

International Journal of Information and Communication Sciences
2023; 8(1): 1-11
http://www.sciencepublishinggroup.com/j/ijics

doi: 10.11648/j.ijics.20230801.11
ISSN: 2575-1700 (Print); ISSN: 2575-1719 (Online)

Automatic Vulnerability Detection in Tizen Applications
with Dynamic Symbolic Execution

Sobhan Safdarian, Mohammad Hossein Asghari, Maryam Mouzarani

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

Email address:

To cite this article:
Sobhan Safdarian, Mohammad Hossein Asghari, Maryam Mouzarani. Automatic Vulnerability Detection in Tizen Applications with

Dynamic Symbolic Execution. International Journal of Information and Communication Sciences. Vol. 8, No. 1, 2023, pp. 1-11.

doi: 10.11648/j.ijics.20230801.11

Received: November 19, 2022; Accepted: January 26, 2023; Published: February 9, 2023

Abstract: Security of Internet-of-Things (IoT) systems is important due to their widespread usage in everyday life. Much

research has been performed on analyzing the security of IoT communication protocols and operating systems. However, few

studies have focused on analyzing the security of IoT applications and automatic detection of vulnerabilities in them. In these

studies, the code of IoT applications and operating systems are analyzed statically to detect vulnerabilities. To the best of our

knowledge, there is no dynamic analysis solution suggested for vulnerability detection in such applications, although this

method is more accurate than static analysis. In fact, IoT applications are executed in special-purpose hardware, which makes

their dynamic analysis more difficult than ordinary applications. In this paper, we propose a technical solution that combines

static and dynamic analysis methods to automatically detect vulnerability in applications of Tizen IoT operating system. We

consider Native and Web Tizen applications and present an automatic vulnerability detection method for each type of

application. Our focus is on detecting buffer overflow and XSS vulnerability classes in Native and Web applications,

respectively. We have evaluated the effectiveness of our method using a group of native and web test programs. The results of

our experiments show that our solution is able to detect the vulnerability in these programs effectively.

Keywords: Tizen, Dynamic Symbolic Execution, Native, Web, Vulnerability, IoT, C++, JavaScript

1. Introduction

Internet of Things (IoT) has affected many aspects of

modern human life. Devices we use for our daily activities

such as shopping, communication, sport, and helping

disabled people are all examples of the ever-increasing usage

of IoT in our daily human life. Therefore, the security of IoT

devices becomes important to protect human activities,

privacy, and data against malicious intruders. A considerable

part of an IoT device is its software and thus in order to make

it secure, we must take enough care of the security of its

running applications.

IoT devices use various architectures and operating

systems, such as Windows IoT core [1], Amazon FreeRTOS

[2], Tizen [3], Contiki [4], etc. This diversity complicates the

security analysis of IoT systems. Also, some IoT applications

are used for real-time purposes and so they do not apply

common security measures to protect against well-known

attacks to increase their performance. In addition, IoT

devices are implemented using cheaper and lighter hardware

compared to ordinary systems. Thus, they are not able to

incorporate usual memory protection mechanisms which

have a huge overhead [5].

Application analysis for vulnerability detection is

conducted by two approaches: dynamic and static. The static

approach reviews the application code to find vulnerabilities.

This approach is sound because it covers all the execution

paths of the program in its analysis. However, the results are

conservative and contain many false positive alarms [6]. On

the other hand, the dynamic approach executes the

application and analyzes its behavior. The tools with this

approach report no false positive alarms because they run the

program with actual data and analyze the exact behavior of

applications. The drawback of dynamic analysis is that it

cannot guarantee to cover all application paths and states, and

thus there are false negative alarms in its reports. Dynamic

2 Sobhan Safdarian et al.: Automatic Vulnerability Detection in Tizen Applications with Dynamic Symbolic Execution

symbolic execution [7] is a hybrid analysis method that

combines static and dynamic analysis to profit high coverage

and accuracy of each method, respectively. In this paper, we

use this method for analyzing and detecting vulnerabilities in

Tizen IoT applications.

In recent years, the security of communication protocols in

IoT systems has been studied by some researchers, such as

[8], [9], and [10]. There are also limited studies regarding the

static analysis of IoT OS and applications [11], [12] and [5].

These works emphasize different vulnerability types in

current IoT operating systems and applications alongside the

lack of proper protection measures against such

vulnerabilities. Although, to the best of our knowledge, there

is yet no proposed solution for dynamic analysis of these

applications. The dynamic analysis of IoT applications is

more challenging than other applications because they are

executed on special-purpose hardware that might not contain

enough facilities to debug and analyze the application

runtime behavior. This paper presents a method for dynamic

analysis of applications in Tizen IoT operating system. We

use the dynamic symbolic execution method in our analysis

to achieve a proper path coverage of the program. We present

the details of how to overcome the challenges of performing

dynamic symbolic analysis of applications in Tizen devices.

