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Abstract: The advice of automating computer applications is being increase to reduce the human interaction. Medical image 

segmentation is one of these applications, when done manually; it turns into a time-consuming and knowledge intensive task. 

As a result, automatic segmentation is in the focus of work to speed up segmentation processes. Fast and accurate segmentation 

would allow physicians to analyze and visualize the human structures and re-plan radiation therapy and surgery. This paper 

introduces a knowledge system based on different sources of medical knowledge to automate medical image segmentation 

through active contour methods. The way of getting benefit of the knowledge provided by medical atlas, expert’s rules, image 

features, image multiple views and image Meta data introduced by this knowledge system. We classify the system in different 

domains in way can be manage properly to guide active contour segmentation methods for abdominal CT scans. The obtained 

results are very promising showing significant improvements over other methods where the volume measurements error is 7% 

and the processing time was improved by 68%. 

Keywords: Knowledge-Based System, Medical Knowledge, Active Contour Image Segmentation, Automated Processes 

 

1. Introduction 

Image segmentation can be identified as the process of 

isolating different regions in an image having homogenous 

features such as intensity, texture, color etc. Image 

segmentation is considered as an essential and crucial 

preliminary processing analysis and one of the most 

challenging tasks in any computer vision systems (Gonzalez 

and Woods, 2008). Image segmentation plays a major role in 

various imaging fields. Medical imaging is one of the mostly 

referred fields by the imaging community (Zhou, Yang et al. 

2014). 

Medical imaging produces datasets that may require 

considerable amount of processing time for one particular 

human anatomy. A typical Magnetic Resonance Imaging 

(MRI) and Computed Tomography (CT) scan results in large 

number of slices of the acquired anatomical region. This stack 

of 2D images are referred as dataset; these images appear in 

gray scale color with each gray scale value corresponding to an 

Hounsfield Units (HU), which is a measure of radiodensity 

that provides an accurate absolute density for the 

corresponding anatomical tissues (Möller 2009). 

A typical processing of medical images includes pre-

processing to remove noise and segmentation process that 

delineate a particular anatomy of interest. The highly complex 

nature of medical images makes segmentation difficult and 

time consuming. It also may require sophisticated 

segmentation algorithms to obtain reliable results. 

Image segmentation plays a crucial role in medical imaging 

application, includes the classification of different anatomies 

such as bone, soft tissues and muscles; visualization of medical 

image; volumetric measurement; shape representation and 

analysis; computer guided surgery; treatments planning and 

human anatomy changes detection. Besides, there has been a 

growing need for segmentation in anatomical structure studies 

in research and teaching (O’Donnell 2001; Withey and Koles 

2007; Cui, Wang et al. 2013). 

Depending upon the case studies, medical image 

segmentation can be a very complicated, tedious and time 

consuming. Moreover, manual delineation is a highly skilled, 

subjective and laborious task. Selecting each pixel manually 

for desired the anatomical structure in every medical slice of 

a dataset that may consists of more than 50 slices could take 

hours or even days (Casiraghi, Campadelli et al. 2009; Zhou 
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and Xie 2014). As the processing resources of the computers 

have seen some advancement, the automation of medical 

image segmentation can be performed with higher accuracy, 

repeatability, and efficiency (O’Donnell 2001; Straka, Cruz et 

al. 2004; ChangYang, Xiuying et al. 2010; Luo, Li et al. 

2014). Fast and accurate segmentation would allow 

physicians to analyze and visualize human anatomies and 

assist radiation therapy and surgical planning.  

This paper is organized as follows. Section 2 explains the 

aim of our work in comparison with other works in medical 

knowledge used in medical image segmentation. Section 3 

introduces the knowledge system architecture that represents 

the different domains of knowledge. Section 4 describes the 

methodology and processes flow used to guide the medical 

image segmentation. Section 5 discusses the results of 

proposed work. And Section 6 describes the conclusion of 

this work. 

2. Related Work 

Many different image segmentation methods have been 

developed in the past several decades in medical imaging 

domain. However, image segmentation remains acutely 

problem centric. A given segmentation method may perform 

well on one problem but poorly on a different application. 

Thus, achieving a generic segmentation method that is 

universally applicable for a broad range of medical 

applications is a very challenging task. The variety of 

medical applications encourages research interests on the 

segmentation process in order to develop, improvised and 

advanced methods for a given application. 

