

International Journal of Intelligent Information Systems
2016; 5(2): 25-36
http://www.sciencepublishinggroup.com/j/ijiis
doi: 10.11648/j.ijiis.20160502.11
ISSN: 2328-7675 (Print); ISSN: 2328-7683 (Online)

Bread Shrimp Microbe Growth Simulation and Prediction
System Based on Neural Network

Xiao Laisheng
1
, Zheng Yuandan

2

1Educational Information Center, Guangdong Ocean University, Zhanjiang, China
2Information College, Guangdong Ocean University, Zhanjiang, China

Email address:
xiaolaisheng@163.com (Xiao Laisheng)

To cite this article:
Xiao Laisheng, Zheng Yuandan. Bread Shrimp Microbe Growth Simulation and Prediction System Based on Neural Network. International

Journal of Intelligent Information Systems. Vol. 5, No. 2, 2016, pp. 25-36. doi: 10.11648/j.ijiis.20160502.11

Received: January 22, 2016; Accepted: February 3, 2016; Published: March 12, 2016

Abstract: According to the requirements of a scientific research project, a set of bread shrimp microbial growth simulation and
prediction system is designed and implemented in detail. The system is established by taking vibrio parahemolyticus in bread
shrimp as research objects, according to effects of temperature, salt and time on their growth, and employing neural network
technology. In order to improve its compatibility, the system is developed by using C# on Visual Studio 2008 platform, and its
design and implementation are based on AForge.NET framework and sliding-window modeling method. The system consists of
three parts: data management, data simulation and data prediction, which would provide an effective analytical tool for bread
shrimp safe production. After tested carefully, the system can meet the requirements of the project design.

Keywords: Neural Network, AForge.NET, Simulation and Prediction System, Microbial Growth, Bread Shrimp

1. Introduction

Intelligent simulation and prediction for microbial growth
refers to that under the premise of without microbial detection
and analysis and according to the characteristic data of the
food microbe in different processing, storage and circulation,
the dynamic changes of the growth and survival of main
pathogenic bacteria and spoilage bacteria in food is going to
be determined by processing with computers, thus the quality
and safety of food can be evaluated and predicted quickly.
According to the existing limited experimental data, using
neural network prediction algorithm, and through intelligent
simulation and prediction neural network-based microbial
growth simulation and prediction system can provide more
data than one that come from real experiments, which could
provide reference data for safe food production.

According to the requirements of a research project, sub
project of National Science and Technology Support Program
of China: Key Integrated and Demonstrated Technologies for
Quality and Safety Control in Aquatic Product Processing
Process (No. 2012BAD29B06), the authors of this paper have
developed a set of bread shrimp microbial growth simulation
and prediction system. The system is established by taking

vibrio parahemolyticus in bread shrimp as research objects,
according to effects of temperature, salt and time on their
growth, and employing neural network technology. The
system consists of three parts: data management, data
simulation and data prediction, which would provide an
effective analytical tool for bread shrimp safe production.

In order to improve its compatibility, the system is
developed by using C# on Visual Studio 2008 platform, and its
design and implementation are based on AForge.NET
framework and sliding-window modeling method. Through
intelligent simulation and prediction in the system, users can
predict vibrio parahemolyticus growth and survival data in
various conditions only providing a limited number of
experimental vibrio parahemolyticus growth and survival data
in the conditions. By this way, users do not need to perform
experiments in each condition, greatly reducing the number of
experiments and saving experimental time and costs.

2. Related Work

Food simulation and prediction microbiology is a new
science based on the subjects such as microbiology,
mathematics, statistics and computer applications, which
needs the research foundation that a series of models that can

26 Xiao Laisheng and Zheng Yuandan: Bread Shrimp Microbe Growth Simulation and Prediction System Based on Neural Network

be able to describe and predict microbial growth and survival
in specific conditions should be designed. The core of food
microbe simulation technology is to form mathematical
models, through which the rules of growth, live and death of
microbe can be described [1-2].

Up to now, domestic scholars have done a lot of research for
microbial growth simulation modeling [3-7]. In their work, all
of the models including level-one, level-two and level-three
models described microbial growth with mathematical
equations, such as level-one model with linear model, Logistic
model, Gompertz model, Baranyi & Roberts model etc, level
model with square root model, Al Leave equation etc. In
recent years overseas scholars have also done a lot of research
for microbial growth simulation modeling [8-15], but they
only put emphasis on mathematical modeling too. As
imagined, microbial growth is a dynamic and continuous
process, it is difficult to use single mathematical equation to
simulate. Artificial neural network is a network constructed
manually to simulate human brain function, absorbing some
advantages of biological nerve, such as high parallelism,
non-linear global role, good fault-tolerance and associative
memory function, and very strong self adaptive and self
learning ability. Therefore, neural network has very
outstanding qualities of adaptive learning, parallel computing,
distributing storage, associative memory. Theory has proved
that neural network can approach any continuous real function
with arbitrary precision. Hence, it is feasible to take neural
network to simulate microbial growth process.

Just for that reason, scholars over the world have carried out
a great deal of research on the aspect of applying neural
network to microbial growth simulation [16-23]. From these
related research literatures, we can know that the application
of neural network applied to microbial growth was also
carried out a more extensive research, and a good simulation
effect was achieved too. But so far, applying neural network to
simulate and predict growth for vibrio parahemolyticus in
bread shrimp is still not reported. Moreover, in [24] one author
of the paper tried to develop a universal platform for microbial
growth simulation modeling with VC++ and MATLAB, but

its compatibility is not good. In the light of such reasons, in
order to meet the requirement of the research project (No.
2012BAD29B06) and to improve the compatibility of system,
in this paper we have developed an intelligent simulation and
prediction system for bread shrimp microbial growth by using
C# on Visual Studio 2008 platform, and its design and
implementation are based on AForge.NET framework and
sliding-window modeling method.

