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Abstract: Security of Internet-of-Things (IoT) systems is important due to their widespread usage in everyday life. Much 

research has been performed on analyzing the security of IoT communication protocols and operating systems. However, few 

studies have focused on analyzing the security of IoT applications and automatic detection of vulnerabilities in them. In these 

studies, the code of IoT applications and operating systems are analyzed statically to detect vulnerabilities. To the best of our 

knowledge, there is no dynamic analysis solution suggested for vulnerability detection in such applications, although this 

method is more accurate than static analysis. In fact, IoT applications are executed in special-purpose hardware, which makes 

their dynamic analysis more difficult than ordinary applications. In this paper, we propose a technical solution that combines 

static and dynamic analysis methods to automatically detect vulnerability in applications of Tizen IoT operating system. We 

consider Native and Web Tizen applications and present an automatic vulnerability detection method for each type of 

application. Our focus is on detecting buffer overflow and XSS vulnerability classes in Native and Web applications, 

respectively. We have evaluated the effectiveness of our method using a group of native and web test programs. The results of 

our experiments show that our solution is able to detect the vulnerability in these programs effectively. 
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1. Introduction 

Internet of Things (IoT) has affected many aspects of 

modern human life. Devices we use for our daily activities 

such as shopping, communication, sport, and helping 

disabled people are all examples of the ever-increasing usage 

of IoT in our daily human life. Therefore, the security of IoT 

devices becomes important to protect human activities, 

privacy, and data against malicious intruders. A considerable 

part of an IoT device is its software and thus in order to make 

it secure, we must take enough care of the security of its 

running applications. 

IoT devices use various architectures and operating 

systems, such as Windows IoT core [1], Amazon FreeRTOS 

[2], Tizen [3], Contiki [4], etc. This diversity complicates the 

security analysis of IoT systems. Also, some IoT applications 

are used for real-time purposes and so they do not apply 

common security measures to protect against well-known 

attacks to increase their performance. In addition, IoT 

devices are implemented using cheaper and lighter hardware 

compared to ordinary systems. Thus, they are not able to 

incorporate usual memory protection mechanisms which 

have a huge overhead [5]. 

Application analysis for vulnerability detection is 

conducted by two approaches: dynamic and static. The static 

approach reviews the application code to find vulnerabilities. 

This approach is sound because it covers all the execution 

paths of the program in its analysis. However, the results are 

conservative and contain many false positive alarms [6]. On 

the other hand, the dynamic approach executes the 

application and analyzes its behavior. The tools with this 

approach report no false positive alarms because they run the 

program with actual data and analyze the exact behavior of 

applications. The drawback of dynamic analysis is that it 

cannot guarantee to cover all application paths and states, and 

thus there are false negative alarms in its reports. Dynamic 
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symbolic execution [7] is a hybrid analysis method that 

combines static and dynamic analysis to profit high coverage 

and accuracy of each method, respectively. In this paper, we 

use this method for analyzing and detecting vulnerabilities in 

Tizen IoT applications. 

In recent years, the security of communication protocols in 

IoT systems has been studied by some researchers, such as 

[8], [9], and [10]. There are also limited studies regarding the 

static analysis of IoT OS and applications [11], [12] and [5]. 

These works emphasize different vulnerability types in 

current IoT operating systems and applications alongside the 

lack of proper protection measures against such 

vulnerabilities. Although, to the best of our knowledge, there 

is yet no proposed solution for dynamic analysis of these 

applications. The dynamic analysis of IoT applications is 

more challenging than other applications because they are 

executed on special-purpose hardware that might not contain 

enough facilities to debug and analyze the application 

runtime behavior. This paper presents a method for dynamic 

analysis of applications in Tizen IoT operating system. We 

use the dynamic symbolic execution method in our analysis 

to achieve a proper path coverage of the program. We present 

the details of how to overcome the challenges of performing 

dynamic symbolic analysis of applications in Tizen devices. 

We demonstrate the effectiveness of our proposed method by 

employing the implemented tool for analyzing two sample 

Tizen applications. The implemented method is publicly 

available in our GitHub repository [26] with sample test 

scenarios. 