Existing segmentation methods in medical domain include 

neural network learning methods which require training 

dataset to build the constraints such as intensity, texture, 

shape etc, that need to be given into neural network (Chien-

Cheng et al., 2003; (Yasmin, Sharif et al. 2013)); intensity-

based methods that are based on similarity in intensity and 

needs initialization value (Campadelli et al., 2009); rule-

based recognition based on exploiting structure invariants 

and available features such as size, edge and location (Chien-

Cheng and Pau-Choo 2000; Narkhede 2013); model-based 

methods that need training sets to build a model to guide the 

segmentation process (Heimann et al., 2007;(Jiang, Tan et al. 

2013)); active contour methods that require initialization of 

contour inside target structure (Lee et al., 2007; (Zhou and 

Xie 2014)); atlas-based segmentation which requires 

registration between atlas and target dataset (Furukawa et al., 

2007; (Yongfu, Tianzi et al. 2012)) and finally unsupervised 

methods such as clustering techniques produces clusters 

belonging to many different structures. It normally combines 

with other methods in order to isolate specific structure 

(Yuqian, Yunlong et al. 2010).  

Active contour segmentation methods (Pan and Dawant 

2001; Liu, Jiang et al. 2005; Furukawa, Shimizu et al. 2007; 

Lee, Kim et al. 2007; Martí, Benedí et al. 2007; Zhou and 

Xie 2014) have specific advantages over other methods, such 

as providing promising results, robustness to dataset 

variations, no prior training, and ability to capture the 

topology of shapes (Li, Fevens et al. 2006). As such, they can 

be reliably used for segmenting structures in abdominal CT 

scans. However, active contour methods have some 

disadvantages, that is longer processing time due to the need 

of user interaction, to plot the contour of level set in each 

slice in the abdominal dataset, which is very time consuming 

and knowledge intensive task. In addition, performance of 

level set active contour methods relies heavily on having a 

good initialization of the contour curve close to the desired 

contour. 

Depending on user interaction and prior knowledge, 

medical image segmentation algorithms can be classified as 

manual, semi-automatic and automatic. Automatic methods 

still need prior knowledge such as shape, location and texture 

relating to the human anatomy to be segmented. In addition 

some of these methods also require initialization. As 

examples, active contour segmentation methods needs curve 

initialization; region growing segmentation methods need 

seed point initialization, etc (Foo 2006; Mei, Si et al. 2013). 

Therefore, medical knowledge represented by variety of 

sources such as medical atlas, texture information, 

anatomical shape and location, is necessary for image 

processing, especially for image segmentation. 

Survey indicates that there are huge demands for 

automating the segmentation of abdominal structures. It 

includes measurement of kidney volumes, which is a good 

pointer of common body parameters and a reliable predictor 

of renal function (Shin, Chung et al. 2009); measurement of 

liver volume, which is useful for liver transplantation 

(Nakayama, Li et al. 2006; Luo, Li et al. 2014); constructing 

volume of abdominal structures helpful in surgical planning 

and radiation treatment (Harms, Bartels et al. 2005; Luo, Li 

et al. 2014). CT scans are preferred more than sensitive 

imaging techniques such as MRI in abdominal imaging 

owing to their high signal to noise and good spatial resolution 

(Linguraru, Sandberg et al. 2010). But it is noted that 

abdominal images segmentation is complex and challenging 

task due to several reasons contributed by high similarities in 

the gray levels among different structures, the surrounding 

soft tissues as well as inhomogeneity in shape and texture of 

the same structure in different image slices (Ding, Leow et al. 

2005). 

This paper addresses the challenges in improving the level 

of automation and reducing processing time while improving 

the accuracy of the segmentation. This paper concentrates on 

adapting the medical knowledge to automate the 

segmentation of abdominal structures (liver, spleen, left 

kidney and right kidney) in CT scan using active contour 

segmentation methods.  

Establishing an explicit framework that models the relation 

among various sources of medical knowledge is a necessity. 

It will facilitate integration and reuse of valuable medical 

knowledge in guiding segmentation techniques. Furthermore, 

it will serve as an automated system for segmenting medical 

images that will in turn help the medical practitioners 

enormously. This paper proposes a framework called the 



 International Journal of Intelligent Information Systems 2016; 5(1): 5-16 7 

 

knowledge-based segmentation framework to address this 

need. 

The proposed segmentation system is generic, and 

employs multiple sources of medical knowledge: medical 

atlas; expert’s rules; image features; multiple view CT dataset 

(axial, coronal and sagittal) and DICOM image Meta data. 

This proposed segmentation system introduces several ideas 

to overcome the challenges of segmenting abdominal 

structures automatically. These challenges are: localizing the 

desired abdominal structure, initializing and propagating the 

contour curve in all abdominal structure slices, localizing 

discontinuity regions in liver and initializing contour curve 

on them. 

3. Knowledge Representation 

 

Figure 1. Knowledge-based framework of the proposed segmentation 

system. 