3. AForge.NET

AForge.NET is an open source C# framework designed for
developers and researchers in the fields of computer vision
and artificial intelligence - image processing, neural networks,
genetic algorithms, fuzzy logic, machine learning, robotics,
etc.

The framework is comprised by the set of libraries and
sample applications, which demonstrate their features.
Typically, AForge.NET is comprised of a series of
components, such as AForge.Imaging, AForge.Vision,
AForge.Video, AForge.Neuro, AForge. Genetic,
AForge.Fuzzy, AForge.Robotics, AForge.MachineLearning,
etc. AForge.Imaging is a library with image processing
routines and filters; AForge.Vision is a computer vision
library; AForge.Video is a set of libraries for video processing;
AForge.Neuro is a neural networks computation library;
AForge.Genetic is an evolution programming library;
AForge.Fuzzy is a fuzzy computations library;
AForge.Robotics is a library providing support of some
robotics kits; AForge.MachineLearning is a machine learning
library. The framework is provided not only with different
libraries and their sources, but with many sample applications,
which demonstrate the use of this framework, and with
documentation help files, which are provided in HTML Help
format. The documentation is also available on-line. [25]

When a neural network-based system is developed, a neural
networks computation library, AForge.Neuro, should be used.
The C# library on AForge.Neuro contains six main entities
shown in Figure 1.

Figure 1. Six main entities in C# library on AForge.Neuro.

 International Journal of Intelligent Information Systems 2016; 5(2): 25-36 27

From Figure 1, we can see that there are six main entities in
C# library on AForge.Neuro, namely, Neuron, Layer, Network,
IActivationFunction, ISupervisedLearning,
IUnsupervisedLearning. Neural network is made of a
collection of neurons, in which each neuron is described by
Neuron. Neuron is a base abstract class for all neurons, which
encapsulates such common entities like a neuron's weight,
output value, and input value. Other neuron classes inherit
from the base class to extend it with additional properties and
specialize it. Neural network is also made of some layers, in
which each layer is described by Layer. Layer represents a
collection of neurons. This is a base abstract class, which
encapsulates common functionality for all neuron's layers. A
network consists of a collection of neuron’s layers, which is
described be Network, what is a base abstract class, which
provides common functionality of a generic neural network.
To implement a specific neural network, it is required to
inherit the class, extending it with specific functionalities of
any neural network architecture. IActivationFunction is an
activation function's interface. Activation functions are used
in activation neurons - the type of neuron, where the weighted
sum of its inputs is calculated and then the value is passed as
input to the activation function, and the output value becomes
the output value of the neuron. ISupervisedLearning is an
interface for supervised learning algorithms - the type of
learning algorithms where a system is provided with sample
inputs, with desired output values during the learning phase.
The aim of the system is to generalize learning data, and learn
to provide the correct output value when it is presented with
the input value only. IUnsupervisedLearning is an interface for
unsupervised learning algorithms - the type of learning
algorithms where a system is provided with sample inputs
only during the learning phase, but not with the desired
outputs. The aim of the system is to organize itself in such a
way to find correlation and similarities between data samples.

The C# library on AForge.Neuro provides the following
two types of neural network architectures: Activation Network
and Distance Network. In engineering practice, we can select
one of the two types of neural network architectures, but how
to make a choice depends on concrete problems. Activation
Network is commonly used neural network where each neuron
computes its output as the activation function's output, and the
argument is a weighted sum of its inputs combined with the
threshold value. The network may consist of a single layer, or
of multiple layers. Trained with supervised learning
algorithms, the network allows to solve such tasks as
approximation, prediction, classification, and recognition.
Another neural network is Distance Network where each
neuron computes its output as a distance between its weight
values and input values. The network consists of a single layer,
and may be used as a base for such networks like Kohonen
Self Organizing Map, Elastic Network, and Hamming
Network.

The C# library on AForge.Neuro also provides abundant
learning algorithms, which could be used to train different
neural networks and to solve different problems. Primary

learning algorithms include Back Propagation Learning,
Perceptron Learning, SOM Learning, Delta Rule Learning,
Elastic Network Learning. Back Propagation Learning is one
of the most popular, known and commonly used algorithms
for multi-layer neural network learning. Because the
algorithm is able to train multi-layer neural networks, the
range of its applications is very great, and includes such tasks
as approximation, prediction, object recognition, etc.
Perceptron Learning could be used with a one-layer activation
network, where each neuron has a threshold activation
function. SOM Learning treats neural network as a 2D map of
nodes, where each node may represent a separate class. The
algorithm organizes a network in such a way, that it becomes
possible to find the correlation and similarities between data
samples. Delta Rule Learning utilizes the activation function's
derivative, and may be applicable to single-layer activation
networks only, where each neuron has a continuous activation
function instead of a threshold activation function. The most
popular continuous activation function is the unipolar and
bipolar sigmoid function. Elastic Network Learning is similar
to the idea of the SOM learning algorithm, but it treats
network neurons not as a 2D map of nodes, but as a ring.
During the learning procedure, the ring gets some shape,
which represents a solution. [26]

Software design process based on AForge.NET could be
described as follows:

Firstly in order to use the classes and interfaces of AForge.
Neuro to construct and train the neural network model, it is
needed to open VisualStudio2008 software and add the three
dynamic link libraries AForge. Controls. dll, AForge. dll and
AForge. Neuro. dll in its solution manager.