We demonstrate the effectiveness of our proposed method by

employing the implemented tool for analyzing two sample

Tizen applications. The implemented method is publicly

available in our GitHub repository [26] with sample test

scenarios.

We present the detailed method of dynamically analyzing

two types of Tizen applications, namely native and web.

Analysis of native applications is conducted by connecting

the analyzer to the gdbserver in Tizen OS and statically

analyzing the binary code of the target application to locate

probably vulnerable function calls, such as strcpy(), and

determine input arguments of those functions. Then, Symbion

symbolic execution engine [13] is employed to calculate the

path constraints on input data for executing a path that

reaches located probably vulnerable function calls. After

solving the constraints using a constraint solver, we generate

consistent input values that are large enough to execute the

intended paths and cause buffer overflow in considered

function calls.

Tizen web applications are written in HTML, JavaScript

and CSS that may execute some API functions in this OS.

Since the analysis of such applications and detection of XSS

vulnerability do not directly depend on the result of

execution of Tizen API functions, and we could not employ a

dynamic symbolic execution framework in that operating

system for our analysis of web applications, we analyze the

web application runtime behavior by executing it in an

environment outside of Tizen. We use ExpoSE [14] tool that

is developed to symbolically execute NodeJS applications for

our analysis. Our proposed method extracts the JavaScript

code of a web application and prepares it to be analyzed by

ExpoSE. In fact, it creates a new version of the application

code that can be processed by ExpoSE to detect

vulnerabilities in it. To do so, our proposed method first

analyzes the HTML and JavaScript codes of the test

application statically to determine its HTML input/output

entries and probably vulnerable JavaScript statements as

hotspots. We add a conditional statement before a hotspot

that checks if the data entering the hotspot might contain

attack strings. In this way, we lead ExpoSE to calculate

vulnerability constraints for input data in addition to path

constraints in the paths containing hotspots. Afterward, the

prepared code is given to ExpoSE in order to analyze the

possibility of executing the application in an execution path

containing hotspots with input values that lead to an attack.

The proposed method is evaluated using a group of native

and web test programs that are executable in Tizen operating

system. The results of our experiments demonstrate the

effectiveness of our solution for detecting buffer overflow

and XSS vulnerability in these programs.

This paper has the following structure: Section 2 reviews

the previous related works. Tizen operating system and its

application types are introduced in section 3. Section 4

describes the proposed vulnerability detection method for

native applications of Tizen. Our proposed method for

detecting vulnerability in Tizen web applications is presented

in section 5. Section 6 evaluates the implemented solution

and finally, section 7 presents the conclusion and possible

directions for future works.

2. Related Works

Most studies in the field of IoT application security

analysis have focused on operating system security and static

application code analysis. For example, in [11], a tool named

UnsafeFunsDetector is used to statically analyze the source

code of some IoT operating systems such as Contiki,

TinyOS, and openWSN to find a number of unsafe functions

in their code. As another example, Firmalice is a static

analyzer that searches through the binary statements of IoT

firmware to find any hardcoded credentials that might reveal

a backdoor in the firmware [15].

To the best of our knowledge, there has been no solution

for dynamic analysis of Tizen applications until now.

However, there are some general frameworks and tools, such

as Avatar [16] and Qilling [17], to dynamically analyze

native applications of IoT devices. Avatar is a simulator that

physically connects to IoT devices and analyzes their system

events [16]. It hooks the intended events from the physical

system to transfer their data to the simulator and analyze

them. The limitation of this simulator is that it requires a

JTAG port in the physical IoT system that is not supported by

all IoT devices.

Qilling is another example that simulates an entire system

from the OS image and its file system [17]. This simulator

reviews the system functions of the device file system to

hook the intended system functions and make their

behavioral analysis possible for the analyzer. This simulator

requires the OS image of the intended device, which is not

necessarily available for all devices. Tizen's producers have

 International Journal of Information and Communication Sciences 2023; 8(1): 1-11 3

released its image but in our experience of running this image

in Qilling, it got stuck in the initial boot step and could not

proceed further. On the other hand, Qilling runs the

application image on the analyzer device, so it doesn't

analyze the real application behavior as it runs in an IoT

device. Notably, none of these simulators have a framework

for dynamic symbolic execution and such a framework must

be installed in these simulators.