The architecture of the proposed system shown in Figure 1 

consists of five knowledge components. The semantic 

domain consists of multiple sources of knowledge namely: 

medical atlas, experts’ rules, user information and DICOM 

metadata. Image space contains input CT dataset slices and 

segmented image during system processing. The Features 

domain contains extracted features from the input image, 

segmented image and medical atlas image. The algorithm 

domain contains feature extraction algorithms, classification 

algorithms and active contour segmentation algorithms. 

Finally result space to save the final segmentation results of 

the segmented structure. Also, the system consists of nine 

system processes which are: finding the most similar slice, 

elastic registration, rib bones extractions, initialization, 

propagation and initialization, feature extraction, multiple 

lobes localization, contours generation and segmentation. 

The arrows in Figure 1 show the interaction between 

knowledge components that are represented in rectangles and 

knowledge processes that are represented in oval shapes. The 

following section describes these components. 

3.1. Knowledge Components 

The proposed system consists of five knowledge 

components namely, image space, algorithm domain, feature 

domain, semantic domain and result space. 

3.1.1. Semantic Domain 

This domain represents the semantic feature (high level 

feature) of human anatomy from several knowledge sources 

listed below: 

� Medical atlas: A medical atlas is a representation of 

anatomical information primarily through annotated 

images and is intended to serve radiologists and other 

physicians. The primary concern for this paper is an 

annotated atlas which consists of two files: the 

annotated slice for abdominal region and the XML file. 

There are many available annotated medical atlases that 

can be used such as the radiology anatomy atlas 

(Hancock and Kittler 1990; RadiologyAnatomyAtlas 

2010). Figure 2 shows an example atlas image taken 

from the Radiology anatomy atlas. 

 

Figure 2. Radiology anatomy atlas. (RadiologyAnatomyAtlas 2010). 

There are also many available software that can be used to 

generate simple annotated atlas images such as AnnoteImage 

software (SIG 2010). Figure 3 shows a snapshot of 

annotating image by AnnoteImage software. 

An annotated image is an image that is described by words 

representing a brief description of the image contents. The 

words are assigned to image contents using arrows. The word 

descriptions and arrow locations are saved as a metadata file 

in a machine readable XML format associated with the image 
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file (Jia and Wang 2008). In this paper a typical image is 

chosen as the atlas image from one of the available CT 

datasets and is annotated using AnnoteImage software (SIG 

2010). Figure 4 shows an example of the annotated image. 

 

Figure 3. AnnoteImage software. (SIG 2010). 

 

Figure 4. Annotated atlas image. 

� Medical experts’ rules: These are representations of 

medical expert knowledge related to the abdominal 

anatomies in the human body. Experts’ rules are 

necessary to guide the segmentation of abdominal 

structures. This may help in narrowing down the search 

space and sustaining in reduced processing time. In 

addition it probably improves the performance as a 

result of the injection of additional knowledge into the 

process. For each target anatomy, a set of rules is used 

taking into account recommendations from experts as 

well as low level image observations. Some examples 

of the rules or previous anatomical knowledge about the 

liver that the system can get benefitted from are: liver 

structure is located inside the rib bones; liver lobes are 

mainly located in the right part of the abdomen; liver is 

a continuous 3D object etc. 

� DICOM metadata: Digital Imaging and 

Communications in Medicine (DICOM) is a standard 

for handling, storing, printing, and transmitting 

information in medical imaging. A DICOM image 

contains modality image and DICOM metadata. 

DICOM metadata consists of image header parameters 

such as patient name, age, modality information, image 

attributes such as slice thickness, slice spacing, pixel 

spacing and resolution (rows and columns) (Kallman, 

Halsius et al. 2008). The proposed system makes use of 

the slice spacing and the pixel resolution (rows, 

columns) information to guide the active contour 

segmentation methods for the abdominal structures.  

� User input: it will be the selection of target structure in 

input dataset based on its name and it is the only user 

interaction in this system. 

3.1.2. Image Space 

Image space is the data storage (database) of datasets that 

need to be segmented to get specific abdominal human 

anatomy. Input datasets provide the system with important 

knowledge which can be used in guided segmentation through 

multiple views of abdominal CT dataset (axial, sagittal and 

coronal) as in Figure 5. The intersection between these views 

can be used as an important knowledge source in guiding 

active contour segmentation. Coronal or sagittal view of the 

abdominal anatomy helps to define the starting and ending 

axial slice of the target structure. Image space also contains a 

segmented image which temporarily stores the result of the 

processing operations in the input image such as registration, 

initialization, propagation and segmentation processes. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 5. (a) Axial; (b) Coronal; (c) Sagittal; (d) All; views of abdominal 

dataset. 