We present the detailed method of dynamically analyzing 

two types of Tizen applications, namely native and web. 

Analysis of native applications is conducted by connecting 

the analyzer to the gdbserver in Tizen OS and statically 

analyzing the binary code of the target application to locate 

probably vulnerable function calls, such as strcpy(), and 

determine input arguments of those functions. Then, Symbion 

symbolic execution engine [13] is employed to calculate the 

path constraints on input data for executing a path that 

reaches located probably vulnerable function calls. After 

solving the constraints using a constraint solver, we generate 

consistent input values that are large enough to execute the 

intended paths and cause buffer overflow in considered 

function calls. 

Tizen web applications are written in HTML, JavaScript 

and CSS that may execute some API functions in this OS. 

Since the analysis of such applications and detection of XSS 

vulnerability do not directly depend on the result of 

execution of Tizen API functions, and we could not employ a 

dynamic symbolic execution framework in that operating 

system for our analysis of web applications, we analyze the 

web application runtime behavior by executing it in an 

environment outside of Tizen. We use ExpoSE [14] tool that 

is developed to symbolically execute NodeJS applications for 

our analysis. Our proposed method extracts the JavaScript 

code of a web application and prepares it to be analyzed by 

ExpoSE. In fact, it creates a new version of the application 

code that can be processed by ExpoSE to detect 

vulnerabilities in it. To do so, our proposed method first 

analyzes the HTML and JavaScript codes of the test 

application statically to determine its HTML input/output 

entries and probably vulnerable JavaScript statements as 

hotspots. We add a conditional statement before a hotspot 

that checks if the data entering the hotspot might contain 

attack strings. In this way, we lead ExpoSE to calculate 

vulnerability constraints for input data in addition to path 

constraints in the paths containing hotspots. Afterward, the 

prepared code is given to ExpoSE in order to analyze the 

possibility of executing the application in an execution path 

containing hotspots with input values that lead to an attack. 

The proposed method is evaluated using a group of native 

and web test programs that are executable in Tizen operating 

system. The results of our experiments demonstrate the 

effectiveness of our solution for detecting buffer overflow 

and XSS vulnerability in these programs. 

This paper has the following structure: Section 2 reviews 

the previous related works. Tizen operating system and its 

application types are introduced in section 3. Section 4 

describes the proposed vulnerability detection method for 

native applications of Tizen. Our proposed method for 

detecting vulnerability in Tizen web applications is presented 

in section 5. Section 6 evaluates the implemented solution 

and finally, section 7 presents the conclusion and possible 

directions for future works. 

2. Related Works 

Most studies in the field of IoT application security 

analysis have focused on operating system security and static 

application code analysis. For example, in [11], a tool named 

UnsafeFunsDetector is used to statically analyze the source 

code of some IoT operating systems such as Contiki, 

TinyOS, and openWSN to find a number of unsafe functions 

in their code. As another example, Firmalice is a static 

analyzer that searches through the binary statements of IoT 

firmware to find any hardcoded credentials that might reveal 

a backdoor in the firmware [15]. 

To the best of our knowledge, there has been no solution 

for dynamic analysis of Tizen applications until now. 

However, there are some general frameworks and tools, such 

as Avatar [16] and Qilling [17], to dynamically analyze 

native applications of IoT devices. Avatar is a simulator that 

physically connects to IoT devices and analyzes their system 

events [16]. It hooks the intended events from the physical 

system to transfer their data to the simulator and analyze 

them. The limitation of this simulator is that it requires a 

JTAG port in the physical IoT system that is not supported by 

all IoT devices. 

Qilling is another example that simulates an entire system 

from the OS image and its file system [17]. This simulator 

reviews the system functions of the device file system to 

hook the intended system functions and make their 

behavioral analysis possible for the analyzer. This simulator 

requires the OS image of the intended device, which is not 

necessarily available for all devices. Tizen's producers have 
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released its image but in our experience of running this image 

in Qilling, it got stuck in the initial boot step and could not 

proceed further. On the other hand, Qilling runs the 

application image on the analyzer device, so it doesn't 

analyze the real application behavior as it runs in an IoT 

device. Notably, none of these simulators have a framework 

for dynamic symbolic execution and such a framework must 

be installed in these simulators. 