Secondly the activation network or distance network class
should be introduced to instantiate the neural network model
in accordance with the actual requirements. Subsequently, it is
needed to choose a suitable learning algorithm for each model
from the classes of BP Learning, Delta rule Learning,
Perceptron Learning, SOM Learning or Elastic Network
Learning, and set the parameters such as relevant learning rate
and impulse value.

Finally the neural network model can be trained by using
the training data sets generated by sliding-window method. At
the same time, the error curves in the training process can be
drawn onto the Chart control provided by AForge.NET
framework so as to view the data conveniently. When the error
of neural network is less than the preset error or the number of
training is reached, the training process will be stopped [27].

Nowadays, C#-based AForge.NET is widely used in
scientific and engineering research, industry applications,
such as motion video detection, eye-tracking control system,
diagnostics of products, etc. [28-31].

4. Neural Network Sliding-Window

Modeling Method

In general, neural network modeling uses sliding-window

28 Xiao Laisheng and Zheng Yuandan: Bread Shrimp Microbe Growth Simulation and Prediction System Based on Neural Network

method. In order to facilitate computer programming, a neural
network sliding-window modeling method is theoretically
derived in detail by one of the authors of the paper Xiao
Laisheng [32]. Specific method is described as follows.

4.1. Neural Network Architecture for Sliding-Window

Modeling

Figure 2 Shows neural network architecture for
sliding-window modeling.

Figure 2. Neural network architecture for sliding-window modeling.

In Figure 2, assume that M is total number of nodes in
input layer, 1,2, ,i M= ⋯ ; Q is total number of nodes in

hidden layer, 1,2, ,j Q= ⋯ ; N is total number of nodes in

output layer, 1,2, ,k N= ⋯ ; P is total number of input

samples, 1,2, ,p P= ⋯ ; { }p

ix are inputs of network, { }p

ky

are outputs of network, { }p

kd are their corresponding target

outputs; ijω are connection weights between neurons in

input layer and neurons in hidden layers, jkω are connection

weights between neurons in hidden layer and neurons in
output layers; ja is scale parameter and jb is translation

parameter of wavelet. When Sliding-Windows is adopted, U

is sliding-window input parameter, V is sliding-window
output parameter. In this case, input weights of network ijω

are extended equally to the number of ij Uω × , which are

marked as (), 1, 2, ,ij r r Uω = ⋯ , and output weights of network

jkω are extended equally to the number of jk Vω × , which are

marked as (), 1, 2,jk s s Vω = ⋯ .

Then input of jth neuron of wavelet basis can be

expressed as
1

M
p p

j ij i

i

s xω
=

=∑ , its output is ()
p

j jp

j

j

s b
t

a
φ

−
= ,

output of kth level component in output layer is

1

Q
p p

k jk j

j

y tω
=

=∑ , total error function is defined as

2

1 1 1

1 1
()

2

P P N
p p p

k k

p p k

E E d y
P P= = =

= = −∑ ∑∑ .

4.2. Learning Algorithm

When sliding-window is used, the learning algorithm of
wavelet neural network is described as follows.

Step one, Initialize network weights, thresholds, scale and
translation parameters of wavelet function.

Give corresponding initial values for each of the following
parameters: scale parameter ja and translation parameter jb

of the wavelet, weights of the network (), 1, 2, ,ij r r Uω = ⋯

and (), 1, 2,jk s s Vω = ⋯ , learning rate η and momentum

factor λ .
Set sample counter 1p = and number of iterations 1n = ,

and provided maximum number of iterations is N .

Step two, Input learning sample s { }() , 1,2, ,p

ix r r U= ⋯

and corresponding sliding-window desired outputs

{ }1() , 1,2, ,p U

kd s s V
+ − = ⋯ , and calculate outputs of hidden

layer { }p

jt and sliding-window outputs of output layer

{ }1() , 1,2, ,p U

ky s s V
+ − = ⋯ .

Inputs of hidden layer are

1 1

(() ())
M U

p p

j ij i

i r

s r x rω
= =

=∑ ∑ , 1,2, ,j Q= ⋯ (1)

Outputs of hidden layer are

()
p

j jp

j

j

s b
t

a
φ

−
= = 1 1

(() ())
()

M U
p

ij i j

i r

j

r x r b

a

ω
φ = =

−∑ ∑
, 1,2, ,j Q= ⋯ (2)

 International Journal of Intelligent Information Systems 2016; 5(2): 25-36 29

Sliding-window outputs of output layer are

1

1

() ()
Q

p U p

k jk j

j

y s s tω+ −

=

=∑ , 1,2, ,k N= ⋯ . 1,2,s V= ⋯ (3)

In equations (1), (2), and (3), ()p

ix r is input of input layer,
p

js is input of hidden layer, p

jt is output of hidden layer,
1()p U

ky s
+ − is sliding-window output of output layer, ()φ ⋅ is

wavelet basis function.
Step three, Calculate target error and gradient vectors.
Define target error function pE as

1 1 2

1 1

1
(() ())

2

N V
p p U p U

k k

k s

E d s y s+ − + −

= =

= −∑∑ (4)

Where, { }1()p U

kd s
+ − is sliding-window desired outputs of

output layer, 1()p U

ky s
+ − is sliding-window calculated outputs

of output layer.
Energy function gradient respectively are

1

1

()
()

() ()()

pp Up p
jp k

ij p U p

ij ijk j

ty sE E
r

r ry s t
δ

ω ω

+ −

+ −

∂∂∂ ∂= =
∂ ∂∂ ∂

1 1 '

1 1

()
(() ()) () ()

p pN V
j jp U p U i

k k jk

k s j j

s b x r
d s y s s

a a
ω φ+ − + −

= =

−
= − −∑∑ (5)