3.1.3. Algorithm Domain 

The algorithm domain in the proposed system contains 

various algorithms used in this system. These algorithms can 

be classified into three categories. The first category 

comprises of active contour segmentation algorithms used in 

the medical domain such as (Chan and Vese 2001; Pan and 

Dawant 2001; Chunming, Chenyang et al. 2005; Lee, Kim et 

al. 2007; Lankton and Tannenbaum 2008). The second 

category contains feature extraction algorithms: Haralick 

texture features, gray level co-occurrence matrix (GLCM) 

(Haralick 1973) and scale-invariant feature transform (SIFT) 

(Lowe 2004). The third category includes classification 

algorithms: Principal Component Analysis (PCA) 

implemented in (Kroon, Oort et al. 2008). 

3.1.4. Feature Domain 

Temporary data storage is used to store the extracted 

features of abdominal structures from CT dataset slices and 

segmented images as well as the extracted features of 

abdominal anatomies in the medical atlas image. This system 

uses two types of texture features to guide the active contour 

segmentation algorithms. The first type comprises Haralick 

texture features (GLCM) (Haralick 1973) used with PCA 

classifier to detect multi lobes in some abdominal structures 

like the liver. The second type contains scale-invariant 

feature transform (SIFT) (Lowe 2004) used to find the most 

similar slice in CT abdominal dataset with the annotated atlas 

slice. 

3.1.5. Result Space 

The final output of this system is the 3D construction of 

abdominal structure in all 2D slices in CT dataset saved in 

result space. 

3.2. System Processes 

The system processes are the processes used in the 

proposed knowledge-based system: 

A. Segmentation: This process uses the active contour 

segmentation method to isolate target abdominal 

structure in CT dataset. 

B. Feature extraction: A process used to extract the texture 

features from CT dataset slices, segmented images and 

atlas image. These features (SIFT and GLCM) are used 

in this system as a knowledge source to guide the active 

contour method. 

C. Finding most similar slice: A process used to find the 

most similar slice in CT dataset to the annotated atlas 

2D image. In other words, it can be called automatic 

structure localization. 

D. Elastic registration: This is a process to assist in 

transferring an initial point within the anatomy of 

interest from the atlas image to the same anatomical 

region within the target slice. 

E. Rib bone extractions: A process to extract rib bones and 

remove muscle tissues between those rib bones to avoid 

the similarity in intensity between abdominal structure 

and the muscles during the active contour segmentation. 

F. Initialization: Process used to initialize the initial 

contour curve of active contour method inside the target 

anatomy in the most similar slice to atlas image based 

on the location of initial point (x, y) taken from XML 

file of the atlas image.  

G. Propagation and initialization: A process used to 

automatically propagate the initialization of the contour 

curve of the active contour segmentation method to all 

CT dataset slices belonging to the target anatomy. The 

multiple CT dataset views axial, sagittal and coronal are 

used as a source of 3D shape knowledge anatomy in 

this process. 

H. Lobes localization: This process utilizes GLCM texture 

features of specific abdominal anatomy that has 

multiple lobes to locate the regions of these lobes with 

the assistance of expert rules. 

I. Contour generation: A process which generates the 

initial contour curve inside the detected lobe region. 

The system can be extended to segment additional 

anatomical structures by adding a new knowledge source 

such as new annotated atlases, build new experts rules, 

semantic networks etc. Also, the system’s architecture allows 

other algorithms “plugged-in" to the system such as another 

active contour method “plugged-in" to the segmentation 

algorithm domain, another classification method “plugged-

in" to classification algorithm domain etc. In addition, new 

feature can be used in the features domain. With appropriate 

extensions, the knowledge framework can be extended to 

other modalities. 

4. Methodology 

As an initial step, the system builds the static knowledge 

source references (which can be used for any CT dataset) 

namely: the annotated atlas image, experts’ rules. Medical 

annotated atlas images represent the abdominal anatomies in 

the abdominal part of the human body. The atlas images is 

built as follows: For each abdominal anatomy one slice is 

chosen from normal CT dataset which approximately 

corresponds to the largest cross-section, which is usually the 

middle slice with regard to the upper most and lower most 

slices of the abdominal structure. In choosing this slice it is 

ensured that the selected anatomy is contained in a single 

connected region. The chosen anatomy is annotated by 

pointing to its mid position. The study uses available 
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software such as AnnoteImage software (SIG 2010) for the 

annotation task. The Annotated atlas image consists of the 

image and an XML file that contains the name of the 

anatomy and the annotated points.  