There are also some solutions for dynamic symbolic

execution of web applications, such as SymJS [18] and

JSSeek [19], which are not available to be used in our

solution. SymJS tries to create test data that covers the

highest percentage of execution paths in a web application

using symbolic analysis. Also, this tool automatically extracts

the application events to simulate them and execute the

relevant codes responding to these events. Since this is a

private tool, we could not use it in our solution. JSSeek [19]

is another tool that performs symbolic analysis of JavaScript

applications. This tool uses symbolic analysis to find

different errors in JavaScript applications, such as undefined

variable error.

Some solutions are presented for analyzing JavaScript

environments, such as NodeJS, but none of them were ever

used in the analysis of web Tizen OS applications. For

example, ExpoSE [14] performs dynamic symbolic execution

on NodeJS applications. This tool explores different paths of

an application by generating appropriate input values. We

cannot use this tool directly in the analysis of Tizen web

applications because of different data structures and functions

in JavaScript applications that are executed in browsers

alongside the dependency of JavaScript codes on the HTML

codes of web pages.

3. Tizen

Tizen is an open-source operating system used in a wide

range of IoT devices, such as wearable devices, televisions,

and smartphones [3]. Hence, it is known as "the OS of

Everything" [12]. This OS is based on the Linux kernel,

which makes it similar to other Linux versions in many

aspects, such as process management, memory management,

file system, and system calls. In this paper, we consider Tizen

version 5.5.

Tizen OS supports three application types:

1. Native Applications: C and C++ applications.

2. Web Applications: JavaScript, HTML, and CSS-based

applications that are executed in a web engine.

3. NET Applications: Xamarin and Visual Studio-based

applications.

Also, Tizen OS allows programmers to write applications

that pack web and native applications in a single application

known as Hybrids.

Native applications are executed directly in the Linux

kernel platform. When we compile a native application by

default using the Tizen IDE, it will have the NX and PIE

mechanisms enabled, but the Canary mechanism is disabled.

However, as shown in [20], it is possible to bypass the active

security mechanisms of this OS. NX and PIE are two security

mechanisms used in well-known operating systems to

prevent memory corruption attacks [25].

The web Tizen applications are executed using the OS's

web engine. XSS and HTML Injection are the vulnerabilities

that might occur in these applications. Web Tizen

applications are able to access Tizen system calls and APIs.

For example, the tizen object is defined for JavaScript codes

of these applications for gaining access to different system

functions or sensor values. Therefore, exploiting the

vulnerabilities in Tizen web applications might lead to

disclosure of confidential information and unauthorized

access to the device.

4. Detecting Buffer Overflow

Vulnerability in Tizen Native

Applications

Unsafe usage of functions, such as strcpy, gets, scanf, etc.,

in Tizen native applications can lead to buffer overflow.

Different static and dynamic analysis methods have been

introduced to detect this vulnerability in various applications.

Dynamic symbolic execution is one of the popular

vulnerability detection methods that generates proper input

data for executing different application paths by calculating

the constraints on input data for executing each path. This

method suffers from the path explosion problem, which

means the number of possible paths in an application grows

exponentially and analysis of all execution paths becomes

impossible in practice [21].

Therefore, in our proposed solution, we first perform static

analysis to find execution paths in the program that contains

possible vulnerable function calls, e.g., strcpy, and then we

limit the scope of dynamic symbolic execution to those paths

to avoid path explosion problem.

Figure 1. Sample of a Native Tizen Application.

As an example, consider Figure 1, which is a simple Tizen

native application with buffer overflow vulnerability in line

8. This application receives two input values: one is the main

4 Sobhan Safdarian et al.: Automatic Vulnerability Detection in Tizen Applications with Dynamic Symbolic Execution

function argument and another is a console input value

received via fgets function in line 6 that is saved in the input

string. There is no buffer overflow in this stage because of

the string input length control of line 6. Later in line 8, the

strcpy function copies the input string into the buffer string if

the value of the input string is equal to "XGXXXM*", in

which X means an arbitrary character. Here a buffer overflow

occurs because this function does not check the length of the

strings.

To detect the buffer overflow vulnerability in this code, we

first use the angr [22] framework for our static analysis and

extract the application's control-flow graph to detect any calls

of possible vulnerable functions. Thus, we find the execution

path in which strcpy function is called. Then, we perform

dynamic symbolic execution using Symbion plugin of the

angr framework and calculate the path constraints on the

input values that lead to the desired path. For this example,

the main argument should be “-s” and the second and sixth

characters of the console input value should be “G” and “M”

respectively to reach the strcpy function call.

These constraints are delivered to Z3 constraint solver in

angr to generate consistent input values accordingly. Then,

we move on to the fuzzing step and increase the length of

generated input data while considering the path constraint on

it to generate new input data that executes the program's

desired path and causes buffer overflow in the strcpy

function. Then, we execute the application with these new

data and report the vulnerability in case of a crash.

