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Abstract: According to the requirements of a scientific research project, a set of bread shrimp microbial growth simulation and 
prediction system is designed and implemented in detail. The system is established by taking vibrio parahemolyticus in bread 
shrimp as research objects, according to effects of temperature, salt and time on their growth, and employing neural network 
technology. In order to improve its compatibility, the system is developed by using C# on Visual Studio 2008 platform, and its 
design and implementation are based on AForge.NET framework and sliding-window modeling method. The system consists of 
three parts: data management, data simulation and data prediction, which would provide an effective analytical tool for bread 
shrimp safe production. After tested carefully, the system can meet the requirements of the project design. 
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1. Introduction 

Intelligent simulation and prediction for microbial growth 
refers to that under the premise of without microbial detection 
and analysis and according to the characteristic data of the 
food microbe in different processing, storage and circulation, 
the dynamic changes of the growth and survival of main 
pathogenic bacteria and spoilage bacteria in food is going to 
be determined by processing with computers, thus the quality 
and safety of food can be evaluated and predicted quickly. 
According to the existing limited experimental data, using 
neural network prediction algorithm, and through intelligent 
simulation and prediction neural network-based microbial 
growth simulation and prediction system can provide more 
data than one that come from real experiments, which could 
provide reference data for safe food production. 

According to the requirements of a research project, sub 
project of National Science and Technology Support Program 
of China: Key Integrated and Demonstrated Technologies for 
Quality and Safety Control in Aquatic Product Processing 
Process (No. 2012BAD29B06), the authors of this paper have 
developed a set of bread shrimp microbial growth simulation 
and prediction system. The system is established by taking 

vibrio parahemolyticus in bread shrimp as research objects, 
according to effects of temperature, salt and time on their 
growth, and employing neural network technology. The 
system consists of three parts: data management, data 
simulation and data prediction, which would provide an 
effective analytical tool for bread shrimp safe production. 

In order to improve its compatibility, the system is 
developed by using C# on Visual Studio 2008 platform, and its 
design and implementation are based on AForge.NET 
framework and sliding-window modeling method. Through 
intelligent simulation and prediction in the system, users can 
predict vibrio parahemolyticus growth and survival data in 
various conditions only providing a limited number of 
experimental vibrio parahemolyticus growth and survival data 
in the conditions. By this way, users do not need to perform 
experiments in each condition, greatly reducing the number of 
experiments and saving experimental time and costs. 

2. Related Work 

Food simulation and prediction microbiology is a new 
science based on the subjects such as microbiology, 
mathematics, statistics and computer applications, which 
needs the research foundation that a series of models that can 
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be able to describe and predict microbial growth and survival 
in specific conditions should be designed. The core of food 
microbe simulation technology is to form mathematical 
models, through which the rules of growth, live and death of 
microbe can be described [1-2].  

Up to now, domestic scholars have done a lot of research for 
microbial growth simulation modeling [3-7]. In their work, all 
of the models including level-one, level-two and level-three 
models described microbial growth with mathematical 
equations, such as level-one model with linear model, Logistic 
model, Gompertz model, Baranyi & Roberts model etc, level 
model with square root model, Al Leave equation etc. In 
recent years overseas scholars have also done a lot of research 
for microbial growth simulation modeling [8-15], but they 
only put emphasis on mathematical modeling too. As 
imagined, microbial growth is a dynamic and continuous 
process, it is difficult to use single mathematical equation to 
simulate. Artificial neural network is a network constructed 
manually to simulate human brain function, absorbing some 
advantages of biological nerve, such as high parallelism, 
non-linear global role, good fault-tolerance and associative 
memory function, and very strong self adaptive and self 
learning ability. Therefore, neural network has very 
outstanding qualities of adaptive learning, parallel computing, 
distributing storage, associative memory. Theory has proved 
that neural network can approach any continuous real function 
with arbitrary precision. Hence, it is feasible to take neural 
network to simulate microbial growth process. 