Experts’ rules are a set of rules developed by 

recommendations from experts in radiology. Normally, the 

radiologist performs manual segmentation of the anatomy 

based on their anatomical facts. The system uses these facts 

as a set of rules to guide the automatic active contour 

segmentation. The rules that are adapted in the proposed 

system for liver anatomy are based on previous anatomical 

knowledge, such as: “liver structure located inside the rib 

bones”, “liver lobes are mainly located in the right part of the 

abdomen”, “Liver is a continuous 3D object”. The rules for 

spleen structure are: “spleen is located inside the rib bones”, 

“in the left part of the abdomen” and “it is a continuous 3D 

object”. The rules for kidney structure are: “kidney occupies 

two parts one located in the right side of the abdomen and the 

other in the left side”, and “it is a continuous 3D object”. 

 

Figure 6. The proposed system flow. 

The algorithm domain consider as a source of knowledge 

of the used algorithms in the system. Texture features 

algorithms which are SIFT and GLCM, classification 

algorithm is PCA and segmentation algorithm is active 

contour segmentation. Other source of knowledge that may 

be considered as a temporary source is for every new dataset 

CT scan has its own multiple views (axial, coronal and 

sagittal) and its own DICOM metadata information. 

The work flow of the system is shown in Figure 6. As has 

been mentioned earlier, this knowledge system is suitable for 

abdominal CT scan datasets. When the system reads the new 

dataset, it fetches the meta-data (DICOM header file) to get 

the necessary information used by it. After that the user 

selects the name of the target abdominal structure from a list 

of structure names. The system automatically chooses the 

suitable annotated atlas image related to the selected 

anatomy. For example, if the user selects the liver structure, 

the system will choose the annotated atlas image for liver. 

Next the system matches the name of the selected anatomy 

and the names of anatomies in the annotated atlas image 

through XML file to get (x, y) location for the target 

anatomy. The proposed system is divided to three main 

modules: Abdominal structure localization, contour curve 

propagation and multiple lobes detection. 

5. Results and Discussions 

Most authors in the literature employed their own private 

datasets to evaluate their methods. An objective comparison 

among different segmentation methods would not be accurate 

and fair, due to the shortage of a common dataset with its 

ground truth, and a unique performance criterion between the 

segmentation methods and the manual segmentation of each 

abdominal structure (Campadelli, Casiraghi et al. 2009; 

Abdel-massieh, Hadhoud et al. 2010). Eight abdominal 

structures (five livers, one spleen, one right kidney and one 

left kidney) are extracted in this paper from six CT datasets, 

more details in the following subsections. 

5.1. Abdominal Datasets 

One of the main focuses of this paper is to segment the 

liver structure automatically from abdominal CT datasets. In 

a typical CT scan of the abdomen in axial view, liver starts as 

a single object and grows until reaching a maximum size, 

then gets smaller, divides into separate lobes and finally 

disappears. It is worth mentioning that the liver is considered 

the most difficult human anatomy to be segmented 

automatically (Ibrahim, Petrou et al. 2010). 

This paper uses a 3D ground truth for the datasets provided 

for liver, namely, the “MICCAI2007 grand challenge-

Segmentation of the Liver” workshop (MICCAI 2007). This 

grand challenge was established to compare between liver 

segmentation methods as 3D segmented result. The 

evaluation criteria used in this challenge is suitable for 3D 

segmentation. 

The proposed system tested on five contrasts enhanced CT 

datasets in the database of the liver segmentation grand 
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challenge (http://sliver07.isi.uu.nl/, accessed: October 2010). 

These datasets have pixel resolution varying between 0.55 

and 0.8mm; inter slice distance ranging from 1 to 3mm, with 

each axial slice having 512 X 512 pixels. The datasets in 

DICOM format with gray level in the range [-1024, +3071], 

are related to the Hounsfield units (HU). Gold standard is 

created by experts through an interactive tool by using the 

intensity-based seeded region grower followed by drawing 

freehand boundaries in case of inaccurate delineation. The 

available datasets used from this challenge namely Liver1, 

Liver3, Liver4, Liver5 and Liver6; each dataset consists of 

183, 79, 212, 319 and 111slices respectively. 

For other abdominal structures, the spleen, right kidney 

and left kidney, there is no available ground truth. The 

proposed system tested on the contrast enhanced CT dataset 

in the database of the Osirix medical software 

(http://www.osirix-viewer.com/, accessed: October 2010). 

Each axial slice has 512 X 512 pixels in this dataset. This 

dataset was used to extract spleen, left kidney and right 

kidney while Gold standard is created through an interactive 

tool, this dataset consists of 120 slices. Table 1 provides 

information about abdominal structures datasets. 