There are also some solutions for dynamic symbolic 

execution of web applications, such as SymJS [18] and 

JSSeek [19], which are not available to be used in our 

solution. SymJS tries to create test data that covers the 

highest percentage of execution paths in a web application 

using symbolic analysis. Also, this tool automatically extracts 

the application events to simulate them and execute the 

relevant codes responding to these events. Since this is a 

private tool, we could not use it in our solution. JSSeek [19] 

is another tool that performs symbolic analysis of JavaScript 

applications. This tool uses symbolic analysis to find 

different errors in JavaScript applications, such as undefined 

variable error. 

Some solutions are presented for analyzing JavaScript 

environments, such as NodeJS, but none of them were ever 

used in the analysis of web Tizen OS applications. For 

example, ExpoSE [14] performs dynamic symbolic execution 

on NodeJS applications. This tool explores different paths of 

an application by generating appropriate input values. We 

cannot use this tool directly in the analysis of Tizen web 

applications because of different data structures and functions 

in JavaScript applications that are executed in browsers 

alongside the dependency of JavaScript codes on the HTML 

codes of web pages. 

3. Tizen 

Tizen is an open-source operating system used in a wide 

range of IoT devices, such as wearable devices, televisions, 

and smartphones [3]. Hence, it is known as "the OS of 

Everything" [12]. This OS is based on the Linux kernel, 

which makes it similar to other Linux versions in many 

aspects, such as process management, memory management, 

file system, and system calls. In this paper, we consider Tizen 

version 5.5. 

Tizen OS supports three application types: 

1. Native Applications: C and C++ applications. 

2. Web Applications: JavaScript, HTML, and CSS-based 

applications that are executed in a web engine. 

3. NET Applications: Xamarin and Visual Studio-based 

applications. 

Also, Tizen OS allows programmers to write applications 

that pack web and native applications in a single application 

known as Hybrids. 

Native applications are executed directly in the Linux 

kernel platform. When we compile a native application by 

default using the Tizen IDE, it will have the NX and PIE 

mechanisms enabled, but the Canary mechanism is disabled. 

However, as shown in [20], it is possible to bypass the active 

security mechanisms of this OS. NX and PIE are two security 

mechanisms used in well-known operating systems to 

prevent memory corruption attacks [25]. 

The web Tizen applications are executed using the OS's 

web engine. XSS and HTML Injection are the vulnerabilities 

that might occur in these applications. Web Tizen 

applications are able to access Tizen system calls and APIs. 

For example, the tizen object is defined for JavaScript codes 

of these applications for gaining access to different system 

functions or sensor values. Therefore, exploiting the 

vulnerabilities in Tizen web applications might lead to 

disclosure of confidential information and unauthorized 

access to the device. 

4. Detecting Buffer Overflow 

Vulnerability in Tizen Native 

Applications 

Unsafe usage of functions, such as strcpy, gets, scanf, etc., 

in Tizen native applications can lead to buffer overflow. 

Different static and dynamic analysis methods have been 

introduced to detect this vulnerability in various applications. 

Dynamic symbolic execution is one of the popular 

vulnerability detection methods that generates proper input 

data for executing different application paths by calculating 

the constraints on input data for executing each path. This 

method suffers from the path explosion problem, which 

means the number of possible paths in an application grows 

exponentially and analysis of all execution paths becomes 

impossible in practice [21]. 

Therefore, in our proposed solution, we first perform static 

analysis to find execution paths in the program that contains 

possible vulnerable function calls, e.g., strcpy, and then we 

limit the scope of dynamic symbolic execution to those paths 

to avoid path explosion problem. 

 

Figure 1. Sample of a Native Tizen Application. 