Figure 2. Architecture of the Proposed Method for Analyzing Native Tizen Applications.

Notably, the dynamic symbolic execution engine or the

static analysis tool cannot be installed in the Tizen emulator,

which is one of our main challenges in the static analysis and

dynamic symbolic execution of the Tizen application.

Therefore, we install and launch the test application in Tizen

and analyze it by establishing a remote connection to the

gdbserver of Tizen. Figure 2 illustrates the architecture of our

solution for analyzing Tizen native applications. As shown in

this figure, the compiled test application is installed and

launched in Tizen to be analyzed dynamically. Also, the

binary code of the application is given to the angr framework

for static analysis. To perform dynamic symbolic execution,

we use Symbion in our machine and connect remotely to the

gdbserver in Tizen. All the commands used in our solution,

including those for compiling and installing the application

by sdb 1 and the Tizen configuration commands to debug

applications using gdbserver, are presented in a script file in

our Github repository [26].

Figure 3 illustrates the output of our implemented solution

for analyzing the sample program. In this figure, SIGSEGV

status code demonstrates that we could successfully generate

long input data that is consistent with the path constraints to

execute the program and cause buffer overflow in it.

1 The communication bridge between the developer and the Tizen system

Figure 3. Output of a Native Application's Analysis.

5. Vulnerability Detection in Tizen Web

Applications

Dynamic symbolic execution is more challenging for Tizen

web applications as there is no framework or platform

available in Tizen that enables us to symbolically execute web

applications in that operating system. Meanwhile, since Tizen

 International Journal of Information and Communication Sciences 2023; 8(1): 1-11 5

web applications are written in HTML, JavaScript, and CSS

languages and they do not depend heavily on Tizen web

engine, we can execute them outside of Tizen without losing

many functionalities. The only limitation is for calling Tizen

APIs. With our proposed solution, it is possible to handle them

by defining Tizen APIs in the target NodeJS code so that they

are considered as input entries that return a symbolic variable.

Therefore, we extract the codes of Tizen web applications and

execute them symbolically in our ordinary machine in a

framework named ExpoSE [14]. At the time of writing this

article, ExpoSE is the best available tool for us which has a

proper performance but only analyzes NodeJS codes. This

makes some difficulties in analyzing JavaScript codes that are

executed in browsers due to the differences between JavaScript

and NodeJS codes. For example, web JavaScript codes use data

structures, such as DOM or Document Object Model, for ease of

access to web page elements. These structures are not defined

for NodeJS and thus are not recognizable by ExpoSE.

Also, web JavaScript is capable of handling the events of a

web page. For example, you can write a procedure in JavaScript

in response to the user clicking on an HTML element. These

events do not exist in NodeJS and also, they are not defined for

ExpoSE. In fact, JavaScript codes running on browsers are

closely related to HTML codes. They might read some values

from HTML pages or write new values to them.

Figure 5 demonstrates how a web application is analyzed

using our solution. Our python application extracts the

HTML and JavaScript codes of the intended web application

and prepares an equivalent NodeJS version of it that is

processable by ExpoSE. Afterward, the ExpoSE conducts the

dynamic symbolic analysis of this code to determine the

existence of any possible vulnerable points.

In the following, we present the details of how ExpoSE

works.

5.1. ExpoSE

This tool is based on Jalangi [23], which receives a

NodeJS code with predefined symbolic variables as its input

and generates some values for these symbolic variables that

lead to the execution of different paths as its output. Actually,

we must manually determine the symbolic variables of an

application code before using this tool.

Figure 4. A Piece of Code for Testing the ExpoSE Tool.

Figure 5. Architecture of the Proposed Method for Analyzing Tizen Web Applications.

For example, in Figure 4, lines 3 to 5 show a piece of the

NodeJS code of an application. Lines 1 and 2 are added to

this code to make it analyzable by ExpoSE. Line 1 adds the

ExpoSE library and line 2 defines variable t using the symbol

library function in ExpoSE as a symbolic variable named X.

This code has two different paths based on the value of t, and

ExpoSE finds the value needed for each path considering the

symbolic t.

Figure 6 shows the output of ExpoSE after dynamic

symbolic execution of this application in which there are two

different values for variable t to execute each path.

Figure 6. ExpoSE output for Sample code in Figure 4.

5.2. Sample Application

In order to explain the details of our solution, we first

present a sample Tizen web application that is based on one

of Tizen Studio-based web applications. Figure 7 and Figure

8 show HTML and JavaScript codes of this application, and

Figure 9 shows how this application has been executed in a

wearable Tizen OS device.