Table 1. Abdominal structures datasets. 

Abdominal structure name Abdominal dataset name Dataset source Number of slices Range of abdominal structure slices 

liver Liver1 MICCAI2007 183 62-163 

liver Liver3 MICCAI2007 79 14-70 

liver Liver4 MICCAI2007 212 57-196 

liver Liver5 MICCAI2007 319 110-272 

liver Liver6 MICCAI2007 111 20-92 

spleen Spleen Osirix 120 46-118 

right kidney Right Kidney Osirix 120 7-86 

left kidney Left Kidney Osirix 120 20-104 

 

5.2. Evaluation of Constructed 3D Volume 

3D volume is constructed from 2D segmentation results 

for each abdominal structure. The evaluation of this 3D 

constructed volume is evaluated using quantitative measures 

for 3D segmentation. In this work, we use six metrics for 

evaluating 3D segmentation results. Of these, five metrics are 

those suggested in the MICCAI2007 liver challenge namely 

volumetric overlap error, relative volume difference, average 

symmetric surface distance, symmetric root mean square 

(RMS) surface distance and Maximum symmetric surface 

distance (Ginneken, Heimann et al. 2007). The sixth is the 

criterion volume measurement error (Nakayama, Li et al. 

2006). In the following explanation of these criterions, the 

segmentation result is termed AS and the gold standard is 

termed GT. S(AS) and S(GT) represent the set of surface 

voxels of A and B respectively:  

1) Volumetric overlap error (VOE).  

Volumetric overlap represents the number of voxels in the 

intersection of the 3D segmentation result and the 3D gold 

standard, divided by the number of voxels in the union of the 

3D segmentation result and the 3D gold standard. This 

criterion is similar to Jaccard coefficient in 2D where the 

value of volumetric overlap is subtracted from 1 to get the 

volumetric overlap error as in equation (1). This is a perfect 

segmentation if this value is equal to 0. This value is equal to 

1 if there is no overlap at all between the segmentation 

results and the gold standard. The value is multiplied by 100 

to represent it in percent. 

��� =  100 �1 − |��∩��|
|��∪ ��|�                                (1) 

2) Relative volume difference (RVD). 

The total volume of the 3D segmentation is divided by the 

total volume of the gold standard. From this number, 1 is 

subtracted, the absolute value is taken, and the result is 

multiplied by 100 as in equation (2). The value is given in 

millimeters; the perfect segmentation is 0 and larger than 

zero otherwise. Note that the perfect value of 0 can also be 

obtained for a non-perfect segmentation as long as the 

volume of that segmentation is equal to the volume of the 

gold standard. 

��� =  100 � |��|
| ��| − 1�                            (2) 

3) Average symmetric surface distance (ASSD).  

The border voxels of the 3D segmentation result and the 

3D gold standard are determined. These are defined as those 

voxels in the objects that have at least one neighbour (from 

the 26 nearest neighbours) that does not belong to the object. 

For each voxel in these sets, the closest voxel in which set is 

determined (using Euclidean distance and real world 

distances, taking into account the generally different 

resolutions in the different scan directions). All these 

distances are stored for border voxels from both 3D gold 

standard and 3D segmentation result. The average of all these 

distances gives the average symmetric absolute surface 

distance. The value is given in millimeters and the perfect 

segmentation is 0. 

�(�, �(��)) =  ������∈�(��) � − !��                (3) 

Where  .   denotes the Euclidean distance. The Average 

symmetric surface distance (ASSD) is obtained using 

equation (4). 

����(��, #$) = %
|�(��)|&|�(��)| '∑ �(!��, �(#$))���∈�(��) + ∑ �(!#$, �(��))���∈�(��) *                               (4) 

Symmetric root means square surface distance (SRMSSD). 
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This measure is similar to the previous measure, but stores the squared distances between the two sets of border voxels. 

After averaging the squared values, the root is extracted and the SRMSSD is obtained as in equation (5). This value is 0 for a 

perfect segmentation. 

��+���(��, #$)  =  , %
|�(��)|&|�(��)|  ×  ,'∑ �.(!��, �(#$))���∈�(��) + ∑ �.(!#$, �(��))���∈�(��) *       (5)

4) Maximum symmetric surface distance (MSSD).  

This measure is similar to the previous two, but only the maximum of all voxel distances is taken instead of the average as in 

equation (6). The value is given in millimeters and the perfect segmentation is 0. 