As an example, consider Figure 1, which is a simple Tizen 

native application with buffer overflow vulnerability in line 

8. This application receives two input values: one is the main 
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function argument and another is a console input value 

received via fgets function in line 6 that is saved in the input 

string. There is no buffer overflow in this stage because of 

the string input length control of line 6. Later in line 8, the 

strcpy function copies the input string into the buffer string if 

the value of the input string is equal to "XGXXXM*", in 

which X means an arbitrary character. Here a buffer overflow 

occurs because this function does not check the length of the 

strings. 

To detect the buffer overflow vulnerability in this code, we 

first use the angr [22] framework for our static analysis and 

extract the application's control-flow graph to detect any calls 

of possible vulnerable functions. Thus, we find the execution 

path in which strcpy function is called. Then, we perform 

dynamic symbolic execution using Symbion plugin of the 

angr framework and calculate the path constraints on the 

input values that lead to the desired path. For this example, 

the main argument should be “-s” and the second and sixth 

characters of the console input value should be “G” and “M” 

respectively to reach the strcpy function call. 

These constraints are delivered to Z3 constraint solver in 

angr to generate consistent input values accordingly. Then, 

we move on to the fuzzing step and increase the length of 

generated input data while considering the path constraint on 

it to generate new input data that executes the program's 

desired path and causes buffer overflow in the strcpy 

function. Then, we execute the application with these new 

data and report the vulnerability in case of a crash. 

 

Figure 2. Architecture of the Proposed Method for Analyzing Native Tizen Applications. 

Notably, the dynamic symbolic execution engine or the 

static analysis tool cannot be installed in the Tizen emulator, 

which is one of our main challenges in the static analysis and 

dynamic symbolic execution of the Tizen application. 

Therefore, we install and launch the test application in Tizen 

and analyze it by establishing a remote connection to the 

gdbserver of Tizen. Figure 2 illustrates the architecture of our 

solution for analyzing Tizen native applications. As shown in 

this figure, the compiled test application is installed and 

launched in Tizen to be analyzed dynamically. Also, the 

binary code of the application is given to the angr framework 

for static analysis. To perform dynamic symbolic execution, 

we use Symbion in our machine and connect remotely to the 

gdbserver in Tizen. All the commands used in our solution, 

including those for compiling and installing the application 

by sdb 1  and the Tizen configuration commands to debug 

applications using gdbserver, are presented in a script file in 

our Github repository [26]. 

Figure 3 illustrates the output of our implemented solution 

for analyzing the sample program. In this figure, SIGSEGV 

status code demonstrates that we could successfully generate 

long input data that is consistent with the path constraints to 

execute the program and cause buffer overflow in it. 

                                                             

1 The communication bridge between the developer and the Tizen system 

 

Figure 3. Output of a Native Application's Analysis. 

5. Vulnerability Detection in Tizen Web 

Applications 

Dynamic symbolic execution is more challenging for Tizen 

web applications as there is no framework or platform 

available in Tizen that enables us to symbolically execute web 

applications in that operating system. Meanwhile, since Tizen 
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web applications are written in HTML, JavaScript, and CSS 

languages and they do not depend heavily on Tizen web 

engine, we can execute them outside of Tizen without losing 

many functionalities. The only limitation is for calling Tizen 

APIs. With our proposed solution, it is possible to handle them 

by defining Tizen APIs in the target NodeJS code so that they 

are considered as input entries that return a symbolic variable. 

Therefore, we extract the codes of Tizen web applications and 

execute them symbolically in our ordinary machine in a 

framework named ExpoSE [14]. At the time of writing this 

article, ExpoSE is the best available tool for us which has a 

proper performance but only analyzes NodeJS codes. This 

makes some difficulties in analyzing JavaScript codes that are 

executed in browsers due to the differences between JavaScript 

and NodeJS codes. For example, web JavaScript codes use data 

structures, such as DOM or Document Object Model, for ease of 

access to web page elements. These structures are not defined 

for NodeJS and thus are not recognizable by ExpoSE. 

Also, web JavaScript is capable of handling the events of a 

web page. For example, you can write a procedure in JavaScript 

in response to the user clicking on an HTML element. These 

events do not exist in NodeJS and also, they are not defined for 

ExpoSE. In fact, JavaScript codes running on browsers are 

closely related to HTML codes. They might read some values 

from HTML pages or write new values to them. 