Where, ()ij rω can affect all level component of output
layer, so

1 1

1
1 1

(() ())
p N V

p U p U

k kp U
k sk

E
d s y s

y

+ − + −
+ −

= =

∂ = − −
∂ ∑∑

1

1

()
()

() ()()

p Up p
p k

jk p U

jk jkk

y sE E
s

s sy s
δ

ω ω

+ −

+ −

∂∂ ∂= =
∂ ∂∂

1 1(() ())p U p U p

k k jd s y s t+ − + −= − −

1 1(() ()) ()
p

j jp U p U

k k

j

s b
d s y s

a
φ+ − + − −

= − − (6)

But, ()ij sω can only affect kth level component of output
layer, so

1 1

1
(() ())

p
p U p U

k kp U

k

E
d s y s

y

+ − + −
+ −

∂ = − −
∂

1

1

()

()

pp Up p
jp k

aj p U p

j jk j

ty sE E

a ay s t
δ

+ −

+ −

∂∂∂ ∂= =
∂ ∂∂ ∂

1 1 '

2
1 1

(() ()) ()()
p pN V
j j j jp U p U

k k jk

k s j j

s b s b
d s y s

a a
ω φ+ − + −

= =

− −
= − −∑∑ (7)

1

1

()

()

pp Up p
jp k

bj p U p

j jk j

ty sE E

b by s t
δ

+ −

+ −

∂∂∂ ∂= =
∂ ∂∂ ∂

1 1 '

1 1

1
(() ()) ()()

pN V
j jp U p U

k k jk

k s j j

s b
d s y s

a a
ω φ+ − + −

= =

−
= − − −∑∑ (8)

Step four, Error back propagation and modify network
parameters.

Computational formulas are

()(1)ij r tω + ()() () [()() ()(1)]p

ij ij ij ijr t r r t r tω ηδ λ ω ω= − + − − (9)

()(1)jk s tω + ()() () [()() ()(1)]p

jk jk jk jks t s s t s tω ηδ λ ω ω= − + − − (10)

(1) () [() (1)]p

j j aj j ja t a t a t a tηδ λ+ = − + − − (11)

(1) () [() (1)]p

j j bj j jb t b t b t b tηδ λ+ = − + − − (12)

Step five, Input next sample, namely set 1p p= + . If
p P≤ , then go to Step two.

Step six, Calculate total error of the network

1 1 2

1 1 1 1

1 1
(() ())

2

P P N V
p p U p U

k k

p p k s

E E d s y s
P P

+ − + −

= = = =

= = −∑ ∑∑∑ (13)

And judge if E is smaller than preset progress value
(0)ε ε > . If E ε< or n N> , stop the learning of network,

otherwise, set 1n n= + and 1p = , go to Step two.

It is needed to explain that, in the process of derivation as an
example the wavelet function is taken as activation function of
the neural network. In fact, other functions can be used as
activation functions too, such as Sigmoid Function: S shape
function. But in engineering practice how the final effects to
use these functions are depends on a series of simulation
experiments, in which a lot of tests and comparisons should be
done.

5. System Design and Implementation

5.1. Overa Design

5.1.1. Requirement Regulation

Firstly, users acquire the number of bacterial colonies on
temperature, salinity, PH, low temperature, temperature +PH
and temperature + salinity at several time points by
experiments. Secondly the system storages related
experimental data, and begins neural network simulation
according to the experimental data and finally predicts the
number of bacterial colonies of vibrio parahaemolyticus on
each time point.

This system consists of the following three parts.
Data management
Data management includes data addition, data deletion,

data loading, data query. Users add the experimental data into
the database for management through data addition and can
delete the added data if needed.

According to the experimental conditions, the number of
bacterial colonies of vibrio parahaemolyticus could be
inquired through data query. Data loading can load
experimental data into the system under certain conditions. It
is needed to load the relevant data before simulation.

Data simulation
According to the experimental data of a certain state, the

30 Xiao Laisheng and Zheng Yuandan: Bread Shrimp Microbe Growth Simulation and Prediction System Based on Neural Network

number of bacterial colonies at all time points in the state
could be simulated through the BP neural network algorithm.

Data prediction
According to the experimental data of a certain state, the

number of bacterial colonies at a certain time point in the state
could be predicted through the BP neural network algorithm.
This time point can be the one that the user has not acquired by
experiments. In this way, users can predict the number of
bacterial colonies at each time point through a limited number
of experiments.

5.1.2. Overall Function Structure

According to the demand, the system is divided into three
parts: data management module, data simulation module, data
prediction module. Data management module includes
functions of data addition, data deletion, data query and data
loading. Overall function structure diagram is as shown in
Figure 3.

Figure 3. Overall function structure.

5.1.3. Basic Process Flow

The process of data simulation and prediction is shown in
Figure 4. The growth experiment data of vibrio
parahaemolyticus in bread shrimp in the six states of
temperature, salinity, pH, temperature, temperature + PH,
temperature + salinity at some time points are acquired
through experiments in the laboratory. Then, these data are
made as initial input data to a neural network and processed as
input normalization, and finally the algorithm of Back
Propagation Learning is taken for training the neural network.
The trained neural network can be used for predicting the
number of bacterial colonies of vibrio parahaemolyticus for
each time point.

Figure 4. Process of data simulation and prediction.

5.1.4. Overall Scheme

The system is developed as an easy-to-use microbial growth
simulation and prediction system, in which the growth
experimental data of vibrio parahaemolyticus in bread shrimp
in the six states of temperature, salinity, pH, low temperature,
temperature + PH, temperature + salinity at some time points
are taken as input data for neural network. Neural network
algorithm, Back Propagation Learning, is used for neural
network simulation. The program structure of the system is to
take Visual Studio 2008 as its front, SQL Server2008 as its
database, and use open source AForge.NET for its framework.
The front desk interface displays two-dimensional data
graphics, while in the background the system loads
experimental data stored in the database, applies open source
framework AForge.NET for neural network simulation, and
outputs the prediction results to the front desk interface.