Just for that reason, scholars over the world have carried out 
a great deal of research on the aspect of applying neural 
network to microbial growth simulation [16-23]. From these 
related research literatures, we can know that the application 
of neural network applied to microbial growth was also 
carried out a more extensive research, and a good simulation 
effect was achieved too. But so far, applying neural network to 
simulate and predict growth for vibrio parahemolyticus in 
bread shrimp is still not reported. Moreover, in [24] one author 
of the paper tried to develop a universal platform for microbial 
growth simulation modeling with VC++ and MATLAB, but 

its compatibility is not good. In the light of such reasons, in 
order to meet the requirement of the research project (No. 
2012BAD29B06) and to improve the compatibility of system, 
in this paper we have developed an intelligent simulation and 
prediction system for bread shrimp microbial growth by using 
C# on Visual Studio 2008 platform, and its design and 
implementation are based on AForge.NET framework and 
sliding-window modeling method. 

3. AForge.NET 

AForge.NET is an open source C# framework designed for 
developers and researchers in the fields of computer vision 
and artificial intelligence - image processing, neural networks, 
genetic algorithms, fuzzy logic, machine learning, robotics, 
etc. 

The framework is comprised by the set of libraries and 
sample applications, which demonstrate their features. 
Typically, AForge.NET is comprised of a series of 
components, such as AForge.Imaging, AForge.Vision, 
AForge.Video, AForge.Neuro, AForge. Genetic, 
AForge.Fuzzy, AForge.Robotics, AForge.MachineLearning, 
etc. AForge.Imaging is a library with image processing 
routines and filters; AForge.Vision is a computer vision 
library; AForge.Video is a set of libraries for video processing; 
AForge.Neuro is a neural networks computation library; 
AForge.Genetic is an evolution programming library; 
AForge.Fuzzy is a fuzzy computations library; 
AForge.Robotics is a library providing support of some 
robotics kits; AForge.MachineLearning is a machine learning 
library. The framework is provided not only with different 
libraries and their sources, but with many sample applications, 
which demonstrate the use of this framework, and with 
documentation help files, which are provided in HTML Help 
format. The documentation is also available on-line. [25] 

When a neural network-based system is developed, a neural 
networks computation library, AForge.Neuro, should be used. 
The C# library on AForge.Neuro contains six main entities 
shown in Figure 1. 

 

Figure 1. Six main entities in C# library on AForge.Neuro. 
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From Figure 1, we can see that there are six main entities in 
C# library on AForge.Neuro, namely, Neuron, Layer, Network, 
IActivationFunction, ISupervisedLearning, 
IUnsupervisedLearning. Neural network is made of a 
collection of neurons, in which each neuron is described by 
Neuron. Neuron is a base abstract class for all neurons, which 
encapsulates such common entities like a neuron's weight, 
output value, and input value. Other neuron classes inherit 
from the base class to extend it with additional properties and 
specialize it. Neural network is also made of some layers, in 
which each layer is described by Layer. Layer represents a 
collection of neurons. This is a base abstract class, which 
encapsulates common functionality for all neuron's layers. A 
network consists of a collection of neuron’s layers, which is 
described be Network, what is a base abstract class, which 
provides common functionality of a generic neural network. 
To implement a specific neural network, it is required to 
inherit the class, extending it with specific functionalities of 
any neural network architecture. IActivationFunction is an 
activation function's interface. Activation functions are used 
in activation neurons - the type of neuron, where the weighted 
sum of its inputs is calculated and then the value is passed as 
input to the activation function, and the output value becomes 
the output value of the neuron. ISupervisedLearning is an 
interface for supervised learning algorithms - the type of 
learning algorithms where a system is provided with sample 
inputs, with desired output values during the learning phase. 
The aim of the system is to generalize learning data, and learn 
to provide the correct output value when it is presented with 
the input value only. IUnsupervisedLearning is an interface for 
unsupervised learning algorithms - the type of learning 
algorithms where a system is provided with sample inputs 
only during the learning phase, but not with the desired 
outputs. The aim of the system is to organize itself in such a 
way to find correlation and similarities between data samples. 