6 Sobhan Safdarian et al.: Automatic Vulnerability Detection in Tizen Applications with Dynamic Symbolic Execution

Figure 7. The HTML Code of a Sample Web Tizen Application.

Figure 8. The js/main.js Code of a Sample Web Tizen Application.

Figure 9. Image of the Sample Application in a Wearable Device.

In this application, line 3 of the HTML code, in Figure 7,

binds the event of changing the input HTML element to a

function named myFunction. This function is defined in line

9 of the JavaScript code, Figure 8, and it is called whenever

the input element changes. The input value of this element

would be used directly by myFunction to generate an output

string. Thus, it is possible to inject some JavaScript codes

into the input tag text value and execute malicious

commands. For example.

Figure 10 shows the result of executing the sample web

application by injecting string <img src=x

onerror=alert("XSS")> in the input tag text value. This shows

that the application is vulnerable to XSS and HTML injection

attacks.

Figure 10. XSS Vulnerability in Figure 7 and 8.

5.3. Dynamic Symbolic Execution Process for Tizen Web

Applications

As mentioned in the previous sections, to use ExpoSE for

dynamic symbolic execution of Tizen web applications, we

have to first prepare the application code to be processable by

this tool. Therefore, we analyze the JavaScript and HTML

codes of the web application through text processing and

pattern matching with regular expressions and create an

equivalent NodeJS version of the codes. The proposed

solution is implemented as a python program and is publicly

available in our GitHub repository [26].

The implemented solution first defines necessary data

structures such as DOM at the beginning of the equivalent

NodeJS code so that NodeJS is able to recognize these

objects. Some of these objects are application input entries.

For example, the right side of the following statement is an

application input entry:

var a=document.getElementById("theID").textContent;

 International Journal of Information and Communication Sciences 2023; 8(1): 1-11 7

Therefore, the DOM data structure is defined in a way so that

it considers the received input data from these entry points as

symbolic. In addition, the proposed solution determines output

points in the code which are also DOM objects. For example,

the left side of the following statement is an output point:

document.getElementById("theID").innerHTML=a;

When something is stored in an output point of the

application, we insert a conditional statement that checks if the

stored data may contain attack strings. ExpoSE calculates this

condition as a path constraint when analyzing the final code. In

other words, ExpoSE attempts to generate proper data that

contains attack strings and causes executing a specific path and

reaching the hotspots. If ExpoSE generates such input data, it

means that the program is vulnerable to considered attacks.

5.4. Employing the Proposed Solution for the Sample

Application

In the case of the sample application in Figures 7 and 8,

our solution analyzes the code in the only JavaScript file

js/main.js. It reads each line of this code and transfers it with

or without changes into an equivalent NodeJS code, which is

partly shown in Figure 11. This process is explained in detail

in the following.

For anonymous functions in the JavaScript code, our

method generates a random name to make the analysis

simpler. For example, the first line of Figure 8 defines an

anonymous function and assigns it to the window.onload

method. Therefore, the first line of NodeJS equivalent

code considers the random function name instead of this

anonymous function and assigns it to window.onload, as

shown in line 103 of Figure 11. Then, it defines a new

function with the same name in the NodeJS code

according to its actual definition in the original JavaScript

code, as shown in lines 105 to 115. Due to the hoisting

feature of JavaScript [24], using a function before defining

it is not a problem.

Figure 11. Part of the generated equivalent NodeJS code.

For the input/output entries in the JavaScript code, our

python script keeps a list of these entries to add a new

conditional statement to the target NodeJS code for detecting

XSS vulnerability whenever some data is stored in one of

these entries. In line 2 of Figure 8, the textbox variable

becomes an input/output entry, and thus it is added to this

list.

In line 3 of this code, there is another anonymous function

and the same operation is performed for this function as shown

in lines 107 to 113 in Figure 11. The addEventListener

function in this line is not defined in NodeJS. This function in

web JavaScript codes analyzes the occurrence of a specific

event and executes a function in response, which might have

vulnerabilities in its body. This function should also be defined

8 Sobhan Safdarian et al.: Automatic Vulnerability Detection in Tizen Applications with Dynamic Symbolic Execution

in final NodeJS code in a similar manner to

document.getElementById for NodeJS. Also, these events

should be simulated in order to analyze their call-back function

bodies. The simulation of application events requires the

calling of event-related functions in different orders. Therefore,

at the end of the final NodeJS code, we first shuffle the defined

events and execute their related functions multiple times with

some symbolic values as their inputs.