5.2. Detailed Design

5.2.1. Database Design

The background database of the system uses SQL Server
database, which is used to store the experimental growth data
of vibrio parahaemolyticus. Interface connects to the database
through the System. Data. SqlClient provided by the C#
namespace method. Experimental data of vibrio
parahaemolyticus in bread shrimp in six states of temperature,
salinity, pH, low temperature; temperature + PH, temperature
+ salinity are provided by experiments in laboratory, which
can be changed with a certain period of time. Six pieces of
corresponding data tables in the database are established to
store data.

i. Temperature table: Temperature table is designed for
storing the experimental growth data of vibrio
parahaemolyticus in bread shrimp in different
temperature and time. The temperature table is shown in
Table 1.

Table 1. Temperature table.

Field name Field description Data type Can be empty Constraint Remarks

temperature temperature float Combined primary key

hour time float Combined primary key

amount number of bacterial colonies float no

ii. Salt table: Salt table is designed for storing the experimental growth data of vibrio parahaemolyticus in bread shrimp in
different salt and time. The salt table is shown in Table 2.

 International Journal of Intelligent Information Systems 2016; 5(2): 25-36 31

Table 2. Salt table.

Field name Field description Data type Can be empty Constraint Remarks

salt salt float Combined primary key

hour time float Combined primary key

amount number of bacterial colonies float no

iii. PH table: PH table is designed for storing the experimental growth data of vibrio parahaemolyticus in bread shrimp in
different PH and time. The PH table is shown in Table 3.

Table 3. PH table.

Field name Field description Data type Can be empty Constraint Remarks

PH PH float Combined primary key

hour time float Combined primary key

amount number of bacterial colonies float no

iv. LowSurvival table: LowSurvival table is designed for storing the experimental growth data of vibrio parahaemolyticus in
bread shrimp in different low temperature and time. The LowSurvival table is shown in Table 4.

Table 4. LowSurvival table.

Field name Field description Data type Can be empty Constraint Remarks

Low Temperature low temperature float Combined primary key

hour time float Combined primary key

amount number of bacterial colonies float no

v. TempreturePh table: TemperaturePh table is designed for storing the experimental growth data of vibrio parahaemolyticus
in bread shrimp in different temperature, PH and time. The temperature+PH table is shown in Table 5.

Table 5. TemperaturePh table.

Field name Field description Data type Can be empty Constraint Remarks

temperature temperature float Combined primary key

ph ph float Combined primary key

hour time float Combined primary key

amount number of bacterial colonies float no

vi. TemperatureSalt table: TemperatureSalt table is designed for storing the experimental growth data of vibrio
parahaemolyticus in bread shrimp in different temperature, salt and time. The temperature+salt table is shown in Table 6.

Table 6. TemperatureSalt table.

Field name Field description Data type Can be empty Constraint Remarks

temperature temperature float Combined primary key

salt salt float Combined primary key

hour time float Combined primary key

amount number of bacterial colonies float no

5.2.2. System Function Module Detailed Design

i. Neural network training module: The basic principle
of neural network training is that experimental data are
used as its inputs and needed to be normalized, and the
network is trained through an activation function. In
the system we use Sigmoid Function as its activation
function. After training, the network can be used to
perform data prediction. The key codes are as follows.

privateconstint tempreture = 0;// tempreture -0，salty -1,
ph-2，lowSurvival -3，temprePh ph-4，tempreSalty -5

privateconstint salty = 1;
privateconstint ph = 2;
privateconstint lowSurvival = 3;

privateconstint temprePh = 4;
privateconstint tempreSalty = 5;

//Two-dimensional
constint inputNum = 1;
constint outputNum = 1;
//Training data
int trainNum;
double[][] trainInput;
double[][] trainOutput;
//The maximum and minimum data are used for

normalization
double[] maxInput = newdouble[inputNum];
double[] minInput = newdouble[inputNum];

32 Xiao Laisheng and Zheng Yuandan: Bread Shrimp Microbe Growth Simulation and Prediction System Based on Neural Network

double[] maxOutput = newdouble[outputNum];
double[] minOutput = newdouble[outputNum];
//Construct chart data
double[,] data;

privateActivationNetwork network; //neural network

public BPNeural()
 {
 init();
 }

privatevoid init()
 {

 }

publicvoid setChart(Chart chart)
 {
this.chart = chart;
 }

//Input normalization
privatedouble premnmxInput(double num, double min,

double max)
 {
double xFactor = 2.0 / (max - min);
return (num - min) * xFactor - 1.0;
 }

//Output normalization
privatedouble premnmxOutput(double num, double min,

double max)
 {
double yFactor = 1.7 / (max - min);
return (num - min) * yFactor - 0.85;
 }

//Output counter normalization
privatedouble getOriginalOutput(double num, double min,

double max)
 {
double yFactor = 1.7 / (max - min);
return (num + 0.85) / yFactor + min;
 }

//Training sample data
privatevoid getTrainData()
 {
string queryString = null;
if (category == tempreture)
 queryString = "SELECT hour,amount

FROM tempreture WHERE tempreture = " + condition1;
if (category == salty)
 queryString = "SELECT hour,amount

FROM salt WHERE salt = " + condition1;
if (category == ph)

 queryString = "SELECT hour,amount
FROM ph WHERE ph = " + condition1;

if (category == lowSurvival)
 queryString = "SELECT hour,amount

FROM lowSurvival WHERE tempreture = " + condition1;
if (category == temprePh)
 queryString = "SELECT hour,amount