The C# library on AForge.Neuro provides the following 
two types of neural network architectures: Activation Network 
and Distance Network. In engineering practice, we can select 
one of the two types of neural network architectures, but how 
to make a choice depends on concrete problems. Activation 
Network is commonly used neural network where each neuron 
computes its output as the activation function's output, and the 
argument is a weighted sum of its inputs combined with the 
threshold value. The network may consist of a single layer, or 
of multiple layers. Trained with supervised learning 
algorithms, the network allows to solve such tasks as 
approximation, prediction, classification, and recognition. 
Another neural network is Distance Network where each 
neuron computes its output as a distance between its weight 
values and input values. The network consists of a single layer, 
and may be used as a base for such networks like Kohonen 
Self Organizing Map, Elastic Network, and Hamming 
Network.  

The C# library on AForge.Neuro also provides abundant 
learning algorithms, which could be used to train different 
neural networks and to solve different problems. Primary 

learning algorithms include Back Propagation Learning, 
Perceptron Learning, SOM Learning, Delta Rule Learning, 
Elastic Network Learning. Back Propagation Learning is one 
of the most popular, known and commonly used algorithms 
for multi-layer neural network learning. Because the 
algorithm is able to train multi-layer neural networks, the 
range of its applications is very great, and includes such tasks 
as approximation, prediction, object recognition, etc. 
Perceptron Learning could be used with a one-layer activation 
network, where each neuron has a threshold activation 
function. SOM Learning treats neural network as a 2D map of 
nodes, where each node may represent a separate class. The 
algorithm organizes a network in such a way, that it becomes 
possible to find the correlation and similarities between data 
samples. Delta Rule Learning utilizes the activation function's 
derivative, and may be applicable to single-layer activation 
networks only, where each neuron has a continuous activation 
function instead of a threshold activation function. The most 
popular continuous activation function is the unipolar and 
bipolar sigmoid function. Elastic Network Learning is similar 
to the idea of the SOM learning algorithm, but it treats 
network neurons not as a 2D map of nodes, but as a ring. 
During the learning procedure, the ring gets some shape, 
which represents a solution. [26] 

Software design process based on AForge.NET could be 
described as follows:  

Firstly in order to use the classes and interfaces of AForge. 
Neuro to construct and train the neural network model, it is 
needed to open VisualStudio2008 software and add the three 
dynamic link libraries AForge. Controls. dll, AForge. dll and 
AForge. Neuro. dll in its solution manager.  

Secondly the activation network or distance network class 
should be introduced to instantiate the neural network model 
in accordance with the actual requirements. Subsequently, it is 
needed to choose a suitable learning algorithm for each model 
from the classes of BP Learning, Delta rule Learning, 
Perceptron Learning, SOM Learning or Elastic Network 
Learning, and set the parameters such as relevant learning rate 
and impulse value.  

Finally the neural network model can be trained by using 
the training data sets generated by sliding-window method. At 
the same time, the error curves in the training process can be 
drawn onto the Chart control provided by AForge.NET 
framework so as to view the data conveniently. When the error 
of neural network is less than the preset error or the number of 
training is reached, the training process will be stopped [27]. 

Nowadays, C#-based AForge.NET is widely used in 
scientific and engineering research, industry applications, 
such as motion video detection, eye-tracking control system, 
diagnostics of products, etc. [28-31]. 

4. Neural Network Sliding-Window 

Modeling Method 

In general, neural network modeling uses sliding-window 
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method. In order to facilitate computer programming, a neural 
network sliding-window modeling method is theoretically 
derived in detail by one of the authors of the paper Xiao 
Laisheng [32]. Specific method is described as follows. 