+���(��, #$)  =  �/01�/0���∈�(��) �(!��, �(#$)), �/0���∈�(��) �(!#$, �(��))2                             (6) 

5) Volume measurement error  

This measure is used to compare both volumes: automatic 

segmented volume and manual segmented volume. To obtain 

the structure volume, the structure segmented area in each 

slice is calculated by counting the number of pixels in this 

area and then having it multiplied by pixel spacing. These 

areas are summed up and multiplied by slice thickness 

yielding the total volume. Then, volume measurement error 

is calculated based on equation (7). 

Volume measurement error = 3456789:;<=>:<?@
456789>:A;:B

 − 1C  ×100%  (7) 

The scoring system suggested in MICCAI2007 challenge 

is used to evaluate the proposed system. The reference values 

given by an independent user observer that yield scores of 75 

for the liver segmentation are shown in Table 2. Using this 

scoring system, the score more than or equal to 75 points for 

a segmented liver are considered equivalent to performance 

by the manual segmentation (Ginneken, Heimann et al. 

2007). Therefore, a score below 75 points may still 

considered very good (Ginneken, Heimann et al. 2007). 

Table 2. Reference values for scoring system of liver segmentation (MICCAI 

2007). 

Performance criterion Value Score 

Volumetric overlap error (VOE) [%] 6.4 75 

Relative volume difference (RVD) [%] 4.7 75 

Average symmetric surface distance (ASSD) [mm] 1.0 75 

Symmetric root mean square surface distance 

(SRMSSD) [mm] 
1.8 75 

Maximum symmetric surface distance (MSSD) [mm] 19 75 

The results of segmenting the five Liver datasets by the 

proposed system are compared with the results obtained 

using other methods established in MICCAI2007 challenge. 

These results are presented in Figure 7, Tables 3, 4 and 5. 

Note that the comparison is limited to methods proposed in 

(Tibamoso and Rueda 2007) and (Slagmolen, Elen et al. 

2007) as no published results are available for the other 

methods. 

The method in (Tibamoso and Rueda 2007) is considered 

to be a semi-automatic segmentation method that isolate the 

3D liver volume from CT datasets. It is based on shape 

modeling followed by discrete deformable surfaces. A shape 

model of the liver is formulated and manually initialized in 

the target liver dataset as an initial surface for 3D deformable 

surface function. The 3D deformable surface is guided by 

intensity and edges attributes. In the semi-automatic method 

proposed in (Slagmolen, Elen et al. 2007), 20 training liver 

datasets, segmented manually, are used to build an atlas via 

non-rigid registration. Then, non-rigid registration is utilized 

again to register the atlas with the volume of interest in target 

dataset. As show in table 3 the segmentation score by the 

proposed system is 62%. The score registered by (Tibamoso 

and Rueda 2007) method is 69% as in table 4. The score 

registered by (Slagmolen, Elen et al. 2007) method is 59% as 

in table 5. From this, it may conclude that the proposed 

system is comparable to other methods by taking into 

account that the proposed work is an automatic whereas the 

other methods are semi-automatic methods. The proposed 

also system does not make explicit use of training data. 

Furthermore, as been mentioned earlier the performance of 

the proposed system is not only depends upon the proposed 

method but also on the level set active contour algorithm 

being utilized. In other word, a more efficient active contour 

algorithm may exhibit better segmentation results. 

Table 3. 3D performance measurements for liver segmentation by the proposed system. 

Dataset Name VOE [%] RVD [%] ASSD [mm] SRMSSD [mm] MSSD [mm] Total Score 

Liver1 9 5.5 1.8 3.6 40.4 57.6 

Liver3 7.2 4.1 1.2 3.3 22.2 68.8 

Liver4 8.8 2.6 1.8 3.5 34.9 61.6 

Liver5 7.7 6.2 1.1 3.7 26.4 65.2 

Liver6 8.7 6.5 2 3.8 26.4 57.8 

Average      62 
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Table 4. 3D performance measurements for liver segmentation by (Tibamoso and Rueda 2007). 

Dataset Name VOE [%] RVD [%] ASSD [mm] SRMSSD [mm] MSSD [mm] Total Score 

Liver1 10.7 5.8 2 4.5 33.4 54 

Liver3 6.2 3.8 1 2.8 22.1 73 

Liver4 4.3 2.8 0.5 1.1 12.5 85 

Liver5 7.8 6 0.9 2.3 16.9 72 

Liver6 7.8 4.2 1.4 3.9 34.3 62 

Average      69 

Table 5. 3D performance measurements for liver segmentation by (Slagmolen, Elen et al. 2007). 

Dataset Name VOE [%] RVD [%] ASSD [mm] SRMSSD [mm] MSSD [mm] Total Score 

Liver1 9.71 1.53 1.84 3.69 35.5 61 

Liver3 5.68 1.04 1 2 24.23 77 

Liver4 8.41 6.24 1.82 5.18 70.08 47 

Liver5 7.56 5.44 1.16 3.22 34.81 63 

Liver6 10.44 8.05 2.26 5.01 44.79 47 

Average      59 

Table 6. Volume measurements of automatic and manual segmentations. 