In line 4 of Figure 8, the box variable becomes an

input/output entry and is added to the list of input/output

entries. Line 5 of this code stores some data into

box.innerHTML which is one of the HTML elements of this

page. In this line, box.innerHTML is used twice; one, as the

right side of the assignment operation in

box.innerHTML==“basic” condition. This conditional

statement gets the innerHTML value of the box tag and

compares it with the string “Basic”. Based on the result of

this comparison, either “Basic” or “Sample” string is stored

into the other box.innerHTML on the left side of the

assignment operation. Therefore, the left box.innerHTML of

this statement is an output entry. In this example, constant

strings “Sample” and “Basic” are stored in an output entry,

and thus XSS and HTML injection attacks are not possible

here. In real-world applications, these strings might depend

on the user input data, and there would be a chance for these

attacks. For this line, a conditional statement is inserted into

the NodeJS code, as shown in lines 110 to 112 of Figure 11,

to check if the code is vulnerable to XSS attack.

The same happens in the first line of myFunction body in

lines 9 to 10 of Figure 8 and the result in the final NodeJS

code is shown in lines 117 to 124 of Figure 11. Here, there is

a chance of XSS and HTML Injection because variable val

depends on the user input.

Note that not all events of a web page are defined in its

JavaScript codes, some of these events might be defined in

the attributes of its HTML elements, such as onChange. For

example, we have the myFunction function call in line 3 of

the sample program's HTML code, Figure 7, in response to

the onChange event. Therefore, we move on to the HTML

page codes and their related events after analyzing the

JavaScript codes. The application inserts all event codes of a

specific event into a function, changes this variable to this_,

and allocates a symbolic value to this_ at the beginning of the

function, as shown in lines 125 to 128 of Figure 11. Finally, it

adds this new function to the array of event functions and

treats them similarly to JavaScript events. The reason for

assigning this_ to the input of the function, instead of directly

assigning it to a symbolic variable, is to be consistent with

events that are defined in JavaScript code using

addEventListener. Those functions have an input that

corresponds to a related event. In this way, the newly created

function can be considered as a call-back function for an

event.

The final NodeJS code is processed by ExpoSE to perform

dynamic symbolic execution. If ExpoSE generates input data

that is consistent with the constraints of paths containing

hotspots, this means that the program is vulnerable and the

generated data can be used to attack the program. Figure 12

illustrates the ExpoSE output after processing the sample

NodeJS.

6. Evaluation

We have evaluated our implemented solution using two

groups of benchmark programs. The experiments are

performed in a system with Intel(R) Core(TM) i7-6700HQ

CPU @ 2.60GHz CPU, 16G of RAM and Ubuntu 20.04

operating system. To study the efficiency of our solution in

detecting buffer overflow in native applications, we have

used NIST SARD benchmark C programs [27] and compiled

them to be executed in Tizen. The programs in this

benchmark contain one vulnerable statement and one or two

similar secure statements that copies some data into a heap or

stack buffer using a strcpy, memcpy, etc function call. Thus, a

precise vulnerability detection solution would achieve one

true positive and one or two true negative results for each test

program. Since there are simple path constraints in these

programs, we have made them more complicated by adding

an additional if statement to the vulnerable paths. In addition,

instead of copying constant data into a heap or stack buffer,

we have copied an input string, entered by the user as a

command-line argument, into that buffer. A vulnerable

function in one of these benchmark programs is presented in

Figure 13 as an example, and our added if statement is

underlined in line 16. The same if statement has been

similarly added to all benchmark programs.

Figure 12. ExpoSE output after analyzing the sample NodeJS code.

 International Journal of Information and Communication Sciences 2023; 8(1): 1-11 9

Figure 13. A vulnerable function in a benchmark program.

Table 1 presents the results of analyzing NIST SARD

benchmark programs by our implemented solutions. The

columns in this table represent, from left to right, the number

of test programs with stack or heap buffer overflow

vulnerability, the total number of true positives, the total

number of true negatives, the total number of false positives,

and the total number of false negatives in the reports of our

solution for each group. Figure 14 also represents the average

time of analyzing a benchmark program with a specific

vulnerable statement by our implemented solution. As the

results demonstrate, our solution could detect all

vulnerabilities in these programs effectively.

Table 1. The results of evaluating our solution using vulnerable C benchmark programs.

#Test cases #True positives #True negatives #False positives #False negatives

85 (stack based) 85 115 0 0

90 (heap based) 90 116 0 0

Figure 14. Average analysis time of a test program with a specific vulnerable data copy operation in a stack or heap buffer, i.e. memcpy, strcpy, memove and

strcat.

To evaluate our solution for analyzing Tizen web

applications, we have designed a group of vulnerable HTML

and Javascript codes, as we could not find appropriate

benchmark programs. There are various scenarios for XSS

vulnerability occurrence and increasing levels of path

complexity in these programs. These programs alongside a

script to re-execute the experiment exist in the testcase

directory of our solution source code.