4.1. Neural Network Architecture for Sliding-Window 

Modeling 

Figure 2 Shows neural network architecture for 
sliding-window modeling. 

 

Figure 2. Neural network architecture for sliding-window modeling. 

In Figure 2, assume that M is total number of nodes in 
input layer, 1,2, ,i M= ⋯ ; Q  is total number of nodes in 

hidden layer, 1,2, ,j Q= ⋯ ; N  is total number of nodes in 

output layer, 1,2, ,k N= ⋯ ; P  is total number of input 

samples, 1,2, ,p P= ⋯ ; { }p

ix  are inputs of network, { }p

ky  

are outputs of network, { }p

kd  are their corresponding target 

outputs; ijω  are connection weights between neurons in 

input layer and neurons in hidden layers, jkω  are connection 

weights between neurons in hidden layer and neurons in 
output layers; ja  is scale parameter and jb  is translation 

parameter of wavelet. When Sliding-Windows is adopted, U

is sliding-window input parameter, V  is sliding-window 
output parameter. In this case, input weights of network ijω

are extended equally to the number of ij Uω × , which are 

marked as ( ), 1, 2, ,ij r r Uω = ⋯ , and output weights of network 
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4.2. Learning Algorithm 

When sliding-window is used, the learning algorithm of 
wavelet neural network is described as follows. 

Step one, Initialize network weights, thresholds, scale and 
translation parameters of wavelet function. 

Give corresponding initial values for each of the following 
parameters: scale parameter ja  and translation parameter jb

of the wavelet, weights of the network ( ), 1, 2, ,ij r r Uω = ⋯

and ( ), 1, 2,jk s s Vω = ⋯ , learning rate η  and momentum 

factor λ .  
Set sample counter 1p =  and number of iterations 1n = , 

and provided maximum number of iterations is N . 
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Sliding-window outputs of output layer are 

1

1
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j
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In equations (1), (2), and (3), ( )p

ix r is input of input layer, 
p

js is input of hidden layer, p

jt is output of hidden layer, 
1( )p U

ky s
+ −  is sliding-window output of output layer, ( )φ ⋅ is 

wavelet basis function. 
Step three, Calculate target error and gradient vectors. 
Define target error function pE  as 
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1

1

( )
( )

( ) ( )( )

pp Up p
jp k

ij p U p

ij ijk j

ty sE E
r

r ry s t
δ

ω ω

+ −

+ −

∂∂∂ ∂= =
∂ ∂∂ ∂

 

1 1 '

1 1

( )
( ( ) ( )) ( ) ( )

p pN V
j jp U p U i

k k jk

k s j j

s b x r
d s y s s

a a
ω φ+ − + −

= =

−
= − −∑∑  (5) 

Where, ( )ij rω  can affect all level component of output 
layer, so 
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But, ( )ij sω can only affect kth level component of output 
layer, so 
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Step four, Error back propagation and modify network 
parameters. 

Computational formulas are 

( )( 1)ij r tω + ( )( ) ( ) [ ( )( ) ( )( 1)]p
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( )( 1)jk s tω + ( )( ) ( ) [ ( )( ) ( )( 1)]p

jk jk jk jks t s s t s tω ηδ λ ω ω= − + − −  (10) 

( 1) ( ) [ ( ) ( 1)]p

j j aj j ja t a t a t a tηδ λ+ = − + − −        (11) 

( 1) ( ) [ ( ) ( 1)]p

j j bj j jb t b t b t b tηδ λ+ = − + − −        (12) 

Step five, Input next sample, namely set 1p p= + . If 
p P≤ , then go to Step two. 

Step six, Calculate total error of the network 
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And judge if E is smaller than preset progress value
( 0)ε ε > . If E ε< or n N> , stop the learning of network, 

otherwise, set 1n n= +  and 1p = , go to Step two. 