Figure 5 demonstrates how a web application is analyzed 

using our solution. Our python application extracts the 

HTML and JavaScript codes of the intended web application 

and prepares an equivalent NodeJS version of it that is 

processable by ExpoSE. Afterward, the ExpoSE conducts the 

dynamic symbolic analysis of this code to determine the 

existence of any possible vulnerable points. 

In the following, we present the details of how ExpoSE 

works. 

5.1. ExpoSE 

This tool is based on Jalangi [23], which receives a 

NodeJS code with predefined symbolic variables as its input 

and generates some values for these symbolic variables that 

lead to the execution of different paths as its output. Actually, 

we must manually determine the symbolic variables of an 

application code before using this tool. 

 

Figure 4. A Piece of Code for Testing the ExpoSE Tool. 

 

Figure 5. Architecture of the Proposed Method for Analyzing Tizen Web Applications. 

For example, in Figure 4, lines 3 to 5 show a piece of the 

NodeJS code of an application. Lines 1 and 2 are added to 

this code to make it analyzable by ExpoSE. Line 1 adds the 

ExpoSE library and line 2 defines variable t using the symbol 

library function in ExpoSE as a symbolic variable named X. 

This code has two different paths based on the value of t, and 

ExpoSE finds the value needed for each path considering the 

symbolic t. 

Figure 6 shows the output of ExpoSE after dynamic 

symbolic execution of this application in which there are two 

different values for variable t to execute each path. 

 

Figure 6. ExpoSE output for Sample code in Figure 4. 

 

5.2. Sample Application 

In order to explain the details of our solution, we first 

present a sample Tizen web application that is based on one 

of Tizen Studio-based web applications. Figure 7 and Figure 

8 show HTML and JavaScript codes of this application, and 

Figure 9 shows how this application has been executed in a 

wearable Tizen OS device. 
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Figure 7. The HTML Code of a Sample Web Tizen Application. 

 

Figure 8. The js/main.js Code of a Sample Web Tizen Application. 

 

Figure 9. Image of the Sample Application in a Wearable Device. 

In this application, line 3 of the HTML code, in Figure 7, 

binds the event of changing the input HTML element to a 

function named myFunction. This function is defined in line 

9 of the JavaScript code, Figure 8, and it is called whenever 

the input element changes. The input value of this element 

would be used directly by myFunction to generate an output 

string. Thus, it is possible to inject some JavaScript codes 

into the input tag text value and execute malicious 

commands. For example. 

Figure 10 shows the result of executing the sample web 

application by injecting string <img src=x 

onerror=alert("XSS")> in the input tag text value. This shows 

that the application is vulnerable to XSS and HTML injection 

attacks. 

 

Figure 10. XSS Vulnerability in Figure 7 and 8. 

5.3. Dynamic Symbolic Execution Process for Tizen Web 

Applications 

As mentioned in the previous sections, to use ExpoSE for 

dynamic symbolic execution of Tizen web applications, we 

have to first prepare the application code to be processable by 

this tool. Therefore, we analyze the JavaScript and HTML 

codes of the web application through text processing and 

pattern matching with regular expressions and create an 

equivalent NodeJS version of the codes. The proposed 

solution is implemented as a python program and is publicly 

available in our GitHub repository [26]. 

The implemented solution first defines necessary data 

structures such as DOM at the beginning of the equivalent 

NodeJS code so that NodeJS is able to recognize these 

objects. Some of these objects are application input entries. 

For example, the right side of the following statement is an 

application input entry: 

var a=document.getElementById("theID").textContent; 
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Therefore, the DOM data structure is defined in a way so that 

it considers the received input data from these entry points as 

symbolic. In addition, the proposed solution determines output 

points in the code which are also DOM objects. For example, 

the left side of the following statement is an output point: 

document.getElementById("theID").innerHTML=a; 

When something is stored in an output point of the 

application, we insert a conditional statement that checks if the 

stored data may contain attack strings. ExpoSE calculates this 

condition as a path constraint when analyzing the final code. In 

other words, ExpoSE attempts to generate proper data that 

contains attack strings and causes executing a specific path and 

reaching the hotspots. If ExpoSE generates such input data, it 

means that the program is vulnerable to considered attacks. 