Table 2 presents the results of this experiment. The

columns in this table represent, from left to right, the name of

each test program, the analysis time by our solution in

seconds, the number of test cases generated to test the

program, if our solution could detect the vulnerability with a

true positive report and the constraints and details about the

vulnerable statement in the program. As an example, XSS

arises inside an event callback function in the test program

named “Web4” and the path constraint on the input string to

reach the vulnerable statement is “input[0] = ‘a’”. Our

10 Sobhan Safdarian et al.: Automatic Vulnerability Detection in Tizen Applications with Dynamic Symbolic Execution

solution has generated 4 input values to execute the program

with and successfully detect this vulnerability.

As shown in this table, our solution could detect the

vulnerability in all test programs with various complicated

constraints. It is worth mentioning that the majority of our

analysis time belongs to ExpoSE, thus the efficiency of our

solution would be improved if we substitute our symbolic

execution engine with a faster one in the future.

Table 2. The results of evaluating the proposed solution using vulnerable HTML and JavaScript codes.

Test Program Time(s) #test cases True Positive Constraints

Web1 7.59 2 yes -

Web2 7.70 2 yes - XSS inside an event call-back function

Web3 12.90 4 yes - input[0] = ‘x’

Web4 14.20 4 yes
- XSS inside an event call-back function

- input[0] = ‘a’

Web5 20.71 6 yes
- input[0] = ‘a’

- input[2] = ‘b’

Web6 17.00 6 yes
- XSS inside an event call-back function

- ! input.includes(‘<’)

Web7 25.63 9 yes
- XSS inside an event call-back function

- input[1] = ‘b’

Web8 25.54 9 yes - input[1] = ‘b’

Web9 23.40 6 yes

- XSS inside an event call-back function

- input[0] = ‘a’

- input[1] = ‘b’

Web10 24.58 7 yes

- XSS inside an event call-back function

- input[0] = ‘a’

- input[1] = ‘b’

- input.slice(-1) = ‘x’

Web11 30.08 8 yes

- XSS inside an event call-back function

- input[0] = ‘a’

- input[1] = ‘b’

- input.slice(-1) = ‘x’

- ! input.includes(‘XYZ’)

Web12 37.52 10 yes

- XSS inside an event call-back function

- input[0] = ‘a’

- input[1] = ‘b’

- input.slice(-1) = ‘x’

- ! input.includes(‘XYZ’)

- input[5] = ‘j’

Web13 24.43 7 yes

- XSS inside an event call-back function

- There is a variable, initially set to 0, it is incremented inside the same event call-

back function. XSS arises when its value is not 0.

- input[0] = ‘a’

- input[1] = ‘b’

- input.slice(-1) = ‘x’

Web14 28.00 7 yes

- XSS inside an event call-back function

- There is a variable, initially set to 0, it is incremented inside a separate event call-

back function. XSS arises when its value is greater than 0.

- input[0] = ‘a’

- input[1] = ‘b’

- input.slice(-1) = ‘x’

web15 41.42 14 yes

- XSS inside an event call-back function

- There is a variable, initially set to 0, it is incremented inside a separate event call-

back function. XSS arises when its value is greater than 0.

- input[0] = ‘a’

- input[1] = ‘b’

- input.slice(-1) = ‘x’

- ! input.includes(‘XYZ’)

7. Conclusion and Future Works

This paper presented a dynamic symbolic analysis solution

for native and web applications of Tizen OS. In this solution,

dynamic symbolic analysis of native applications is

performed by executing the application in the Tizen OS

environment via connecting to the gdbserver of Tizen and by

the use of Symbion tool. The analysis of web applications is

conducted outside of Tizen OS due to the lack of dynamic

symbolic execution frameworks for web applications

deployed on this OS, alongside the possibility of executing

their JavaScript and HTML codes in other web engines.

Therefore, we process the application's JavaScript and

HTML codes and turn them into an equivalent NodeJS code

for dynamic symbolic execution using ExpoSE. This paper

 International Journal of Information and Communication Sciences 2023; 8(1): 1-11 11

fully described the dynamic symbolic execution process for

native and web applications while demonstrating the

effectiveness of the proposed solution for detecting

vulnerabilities in two sample applications and a group of

benchmark programs.

In the future, we intend to expand our method to discover

other types of vulnerabilities such as race conditions and

use-after-free in Tizen applications. Also, when it comes to

web applications, the implemented solution is limited to

ES5 or older versions. Therefore, it does not support newer

syntax versions of JS or any related libraries, such as

JQuery. We will define these libraries and syntaxes in the

future so that our solution could analyze new versions of

JavaScript codes.