It is needed to explain that, in the process of derivation as an 
example the wavelet function is taken as activation function of 
the neural network. In fact, other functions can be used as 
activation functions too, such as Sigmoid Function: S shape 
function. But in engineering practice how the final effects to 
use these functions are depends on a series of simulation 
experiments, in which a lot of tests and comparisons should be 
done. 

5. System Design and Implementation 

5.1. Overa Design 

5.1.1. Requirement Regulation 

Firstly, users acquire the number of bacterial colonies on 
temperature, salinity, PH, low temperature, temperature +PH 
and temperature + salinity at several time points by 
experiments. Secondly the system storages related 
experimental data, and begins neural network simulation 
according to the experimental data and finally predicts the 
number of bacterial colonies of vibrio parahaemolyticus on 
each time point. 

This system consists of the following three parts. 
Data management 
Data management includes data addition, data deletion, 

data loading, data query. Users add the experimental data into 
the database for management through data addition and can 
delete the added data if needed.  

According to the experimental conditions, the number of 
bacterial colonies of vibrio parahaemolyticus could be 
inquired through data query. Data loading can load 
experimental data into the system under certain conditions. It 
is needed to load the relevant data before simulation. 

Data simulation 
According to the experimental data of a certain state, the 
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number of bacterial colonies at all time points in the state 
could be simulated through the BP neural network algorithm. 

Data prediction 
According to the experimental data of a certain state, the 

number of bacterial colonies at a certain time point in the state 
could be predicted through the BP neural network algorithm. 
This time point can be the one that the user has not acquired by 
experiments. In this way, users can predict the number of 
bacterial colonies at each time point through a limited number 
of experiments. 

5.1.2. Overall Function Structure 

According to the demand, the system is divided into three 
parts: data management module, data simulation module, data 
prediction module. Data management module includes 
functions of data addition, data deletion, data query and data 
loading. Overall function structure diagram is as shown in 
Figure 3. 

 

Figure 3. Overall function structure. 

5.1.3. Basic Process Flow 

The process of data simulation and prediction is shown in 
Figure 4. The growth experiment data of vibrio 
parahaemolyticus in bread shrimp in the six states of 
temperature, salinity, pH, temperature, temperature + PH, 
temperature + salinity at some time points are acquired 
through experiments in the laboratory. Then, these data are 
made as initial input data to a neural network and processed as 
input normalization, and finally the algorithm of Back 
Propagation Learning is taken for training the neural network. 
The trained neural network can be used for predicting the 
number of bacterial colonies of vibrio parahaemolyticus for 
each time point. 

 

Figure 4. Process of data simulation and prediction. 

5.1.4. Overall Scheme 

The system is developed as an easy-to-use microbial growth 
simulation and prediction system, in which the growth 
experimental data of vibrio parahaemolyticus in bread shrimp 
in the six states of temperature, salinity, pH, low temperature, 
temperature + PH, temperature + salinity at some time points 
are taken as input data for neural network. Neural network 
algorithm, Back Propagation Learning, is used for neural 
network simulation. The program structure of the system is to 
take Visual Studio 2008 as its front, SQL Server2008 as its 
database, and use open source AForge.NET for its framework. 
The front desk interface displays two-dimensional data 
graphics, while in the background the system loads 
experimental data stored in the database, applies open source 
framework AForge.NET for neural network simulation, and 
outputs the prediction results to the front desk interface.  

5.2. Detailed Design 

5.2.1. Database Design 

The background database of the system uses SQL Server 
database, which is used to store the experimental growth data 
of vibrio parahaemolyticus. Interface connects to the database 
through the System. Data. SqlClient provided by the C# 
namespace method. Experimental data of vibrio 
parahaemolyticus in bread shrimp in six states of temperature, 
salinity, pH, low temperature; temperature + PH, temperature 
+ salinity are provided by experiments in laboratory, which 
can be changed with a certain period of time. Six pieces of 
corresponding data tables in the database are established to 
store data. 

i. Temperature table: Temperature table is designed for 
storing the experimental growth data of vibrio 
parahaemolyticus in bread shrimp in different 
temperature and time. The temperature table is shown in 
Table 1. 