5.4. Employing the Proposed Solution for the Sample 

Application 

In the case of the sample application in Figures 7 and 8, 

our solution analyzes the code in the only JavaScript file 

js/main.js. It reads each line of this code and transfers it with 

or without changes into an equivalent NodeJS code, which is 

partly shown in Figure 11. This process is explained in detail 

in the following. 

For anonymous functions in the JavaScript code, our 

method generates a random name to make the analysis 

simpler. For example, the first line of Figure 8 defines an 

anonymous function and assigns it to the window.onload 

method. Therefore, the first line of NodeJS equivalent 

code considers the random function name instead of this 

anonymous function and assigns it to window.onload, as 

shown in line 103 of Figure 11. Then, it defines a new 

function with the same name in the NodeJS code 

according to its actual definition in the original JavaScript 

code, as shown in lines 105 to 115. Due to the hoisting 

feature of JavaScript [24], using a function before defining 

it is not a problem. 

 

Figure 11. Part of the generated equivalent NodeJS code. 

For the input/output entries in the JavaScript code, our 

python script keeps a list of these entries to add a new 

conditional statement to the target NodeJS code for detecting 

XSS vulnerability whenever some data is stored in one of 

these entries. In line 2 of Figure 8, the textbox variable 

becomes an input/output entry, and thus it is added to this 

list. 

In line 3 of this code, there is another anonymous function 

and the same operation is performed for this function as shown 

in lines 107 to 113 in Figure 11. The addEventListener 

function in this line is not defined in NodeJS. This function in 

web JavaScript codes analyzes the occurrence of a specific 

event and executes a function in response, which might have 

vulnerabilities in its body. This function should also be defined 
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in final NodeJS code in a similar manner to 

document.getElementById for NodeJS. Also, these events 

should be simulated in order to analyze their call-back function 

bodies. The simulation of application events requires the 

calling of event-related functions in different orders. Therefore, 

at the end of the final NodeJS code, we first shuffle the defined 

events and execute their related functions multiple times with 

some symbolic values as their inputs. 

In line 4 of Figure 8, the box variable becomes an 

input/output entry and is added to the list of input/output 

entries. Line 5 of this code stores some data into 

box.innerHTML which is one of the HTML elements of this 

page. In this line, box.innerHTML is used twice; one, as the 

right side of the assignment operation in 

box.innerHTML==“basic” condition. This conditional 

statement gets the innerHTML value of the box tag and 

compares it with the string “Basic”. Based on the result of 

this comparison, either “Basic” or “Sample” string is stored 

into the other box.innerHTML on the left side of the 

assignment operation. Therefore, the left box.innerHTML of 

this statement is an output entry. In this example, constant 

strings “Sample” and “Basic” are stored in an output entry, 

and thus XSS and HTML injection attacks are not possible 

here. In real-world applications, these strings might depend 

on the user input data, and there would be a chance for these 

attacks. For this line, a conditional statement is inserted into 

the NodeJS code, as shown in lines 110 to 112 of Figure 11, 

to check if the code is vulnerable to XSS attack. 

The same happens in the first line of myFunction body in 

lines 9 to 10 of Figure 8 and the result in the final NodeJS 

code is shown in lines 117 to 124 of Figure 11. Here, there is 

a chance of XSS and HTML Injection because variable val 

depends on the user input. 

Note that not all events of a web page are defined in its 

JavaScript codes, some of these events might be defined in 

the attributes of its HTML elements, such as onChange. For 

example, we have the myFunction function call in line 3 of 

the sample program's HTML code, Figure 7, in response to 

the onChange event. Therefore, we move on to the HTML 

page codes and their related events after analyzing the 

JavaScript codes. The application inserts all event codes of a 

specific event into a function, changes this variable to this_, 

and allocates a symbolic value to this_ at the beginning of the 

function, as shown in lines 125 to 128 of Figure 11. Finally, it 

adds this new function to the array of event functions and 

treats them similarly to JavaScript events. The reason for 

assigning this_ to the input of the function, instead of directly 

assigning it to a symbolic variable, is to be consistent with 

events that are defined in JavaScript code using 

addEventListener. Those functions have an input that 

corresponds to a related event. In this way, the newly created 

function can be considered as a call-back function for an 

event. 

