-handed groups ( ) ( )F L F RSU N SU N⊗
suggests that flavours will only manifest in the left-handed or 

right-handed universe and the mass condensate in the entire 

space will carry no flavour. Space-inversion violation 

brought on by the chiral symmetry breakdown will result in 

pseudoscalar bosons. This is in line with the outcome of 

continuum QCD in (3 + 1) D. 

B. Fermion Propagation in the Continuum Limit 

It has been pointed out that in lattice QCD, in the weak 

coupling limit, a topological defect, such as a skyrmionic 

excitation, is induced at each position of the fermion. This 

defect is essential for the destruction of the underlying 

antiferromagnetic order and permits fermionic propagation 

from one site to the next. The colour gauge interaction, which 

is the kinetic term in the lattice QCD Hamiltonian, carries out 

this function. In the continuum limit, now can see how the 

skyrmion that corresponds to each position of a fermionic 

ingredient in a particle's bound state configuration moves 

from one position to the next inside the constrained region of 

the interacting system's bound state configurations. This 

corresponds to the color gauge field interaction with the 

fermionic constituent which allows the change in color of the 

constituent fermion within the confined region of the 

configuration. As mentioned earlier, this color gauge field 

can be associated with spin fluctuation when the generalized 

spin operator is defined by eqn. (12). This skyrmionic 

propagation may be visualized as the rearrangement of the 

fermionic constituents within the bound state configurations 

of the interacting system through planar and nonplanar 

diagrams which satisfy s t− and t u− duality respectively, s, t, 

u having their usual meanings. These two diagrams have 

phase factors exp[ 2 ]i πγ and 1 respectively where γ is a 

suitable parameter. The rearrangement amplitudes are given 

by [12-15]. 

2 2 2
1( , ) [( ) ] [( ) ]a b c dT s t p p p p sγ γ γ− − −+ +� �           (14) 
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Here the factor 2[( ) ]i jp p γ−+  corresponds to the 

rearrangement of one constituent from an interacting particle 

with momentum ip to that with jp . T1 and T2 correspond to 

planar and nonplanar diagrams respectively. It may be noted 

that there is a correspondence between ( , )T s t  and the Regge 

amplitude RT egge  with strong degenerate trajectories ( )tα  

and residue ( )tβ in the forward regions if we take 

2 1 ( )tγ α− + =  [12]. This is evident from the following 

expressions. 

2
1 20 0
( , ) ( , ) [1 exp( 2 )]

t t
T s t T s t i s γπγ −

= =+ � m  

And 

( ) 1( )[1 exp( ( )]

sin ( )

t
R

t i t
T egge s

t

αβ πα
πα

−± −=             (15) 

It may be mentioned that in any interaction AB → CD for 

n number of constituents rearranged have 

2( , ) [( ) ] n
i j

n
T s t p p sγ γ− −Π +� �                 (16) 

Now note that the net effect of this rearrangement 

amplitude may be accomodated in an effective coupling 

constant given by 

( ) . ng s g s γ−=                                 (17) 

which represents a running coupling constant ensuring 

asymptotic freedom. 

It has been noted that non-Abelian gauge theory's 

distinctive characteristic is its asymptotic freedom. In light of 

this, now may speculate that the above-mentioned fermionic 

propagation may be connected to interactions with non-

Abelian gauge fields. As was previously indicated, when a 

spin operator is produced by generalised fermions with 

flavour and colour degrees of freedom as provided by 

equation, non-Abelian colour gauge fields result from spin 

fluctuations (1). The quantization of a Dirac spinor can be 

accomplished when we introduce an internal variable that 

appears as a direction vector representing spin degrees of 

freedom [17, 18], according to Nelson's stochastic 

quantization approach [16]. It has been shown that the 

internal variable gives rise to (2)SU  gauge degrees of 

freedom so that the spin may be depicted as an (2)SU  gauge 

bundle. In this picture a massive fermion appears as a 

skyrmion. Extrapolating this result may view that when a 

spin is constructed from generalized fermions having flavor 

and color indices the spin may be depicted as

( ) ( )F FSU N SU N⊗ gauge bundle where ( )FSU N  is the 

global flavor gauge group and ( )CSU N is the color gauge 

group. Such a spin exhibits only flavour quantum numbers in 

the static situation because the confinement causes the colour 

degrees of freedom to be fixed. Spin fluctuations cause the 

concealed colour degrees of freedom to become visible. Spin 

fluctuations do, in fact, cause the circumstances under which 

colour gauge transformations occur. It is possible to assume 

that the interaction with these non-Abelian gauge fields is 

what causes a fermionic constituent to propagate from one 

site to another with a change in colour in the confined 

domain of the bound state configurations of the interacting 

system. 