Table 1. Temperature table. 

Field name Field description Data type Can be empty Constraint Remarks 

temperature temperature float  Combined primary key  

hour time float  Combined primary key  

amount number of bacterial colonies float no   

ii. Salt table: Salt table is designed for storing the experimental growth data of vibrio parahaemolyticus in bread shrimp in 
different salt and time. The salt table is shown in Table 2. 
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Table 2. Salt table. 

Field name Field description Data type Can be empty Constraint Remarks 

salt salt float  Combined primary key  

hour time float  Combined primary key  

amount number of bacterial colonies float no   

iii. PH table: PH table is designed for storing the experimental growth data of vibrio parahaemolyticus in bread shrimp in 
different PH and time. The PH table is shown in Table 3. 

Table 3. PH table. 

Field name Field description Data type Can be empty Constraint Remarks 

PH PH float  Combined primary key  

hour time float  Combined primary key  

amount number of bacterial colonies float no   

iv. LowSurvival table: LowSurvival table is designed for storing the experimental growth data of vibrio parahaemolyticus in 
bread shrimp in different low temperature and time. The LowSurvival table is shown in Table 4. 

Table 4. LowSurvival table. 

Field name Field description Data type Can be empty Constraint Remarks 

Low Temperature low temperature float  Combined primary key  

hour time float  Combined primary key  

amount number of bacterial colonies float no   

v. TempreturePh table: TemperaturePh table is designed for storing the experimental growth data of vibrio parahaemolyticus 
in bread shrimp in different temperature, PH and time. The temperature+PH table is shown in Table 5. 

Table 5. TemperaturePh table. 

Field name Field description Data type Can be empty Constraint Remarks 

temperature temperature float  Combined primary key  

ph ph float  Combined primary key  

hour time float  Combined primary key  

amount number of bacterial colonies float no   

vi. TemperatureSalt table: TemperatureSalt table is designed for storing the experimental growth data of vibrio 
parahaemolyticus in bread shrimp in different temperature, salt and time. The temperature+salt table is shown in Table 6. 

Table 6. TemperatureSalt table. 

Field name Field description Data type Can be empty Constraint Remarks 

temperature temperature float  Combined primary key  

salt salt float  Combined primary key  

hour time float  Combined primary key  

amount number of bacterial colonies float no   

 

5.2.2. System Function Module Detailed Design 

i. Neural network training module: The basic principle 
of neural network training is that experimental data are 
used as its inputs and needed to be normalized, and the 
network is trained through an activation function. In 
the system we use Sigmoid Function as its activation 
function. After training, the network can be used to 
perform data prediction. The key codes are as follows. 

privateconstint tempreture = 0;// tempreture -0，salty -1, 
ph-2，lowSurvival -3，temprePh ph-4，tempreSalty -5 

privateconstint salty = 1; 
privateconstint ph = 2; 
privateconstint lowSurvival = 3; 

privateconstint temprePh = 4; 
privateconstint tempreSalty = 5; 
 
//Two-dimensional 
constint inputNum = 1;  
constint outputNum = 1; 
//Training data 
int trainNum; 
double[][] trainInput; 
double[][] trainOutput; 
//The maximum and minimum data are used for 

normalization 
double[] maxInput = newdouble[inputNum]; 
double[] minInput = newdouble[inputNum]; 
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double[] maxOutput = newdouble[outputNum]; 
double[] minOutput = newdouble[outputNum]; 
//Construct chart data 
double[,] data; 
 
privateActivationNetwork network; //neural network         
 
public BPNeural() 
        { 
            init(); 
        } 
 
privatevoid init() 
        { 
 
        } 
 
publicvoid setChart(Chart chart) 
        { 
this.chart = chart; 
        } 
 
//Input normalization 
privatedouble premnmxInput(double num, double min, 

double max) 
        { 
double xFactor = 2.0 / (max - min); 
return (num - min) * xFactor - 1.0; 
        } 
 