The final NodeJS code is processed by ExpoSE to perform 

dynamic symbolic execution. If ExpoSE generates input data 

that is consistent with the constraints of paths containing 

hotspots, this means that the program is vulnerable and the 

generated data can be used to attack the program. Figure 12 

illustrates the ExpoSE output after processing the sample 

NodeJS. 

6. Evaluation 

We have evaluated our implemented solution using two 

groups of benchmark programs. The experiments are 

performed in a system with Intel(R) Core(TM) i7-6700HQ 

CPU @ 2.60GHz CPU, 16G of RAM and Ubuntu 20.04 

operating system. To study the efficiency of our solution in 

detecting buffer overflow in native applications, we have 

used NIST SARD benchmark C programs [27] and compiled 

them to be executed in Tizen. The programs in this 

benchmark contain one vulnerable statement and one or two 

similar secure statements that copies some data into a heap or 

stack buffer using a strcpy, memcpy, etc function call. Thus, a 

precise vulnerability detection solution would achieve one 

true positive and one or two true negative results for each test 

program. Since there are simple path constraints in these 

programs, we have made them more complicated by adding 

an additional if statement to the vulnerable paths. In addition, 

instead of copying constant data into a heap or stack buffer, 

we have copied an input string, entered by the user as a 

command-line argument, into that buffer. A vulnerable 

function in one of these benchmark programs is presented in 

Figure 13 as an example, and our added if statement is 

underlined in line 16. The same if statement has been 

similarly added to all benchmark programs. 

 

Figure 12. ExpoSE output after analyzing the sample NodeJS code. 
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Figure 13. A vulnerable function in a benchmark program. 

Table 1 presents the results of analyzing NIST SARD 

benchmark programs by our implemented solutions. The 

columns in this table represent, from left to right, the number 

of test programs with stack or heap buffer overflow 

vulnerability, the total number of true positives, the total 

number of true negatives, the total number of false positives, 

and the total number of false negatives in the reports of our 

solution for each group. Figure 14 also represents the average 

time of analyzing a benchmark program with a specific 

vulnerable statement by our implemented solution. As the 

results demonstrate, our solution could detect all 

vulnerabilities in these programs effectively. 

Table 1. The results of evaluating our solution using vulnerable C benchmark programs. 

#Test cases #True positives #True negatives #False positives #False negatives 

85 (stack based) 85 115 0 0 

90 (heap based) 90 116 0 0 

 

Figure 14. Average analysis time of a test program with a specific vulnerable data copy operation in a stack or heap buffer, i.e. memcpy, strcpy, memove and 

strcat. 

To evaluate our solution for analyzing Tizen web 

applications, we have designed a group of vulnerable HTML 

and Javascript codes, as we could not find appropriate 

benchmark programs. There are various scenarios for XSS 

vulnerability occurrence and increasing levels of path 

complexity in these programs. These programs alongside a 

script to re-execute the experiment exist in the testcase 

directory of our solution source code. 

Table 2 presents the results of this experiment. The 

columns in this table represent, from left to right, the name of 

each test program, the analysis time by our solution in 

seconds, the number of test cases generated to test the 

program, if our solution could detect the vulnerability with a 

true positive report and the constraints and details about the 

vulnerable statement in the program. As an example, XSS 

arises inside an event callback function in the test program 

named “Web4” and the path constraint on the input string to 

reach the vulnerable statement is “input[0] = ‘a’”. Our 
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solution has generated 4 input values to execute the program 

with and successfully detect this vulnerability. 