References

[1] Windows IoT core, https://docs.microsoft.com/en-
us/windows/iot/, Accessed 18 January 2022.

[2] Amazon FreeRTOS, https://aws.amazon.com/freertos/,
Accessed 18 January 2022.

[3] Samasung Tizen, https://www.tizen.org, Accessed 18 January
2022.

[4] Contiki, https://www.contiki-ng.org/, Accessed 18 January
2022.

[5] Mullen G., Meany L.: Assessment of Buffer Overflow Based
Attacks On an IoT Operating System. IEEE 2019 Global IoT
Summit (GIoTS) pp. 1-6 (2019).

[6] Chess B., McGraw G.: Static Analysis for Security. IEEE
security & privacy, vol. 2, pp. 76-79 (2004).

[7] Godefroid P., Klarlund N., Sen K.: DART: Directed
Automated Random Testing. In: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation, pp. 213-223 (2005).

[8] Chaabouni N., Mosbah M., Zemmari A., Sauvignac C., Faruki
P.: Network Intrusion Detection for IoT Security Based on
Learning Techniques. IEEE Communications Surveys &
Tutorials, vol. 21, pp. 2671-2701 (2019).

[9] Rizvi S., Orr R., Cox A., Ashokkumar P., Rizvi M.:
Identifying the attack surface for IoT network. Internet of
Things, vol. 9 (2020).

[10] Rathore S., Kwon B. W., HyukPark J.: BlockSecIoTNet:
Blockchain-based decentralized security architecture for IoT
network. Network and Computer Applications, vol. 143, pp.
167-177 (2019).

[11] Alnaeli S., Sarnowski M., Sayedul Aman M., Abdelgawad A.,
Yelamarthi K.: Vulnerable C/C++ Code Usage in IoT
Software Systems. 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT), pp. 348-352 (2016).

[12] Abraham A.: Hacking Tizen: The OS of Everything. In:
Proceedings of the HITBSecConf-Hack In The Box Security
Conference, Amsterdam, The Netherlands, pp. 26-29 (2015).

[13] Gritti F., Fontana L., Gustafson E., Pagani F., Continella A.,
Kruegel C., Vigna G.: SYMBION: Interleaving Symbolic with
concrete execution. IEEE Conference on Communications and
Network Security (CNS), pp. 1-10, (2020).

[14] Loring B., Mitchell D., Kinder J.: ExpoSE: Practical Symbolic
Execution of Standalone JavaScript. In: Proceedings of the
24th ACM SIGSOFT International SPIN Symposium on
Model Checking of Software., pp. 196-199 (2017).

[15] Shoshitaishvili, Wang Y., Hauser R., Krugel C., Vigana G.:
Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. NDSS, vol. 1, pp. 1-1
(2015).

[16] Muench M., Nisi D., Francillon A., Balzarotti D.: Avatar 2: A
multi-Target Orchestration Platform. InProc. Workshop on
Binary Anal. Res. (colocated with NDSS Symp.), vol. 18, pp.
1-11 (2018).

[17] Qiling Framework, https://qiling.io. Accessed 18 January
2022.

[18] Li G., Andreasen E., Ghosh I.: SymJS: Automatic Symbolic
Testing of JavaScript Web. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 449-459, (2014).

[19] JSSeek,
http://glasnost.itcarlow.ie/~softeng4/C00137906/index.html.
Accessed 18 January 2022.

[20] Basiri M., Mouzarani M.: Assessing the Resistance of the
Internet of Things Applications to Memory Corruption
Attacks. EAI SaSeIoT (2021).

[21] Baldoni R., Coppa E., D’ELIA D. C., Demetrescu C.,
Finocchi I.: A Survey of Symbolic Execution Techniques.
ACM Computing Surveys (CSUR) 51. 3, pp. 1-39, (2018).

[22] angr. https://angr.ir. Accessed 18 January 2022.

[23] Sen K., Kalasapur S., Brutch T., Gibbs S.: Jalangi: A Tool
Framework for Concolic Testing, Selective. In: Proceedings of
the 2013 9th Joint Meeting on Foundations of Software
Engineering, pp. 615-618, (2013).

[24] MDN Web Docs: JS hoisting.
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting.
Accessed 18 January 2022.

[25] Nicula Ș., Zota R. D: Exploiting stack-based buffer overflow
using modern day techniques. Procedia Computer Science,
vol. 160, pp. 9-14 (2019).

[26] TizenSecurity.
https://github.com/SoftwareSecurityLab/TizenSecurity.
Accessed 18 January 2022.

[27] NIST Software Assurance Reference Dataset.
https://samate.nist.gov/SARD/. Accessed 5 August 2022.