FROM tempreturePh WHERE tempreture = " + condition1
+" AND ph = "+condition2;

if (category == tempreSalty)
 queryString = "SELECT hour,amount

FROM tempretureSalt WHERE tempreture = " + condition1
+ " AND salt = " + condition2;

//Initial max min data
for (int i = 0; i < inputNum; ++i)
 {
 maxInput[i] = double.MinValue;
 minInput[i] = double.MaxValue;
 }
for (int i = 0; i < outputNum; ++i)
 {
 maxOutput[i] = double.MinValue;
 minOutput[i] = double.MaxValue;
 }

// read maximum 50 points
int maxTempNum = 50;
double[][] tempInputData = newdouble[maxTempNum][];
double[][] tempOutputData =

newdouble[maxTempNum][];
int num = 0;

using (SqlConnection connection =

newSqlConnection(connectionString))
 {
SqlCommand command = newSqlCommand(queryString,

connection);
 connection.Open();
SqlDataReader reader = command.ExecuteReader();
try
 {
while ((num < maxTempNum) && reader.Read())
 {
//handle data
//train input
 tempInputData[num] =

newdouble[inputNum];
for (int j = 0; j < inputNum; j++)
 {
 tempInputData[num][j]

= double.Parse(reader[0].ToString());
// search for min value
if (tempInputData[num][j] < minInput[j])
 minInput[j] =

tempInputData[num][j];
// search for max value

 International Journal of Intelligent Information Systems 2016; 5(2): 25-36 33

if (tempInputData[num][j] > maxInput[j])
 maxInput[j] =

tempInputData[num][j];
 }
// trainOutput
 tempOutputData[num] =

newdouble[outputNum];
for (int j = 0; j < outputNum; j++)
 {
 tempOutputData[num][j]

= double.Parse(reader[1].ToString());
// search for min value
if (tempOutputData[num][j] < minOutput[j])
 minOutput[j] =

tempOutputData[num][j];
// search for max value
if (tempOutputData[num][j] > maxOutput[j])
 maxOutput[j] =

tempOutputData[num][j];
 }
 num++;

// allocate and set trainInput trainOutput
 trainNum = num;
 trainInput =

newdouble[trainNum][];
 trainOutput =

newdouble[trainNum][];
for (int j = 0; j < trainNum; j++)
 {
 trainInput[j] =

newdouble[inputNum];
 trainOutput[j] =

newdouble[outputNum];
 }
Array.Copy(tempInputData, 0, trainInput, 0, num);
Array.Copy(tempOutputData, 0, trainOutput, 0, num);
 }
 }
finally
 {
// Always call Close when done reading.
 reader.Close();
 connection.Close();
 }

//Construct data displayed in chart
 data = newdouble[trainNum, 2];
for (int i = 0; i < trainNum; i++)
 {
 data[i, 0] = trainInput[i][0];
 data[i, 1] = trainOutput[i][0];
 }

// Display chart boundary label
 labelMinHour.Text =

minInput[0].ToString();

 labelMaxHour.Text =
maxInput[0].ToString();

 labelMinAmount.Text =
minOutput[0].ToString();

 labelMaxAmount.Text =
maxOutput[0].ToString();

// normalization
for (int i = 0; i < trainNum; ++i)
 {
for (int j = 0; j < inputNum; ++j)
 {
 trainInput[i][j] =

premnmxInput(trainInput[i][j], minInput[j], maxInput[j]);
 }
for (int j = 0; j < outputNum; j++)
 {
 trainOutput[i][j] =

premnmxOutput(trainOutput[i][j], minOutput[j],
maxOutput[j]);

 }
 }
 }
 }

privatevoid trainNetwork(int inputNum, int hideNode, int

outputNum, double learningRate, double Momentum, int
iterate)

 {
//Training network

//create multi-layer neural network
 network =

newActivationNetwork(newBipolarSigmoidFunction(2),
inputNum, hideNode, outputNum);

//create teacher
BackPropagationLearning teacher =

newBackPropagationLearning(network);
//set learning rate and momentum
 teacher.LearningRate = learningRate;
 teacher.Momentum = Momentum;

int iteration = 0;
double error = 0;

while (iteration < iterate)
 {
 error = teacher.RunEpoch(trainInput,

trainOutput) / trainNum;
 ++iteration;
 }
 }

ii. Two-dimensional simulation of data: The trained

neural network can predict the growth of vibrio
parahaemolyticus at any time, and the predicted value
can be simulated by a two-dimensional image. The

34 Xiao Laisheng and Zheng Yuandan: Bread Shrimp Microbe Growth Simulation and Prediction System Based on Neural Network

key codes are as follows.
//Two-dimensional simulation
privatevoid simulateTwoDimension()
 {
 chart.RangeX =

newRange((float)minInput[0], (float)maxInput[0]);
 chart.UpdateDataSeries("data", data);
 chart.UpdateDataSeries("solution", null);

double[,] solution = newdouble[50, 2];
double[] networkInput = newdouble[1];

// calculate X values to be used with solution function
for (int j = 0; j < 50; j++)
 {
 solution[j, 0] = chart.RangeX.Min +

(double)j * chart.RangeX.Length / 49;
 }

// calculate solution
for (int j = 0; j < 50; j++)
 {
 networkInput[0] =

premnmxInput(solution[j, 0], minInput[0],
maxInput[0]);//normalization

 solution[j, 1] =
getOriginalOutput(network.Compute(networkInput)[0],
minOutput[0], maxOutput[0]);

 }
 chart.UpdateDataSeries("solution",

solution);

 }
iii. Data prediction: The trained neural network can

predict the growth of vibrio parahaemolyticus for a
single time entered by user. The key codes are as
follows.

publicdouble predict(double input)
 {
double[] networkInput = newdouble[1];
 networkInput[0] = premnmxInput(input,

minInput[0], maxInput[0]);//normalization
return

getOriginalOutput(network.Compute(networkInput)[0],
minOutput[0], maxOutput[0]);

 }

5.3. System Implementation

5.3.1. Implementation of Data Management Module

In the data management module, the experimental data can
be added, deleted, queried, and data can be also loaded from
the database.