As shown in this table, our solution could detect the 

vulnerability in all test programs with various complicated 

constraints. It is worth mentioning that the majority of our 

analysis time belongs to ExpoSE, thus the efficiency of our 

solution would be improved if we substitute our symbolic 

execution engine with a faster one in the future. 

Table 2. The results of evaluating the proposed solution using vulnerable HTML and JavaScript codes. 

Test Program Time(s) #test cases True Positive Constraints 

Web1 7.59 2 yes - 

Web2 7.70 2 yes - XSS inside an event call-back function 

Web3 12.90 4 yes - input[0] = ‘x’ 

Web4 14.20 4 yes 
- XSS inside an event call-back function 

- input[0] = ‘a’ 

Web5 20.71 6 yes 
- input[0] = ‘a’ 

- input[2] = ‘b’ 

Web6 17.00 6 yes 
- XSS inside an event call-back function 

- ! input.includes(‘<’) 

Web7 25.63 9 yes 
- XSS inside an event call-back function 

- input[1] = ‘b’ 

Web8 25.54 9 yes - input[1] = ‘b’ 

Web9 23.40 6 yes 

- XSS inside an event call-back function 

- input[0] = ‘a’ 

- input[1] = ‘b’ 

Web10 24.58 7 yes 

- XSS inside an event call-back function 

- input[0] = ‘a’ 

- input[1] = ‘b’ 

- input.slice(-1) = ‘x’ 

Web11 30.08 8 yes 

- XSS inside an event call-back function 

- input[0] = ‘a’ 

- input[1] = ‘b’ 

- input.slice(-1) = ‘x’ 

- ! input.includes(‘XYZ’) 

Web12 37.52 10 yes 

- XSS inside an event call-back function 

- input[0] = ‘a’ 

- input[1] = ‘b’ 

- input.slice(-1) = ‘x’ 

- ! input.includes(‘XYZ’) 

- input[5] = ‘j’ 

Web13 24.43 7 yes 

- XSS inside an event call-back function 

- There is a variable, initially set to 0, it is incremented inside the same event call-

back function. XSS arises when its value is not 0. 

- input[0] = ‘a’ 

- input[1] = ‘b’ 

- input.slice(-1) = ‘x’ 

Web14 28.00 7 yes 

- XSS inside an event call-back function 

- There is a variable, initially set to 0, it is incremented inside a separate event call-

back function. XSS arises when its value is greater than 0. 

- input[0] = ‘a’ 

- input[1] = ‘b’ 

- input.slice(-1) = ‘x’ 

web15 41.42 14 yes 

- XSS inside an event call-back function 

- There is a variable, initially set to 0, it is incremented inside a separate event call-

back function. XSS arises when its value is greater than 0. 

- input[0] = ‘a’ 

- input[1] = ‘b’ 

- input.slice(-1) = ‘x’ 

- ! input.includes(‘XYZ’) 

 

7. Conclusion and Future Works 

This paper presented a dynamic symbolic analysis solution 

for native and web applications of Tizen OS. In this solution, 

dynamic symbolic analysis of native applications is 

performed by executing the application in the Tizen OS 

environment via connecting to the gdbserver of Tizen and by 

the use of Symbion tool. The analysis of web applications is 

conducted outside of Tizen OS due to the lack of dynamic 

symbolic execution frameworks for web applications 

deployed on this OS, alongside the possibility of executing 

their JavaScript and HTML codes in other web engines. 

Therefore, we process the application's JavaScript and 

HTML codes and turn them into an equivalent NodeJS code 

for dynamic symbolic execution using ExpoSE. This paper 
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fully described the dynamic symbolic execution process for 

native and web applications while demonstrating the 

effectiveness of the proposed solution for detecting 

vulnerabilities in two sample applications and a group of 

benchmark programs. 

In the future, we intend to expand our method to discover 

other types of vulnerabilities such as race conditions and 

use-after-free in Tizen applications. Also, when it comes to 

web applications, the implemented solution is limited to 

ES5 or older versions. Therefore, it does not support newer 

syntax versions of JS or any related libraries, such as 

JQuery. We will define these libraries and syntaxes in the 

future so that our solution could analyze new versions of 

JavaScript codes. 
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