3. Conclusion 

It should be noted that the colour quantum number is a 

second quantum number (in addition to flavour) that is only 

relevant in the restricted domain of a bound state 

configuration that represents a physical particle. This concept 

gives colour degrees of freedom a broader definition than the 

simple quantum numbers that are naively assigned to the 

fermionic components of a bound state that represents a 

physical particle. These degrees of freedom may be 

connected to a particular characteristic of a fermionic 

ingredient that may result from the bound state's dynamical 

aspect. In a previous paper [19], it was demonstrated that 

flavour quantum numbers and the internal symmetry of 

hadrons may both result from a particular configuration 

scheme in which the fermionic constituents move in an 

anisotropic space (a fictitious magnetic field) within the 

confines of the composite state. In this composite system a 

fermion appears to move in the field of a magnetic monopole 

whenit can have orbital angular momentu 1/ 2l =  and the 

background magnetic field associatedwith the carrier implies 

that this effectively corresponds to a skyrmion. Evidently the 

total angular momentum of such a constituent can take the 

value 1J = with its three zJ values+1, 0, and − 1. Now can 

assign these three quantum numbers as color degrees of 

freedom and the rearrangement of the constituents within the 

confined region of the relevant systems will be accompanied 

by a change in these values. The spin fluctuation may be 

taken to give rise to a color gauge field ( )CSU N with 

3CN = . 

4. Discussion 

The rearrangement of the constituents within the confined 

domain may be taken to be equivalent to the color gauge 

field interaction with the constituents having the gauge group 

(3)SU . This analysis suggests that QCD may be regarded as 

a generalised non-Abelian gauge field theory when can give 

colour gauge degrees of freedom to any particular 

characteristic of a constituent (either static or dynamical) in a 

bound state so that these characteristics are only significant 

in the confined area of the system. As is wellknown QCD has 

been generalized from the physical value 3CN =  to any 

arbitrary value and its inverse 
1

CN
is treated as an effective 

expansion parameter [20]. Witten [21] has shown that QCD 

is equivalent to an effective theoryof weakly interacting 

mesons. By weakly interacting mesons, it is intended that 

baryons appear as the soliton solution of the effective meson 
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theory and an effective four meson vertex scale is 
1

CN

Skyrmions taken to be low energy degrees of freedom of 

QCD [22–24]. According to our study, there may be common 

physical circumstances that permit arbitrary assignment of 

CN . 

 

References 

[1] J. Hubbard: Proc. Roy. Soc. A 276, 238 (1963). 

[2] B. Basu, S. Dhar and P. Bandyopadhyay: Phys. Rev. B 69, 
094505 (2004). 

[3] J. Gonzalez, M. A. Martin-Delgado, G. Sierra, A. H. 
Vozmediano: Quantum Electron Liquids and High-Tc 
Superconductivity (Springer, Berlin). 

[4] A. P. Balachandran, E. Ercolessi, G. Morandi, A. M. 
Srivastava: Hubbard Model and Anyon Superconductivity 
(World Scientific). 

[5] N. Read and S. Sachdev: Nucl. Phys. B 316, 609 (1989). 

[6] S. Radjbar-Daemi, A. Salam and J. Strathdee: Phys. Rev. B 
48, 3190 (1993). 

[7] For a review, see J. Kogut: Rev. Mod. Phys. 55, 775 (1980). 

[8] E. Langmann and G. Semenoff: Phys. Lett. B 297, 175 (1992). 

[9] M. C. Diamantini, P. Sodano, E. Langmann and G. Semenoff: 
Nucl. Phys. B 406, 595 (1993). 

[10] G. Goswami and P. Bandyopadhyay: J. Math. Phys. 38, 4451 
(1997). 

[11] P. Bandyopadhyay: Int. J. Mod. Phys. A 15, 4107 (2000). 

[12] M. Imachi et. al.: Prog. Theo. Phys. Suppl. 48, 101 (1971). 

[13] P. Bandyopadhyay and S. S. De: Nuovo Cimento 27A, 294 
(1975). 

[14] P. Bandyopadhyay and J. Mahalanobis: Phys. Rev. C 27, 628 
(1983). 

[15] J. Mahalanobis and P. Bandyopadhyay: Phys. Rev. C 31, 1241 
(1985). 

[16] E. Nelson: Phys. Rev. 50, 1079 (1966); Dynamical Theory of 
Brownian Motion (Princeton University Press 1967). 

[17] P. Bandyopadhyay and K. Hajra: J. Math. Phys. 28, 711 
(1987). 

[18] K. Hajra and P. Bandyopadhyay: Phys. Lett. A 155, 7 (1991). 

[19] P. Bandyopadhyay: Int. J. Theor. Phys. 39, 2677 (2000). 

[20] G.’tHooft: Nucl. Phys. B 72, 461 (1974). 

[21] E. Witten: Nucl. Phys. B 160, 57 (1979). 

[22] S. Singha Roy and P. Bandyopadhyay,: Phys. Lett. A 382,1973 
(2018). 

[23] S. S. Roy and P. Bandyopadhyay, Phys. Lett. A 337,2884 
(2013). 

[24] T. J. Osborne, M. A. Nielson, Phys. Rev. A, 66, 032110 
(2002). 

 