Data addition is as shown in Figure 5. Enter data that is
needed to add in the input box, and then click the Add button
to add.

Figure 5. Data Add.

Data query interface is similar to data addition, enter the
data into the corresponding input boxes to temperature and
time, and then click on the Query button to search. If the
queried data does not exist in the database, it will give tips.

Data loading is as shown in Figure 6, after clicking on the
Load button, the experimental data of the corresponding state
in the database will be loaded into the table.

Figure 6. Data loading.

Data deletion interface is similar to data loading interface,
select a record in the table, and then click the Del button, you
can delete the data from the database.

5.3.2. Implementation of Data Simulation Module

Data simulation is as shown in Figure 7. Select the
condition that is needed to be simulated at the top of the list
box, and then click on the Simul button, you can perform
neural network training and two-dimensional data simulation.

 International Journal of Intelligent Information Systems 2016; 5(2): 25-36 35

Figure 7. Data simulation.

5.3.3. Implementation of Data Prediction Module

Data prediction is as shown in Figure 8. Enter the prediction
condition in the corresponding condition box, and then click
the Pred button, and the results of the prediction will be
displayed on the bacterial value box.

Figure 8. Data prediction.

6. Conclusions

According to the requirements of a research project, sub
project of National Science and Technology Support Program
of China: Key Integrated and Demonstrated Technologies for
Quality and Safety Control in Aquatic Product Processing
Process (No. 2012BAD29B06), the authors of this paper have
developed a set of bread shrimp microbial growth simulation
and prediction system. The system is established by taking
vibrio parahemolyticus in bread shrimp as research objects,
according to effects of temperature, salt and time on their
growth, and employing neural network technology. The
system consists of three parts: data management, data
simulation and data prediction, which would provide an
effective analytical tool for bread shrimp safe production. In
order to improve its compatibility, the system is developed by
using C# on Visual Studio 2008 platform, and its design and
implementation are based on Aforge.NET framework and
sliding-window modeling method.

The system is developed as an easy-to-use microbial growth
simulation and prediction system, in which experimental
growth data of vibrio parahaemolyticus in bread shrimp in the
six states of temperature, salinity, pH, low temperature,
temperature + PH, temperature + salinity at some time points
are taken as input data for neural network. Neural network
algorithm, Back Propagation Learning, is used for neural
network simulation. The program structure of the system is to
take Visual Studio 2008 as its front, SQL Server2008 as its
database, and use open source AForge.NET for its framework.
The front desk interface displays two-dimensional data
graphics, while in the background the system loads
experimental data stored in the database, applies open source
framework AForge.NET for neural network simulation, and
outputs the prediction results to the front desk interface. After
tested carefully, the system can meet the requirements of the
project design.

Through intelligent simulation and prediction in the system,
users can predict vibrio parahemolyticus growth and survival
data in various conditions only providing a limited number of
vibrio parahemolyticus growth and survival data in the
conditions. By this way, users do not need to perform
experiments in each condition, greatly reducing the number of
experiments and saving experimental time and costs.

Acknowledgment

This research work was funded by the sub project of
National Science and Technology Support Programof China
under Grant No. 2012BAD29B06 and the Science and
Technology Project of Guangdong Province under Grant No.
2014B040401014.

References

[1] Xiao Laisheng, A Neural Network-Based Multi-Dimensional
Simulation Modeling Approach for Food Microbial Growth,
Advanced Science Letters, ISSN: 1936-6612, Volume 6, Pages
400-405(15 March 2012).

[2] Wang Zhengxia, Xiao Laisheng, “Prediction Model of Ocean
Food Microbe Growth Based on Neural Network and Its
Simulation”, CCCA2011, Volume II, p160-165, ISBN:
978-1-61284-102-1, 2011.

[3] Zhou Kang, Liu Shouchun, Li Pinglan, Ma Changwei, Peng
Zhaohui, New Advances in Predictive Food Microbial Growth
Model, Microbiology, APR 20, 2008, 35(4): 589-594.

[4] Zhang Yuting, Meng Yaquan, Yan Guoting, Application of
Matlab in microbial growth forecast model, Hebei Chemical
Industry, Vol. 31, No.1, Jan. 2008, pp.20-22.

[5] Zhang Yuting, Wu Kun, Zhang Chunhui, Wang Yufeng,
Selection and application of microorganism growth model in
cold fresh pork, Meat Industry, 2005, No.11, Totally 295,
pp.23-25.

[6] Yang Hongju, Nan Qingxian, Establishment of main corruption
microbial growth model in cold pork, Storage and Process,
2004, No.3, pp.7-10.

36 Xiao Laisheng and Zheng Yuandan: Bread Shrimp Microbe Growth Simulation and Prediction System Based on Neural Network

[7] Liu Xinyou, Nan Haijun, Hao Yaqing, Gao Yuanjun, Tang
Xueyan, Zhang Fang, Research on microbial growth model for
fresh cut apples in storage period, Journal of Henan
Agricultural Sciences, 2007, No.3, pp.88-91.