Dataset Name Volume Of Automatic Segmentation [ml] Volume Of Manual Segmentation [ml] Volume Measurement Error (%) 

Liver1 2527.3 2386.4 5.9 

Liver3 1346.4 1212.2 11.1 

Liver4 3020.9 2944.4 2.6 

Liver5 3919.6 3613.6 8.4 

Liver6 1505.1 1374.7 9.4 

Spleen 329 304 8 

Left Kidney 293 276 6 

Right Kidney 245 233 5 

Average   7.0 

 

 

Figure 7. Comparison of 3D performance results. 

The sixth criterion used to evaluate 3D results is the 

volume measurements error. Comparisons of volume 

measurements error provided by manual and automatic 

segmentations for five liver datasets, spleen, left kidney and 

right kidney are shown in Table 6 with an average error of 

7.0%. 

5.3. Performance of Processing Time 

The farther initialization of contour curve is from final 

desired boundary, the more computation time is required for 

contour curve to reach final position. Hence, if the contour 

curve starts in the exact place which is near to the abdominal 

structure boundary, the time needed for segmentation can be 

drastically reduced. Thus, utilization of knowledge, 

especially on the location of abdominal structures plays an 

important role in the context of this work. 

One of the major strength of the proposed system is the 

speed up of the segmentation process. The processing time is 

referred to as the time required completing level-set active 

contour segmentation for all slices that represents abdominal 

structure in the datasets.  

Time efficiency is calculated based on equation (8) 

between semi-automatic and the proposed automatic 

segmentation for the level set active contour method: 

Time efficiency = 3DEFE GDFE 
DEFE C  ×100%                (8) 

where, TSAS is time required for semi-automatic 

segmentation which represent the user interactions and TAS 

is time required for automatic segmentation.  

For the purpose of experimentation of processing time of 

semi-automatic segmentation, a subset of slices for each 

abdominal structure (five livers, spleen, right kidney and lift 

kidney) was selected using systematic random sampling. The 

random sampling is computed by selecting slices with an 

interval of 10 slices starting from the bottommost slice until 

topmost slice to ensure representation from all locations of an 

abdominal structure. For each of the slice, the computation 

time is referred to the time taken from the initialization of the 

contour curve in the slice until completion of the 

segmentation. Then the whole processing time of the dataset 

is calculated by taking an average time of the chosen subset 

slices, multiplied by the total number of slices in the whole 

abdominal structure. Whereas, the time of automatic 

segmentation (the proposed system) is calculated taking into 
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account all the processes used in the proposed system 

including: SIFT feature extractions, finding closest slice, 

registration, rib bone extraction, initial slice segmentation, 

coronal view segmentation, multiple regions localization, and 

segmentation of all axial slices.  

Table 7 represents the processing time obtained for both 

semi-automatic segmentation and automatic segmentation 

given by the proposed system. It is noticed that time 

efficiency by the proposed system increases with the increase 

of segmented slices being used. The time efficiency shown is 

an average of 68%. The semi-automatic method takes longer 

processing time as compared to automatic system, because it 

requires manual initialization of contour curve in each slice 

of the dataset.  

Table 7. Time performance of automatic and semi-automatic segmentations. 

Dataset name Number of structure slices Time of automatic segmentation [s] Time of semi-automatic segmentation [s] Time efficiency (%) 

Liver1 102 5157 7935 35 

Liver3 57 1331 2665 50 

Liver4 140 5870 20210 71 

Liver5 163 9591 59546 84 

Liver6 73 989 3282 70 

Spleen 74 1644 10205 84 

Left Kidney 85 833 3230 74 

Right Kidney 81 684 2608 73 

Average    68 

 

6. Conclusion 

In this paper, the framework for knowledge guided 

medical image segmentation is presented. It offers flow to 

guide medical image segmentation active contour methods 

by managing between various sources of medical knowledge. 

And it could be the foundation of building a novel and 

flexible framework of segmenting medical images. 

There are three key points that make this work is unique, 

which are: 1) automating and speeding active contour 

segmentation algorithms. 2) Involving and integrating 

between the semantic knowledge and image knowledge. 3) 

Minimizing the human interactions in medical image 

segmentation. It could be concluded based on the results of 

this study that the proposed method can handle the 

dissimilarity in intensity and shape between different 

datasets, produce better results in abdominal CT scans and 

minimize processing time of the semi-automatic 

segmentation method. 
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