[8] I. Stamati, F. Logist, E. Van Derlinden, J.-P. Gauchi, J. Van
Impe, Optimal experimental design for discriminating between
microbial growth models as function of suboptimal
temperature, Mathematical Biosciences 250 (2014) 69–80.

[9] I. Stamati, F. Logist, S. Akkermans, E. Noriega Fernández, J.
Van Impe, On the effect of sampling rate and experimental
noise in the discrimination between microbial growth models
in the suboptimal temperature range, Computers and Chemical
Engineering 85 (2016) 84–93.

[10] Si Zhu, Guibing Chen, Numerical solution of a microbial
growth model applied to dynamic environments, Journal of
Microbiological Methods 112 (2015) 76–82.

[11] Anastasia Lytou, Efstathios Z. Panagou, George-John E.
Nychas, Development of a predictive model for the growth
kinetics of aerobic microbial population on pomegranate
marinated chicken breast fillets under isothermal and dynamic
temperature conditions, Food Microbiology 55 (2016) 25e31.

[12] Albert Ibarz • Pedro E. D. Augusto, An autocatalytic kinetic
model for describing microbial growth during fermentation,
Bioprocess Biosyst Eng (2015) 38:199–205.

[13] Long Liu • Zhiguo Guo • Jianjiang Lu •Xiaolin Xu, Kinetic
model for microbial growth and desulphurisation with
Enterobacter sp., Biotechnol Lett (2015) 37:375–381.

[14] María Jesús Munoz-Lopez, Maureen P. Edwards, Ulrike
Schumann and Rober s. Anderssen, Multiplicative modelling
of four-phase microbial growth, Pacific Journal
ofMathematics for Industry (2015) 7: 7.

[15] Yury V. Bukhman • NathanW. DiPiazza • Jeff Piotrowski •
Jason Shao• Adam G. W. Halstead • Minh Duc Bui • Enhai Xie
• Trey K. Sato, Modeling Microbial Growth Curves with GCAT,
Bioenerg. Res. (2015) 8: 1022–1030.

[16] Yong-guang Yin, Yun Ding, A close to real-time prediction
method of total coliform bacteria in foods based on image
identification technology and artificial neural network, Food
Research International 42 (2009) 191–199.

[17] M. Hajmeer, I. Basheer, A probabilistic neural network
approach for modeling and classification of bacterial
growth/no-growth data, Journal of Microbiological Methods 51
(2002) 217–226.

[18] M. Cheroutre-Vialette, A. Lebert, Application of recurrent
neural network to predict bacterial growth in dynamic
conditions, International Journal of Food Microbiology 73
(2002) 107–118.

[19] A. H. Geeraerd, C. H. Herremans, C. Cenens, J. F. Van Impe,
Application of artificial neural networks as a non-linear

modular modeling technique to describe bacterial growth in
chilled food products, International Journal of Food
Microbiology 44 (1998) 49–68.

[20] Adolf Willem Schepers, Jules Thibault, Christophe Lacroix,
Comparison of simple neural networks and nonlinear
regression models for descriptive modeling of Lactobacillus
helveticus growth in pH-controlled batch cultures, Enzyme and
Microbial Technology 26 (2000) 431–445.

[21] Francisco Fernández-Navarroa, Antonio Valero, César
Hervás-Martínez, Pedro A. Gutiérrez, Rosa M. García-Gimeno,
Gonzalo Zurera-Cosano, Development of a multi-classification
neural network model to determine the microbial growth/no
growth interface, International Journal of Food Microbiology
141 (2010) 203–212.

[22] Francisco Fernández-Navarroa, César Hervás-Martíneza, M.
Cruz-Ramírez, Pedro Antonio Gutiérrez, Antonio Valero,
Evolutionary q-Gaussian Radial Basis Function Neural
Network to determine the microbial growth/no growth
interface of Staphylococcus aureus, Applied Soft Computing
11 (2011) 3012–3020.

[23] Daniel S. Esser • Johan H. J. Leveau • Katrin M. Meyer,
Modeling microbial growth and dynamics, Appl Microbiol
Biotechnol (2015) 99:8831–8846.

[24] Wang Zhengxia, Xiao Laisheng, Lin Honghong, Qiu Shuzhong,
Huang Chiyun, Lei Xiaoling, Intelligent General Predictive
Platform for Sea Food Microorganism Growth, Computer
Knowledge and Technology, Vol 7, No. 19, July 2011.

[25] http://www.aforgenet.com/aforge/framework/.

[26] http://www.codeproject.com/Articles/16447/Neural-Networks
-on-C.

[27] Xiao-sheng LIU, Xiao HU, Ting-li WANG, Rapid assessment
of flood loss based on neural network ensemble, Trans.
Nonferrous Met. Soc. China 24(2014) 2636−2641.

[28] Chengying Gong, Hui He, Research of AForge.NET in
Motion Video Detection, Applied Mechanics and Materials
Vols. 496-500 (2014), pp 2150-2153.

[29] Suraj Verma*, Prashant Pillai and Yim-Fun Hu, Development
of an eye-tracking control system using AForge.NET
framework, Int. J. Intelligent Systems Technologies and
Applications, Vol. 11, Nos. 3/4, 2012.

[30] ŽIDEK Kamil, RIGASOVá Eva, Diagnostics of Products by
Vision System, Applied Mechanics and Materials Vol. 308
(2013) pp 33-38.

[31] Ondrej Krejcar, Utilization of C# Neural Networks Library in
Industry Applications, ICeND 2011, CCIS 171, pp. 61-72,
2011.

[32] Laisheng Xiao, “A sliding-window modeling approach for
neural network”, International Journal of Control and
Automation, ISSN 2005-4297, Vol.7, No.8, Aug. 2014.