//Output normalization 
privatedouble premnmxOutput(double num, double min, 

double max) 
        { 
double yFactor = 1.7 / (max - min); 
return (num - min) * yFactor - 0.85; 
        } 
 
//Output counter normalization 
privatedouble getOriginalOutput(double num, double min, 

double max) 
        { 
double yFactor = 1.7 / (max - min); 
return (num + 0.85) / yFactor + min; 
        } 
 
//Training sample data 
privatevoid getTrainData() 
        { 
string queryString = null; 
if (category == tempreture) 
                queryString = "SELECT hour,amount 

FROM tempreture WHERE tempreture = " + condition1; 
if (category == salty) 
                queryString = "SELECT hour,amount 

FROM salt WHERE salt = " + condition1; 
if (category == ph) 

                queryString = "SELECT hour,amount 
FROM ph WHERE ph = " + condition1; 

if (category == lowSurvival) 
                queryString = "SELECT hour,amount 

FROM lowSurvival WHERE tempreture = " + condition1; 
if (category == temprePh) 
                queryString = "SELECT hour,amount 

FROM tempreturePh WHERE tempreture = " + condition1 
+" AND ph = "+condition2; 

if (category == tempreSalty) 
                queryString = "SELECT hour,amount 

FROM tempretureSalt WHERE tempreture = " + condition1 
+ " AND salt = " + condition2; 

 
//Initial max min data 
for (int i = 0; i < inputNum; ++i) 
            { 
                maxInput[i] = double.MinValue; 
                minInput[i] = double.MaxValue; 
            } 
for (int i = 0; i < outputNum; ++i) 
            { 
                maxOutput[i] = double.MinValue; 
                minOutput[i] = double.MaxValue; 
            } 
 
// read maximum 50 points 
int maxTempNum = 50; 
double[][] tempInputData = newdouble[maxTempNum][]; 
double[][] tempOutputData = 

newdouble[maxTempNum][]; 
int num = 0; 
 
using (SqlConnection connection = 

newSqlConnection(connectionString)) 
            { 
SqlCommand command = newSqlCommand(queryString, 

connection); 
                connection.Open(); 
SqlDataReader reader = command.ExecuteReader(); 
try 
                { 
while ((num < maxTempNum) && reader.Read()) 
                    { 
//handle data 
//train input 
                        tempInputData[num] = 

newdouble[inputNum]; 
for (int j = 0; j < inputNum; j++) 
                        { 
                            tempInputData[num][j] 

= double.Parse(reader[0].ToString()); 
// search for min value 
if (tempInputData[num][j] < minInput[j]) 
                                minInput[j] = 

tempInputData[num][j]; 
// search for max value 
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if (tempInputData[num][j] > maxInput[j]) 
                                maxInput[j] = 

tempInputData[num][j]; 
                        } 
// trainOutput 
                        tempOutputData[num] = 

newdouble[outputNum]; 
for (int j = 0; j < outputNum; j++) 
                        { 
                            tempOutputData[num][j] 

= double.Parse(reader[1].ToString()); 
// search for min value 
if (tempOutputData[num][j] < minOutput[j]) 
                                minOutput[j] = 

tempOutputData[num][j]; 
// search for max value 
if (tempOutputData[num][j] > maxOutput[j]) 
                                maxOutput[j] = 

tempOutputData[num][j]; 
                        } 
                        num++; 
 
// allocate and set trainInput trainOutput 
                        trainNum = num; 
                        trainInput = 

newdouble[trainNum][]; 
                        trainOutput = 

newdouble[trainNum][]; 
for (int j = 0; j < trainNum; j++) 
                        { 
                            trainInput[j] = 

newdouble[inputNum]; 
                            trainOutput[j] = 

newdouble[outputNum]; 
                        } 
Array.Copy(tempInputData, 0, trainInput, 0, num); 
Array.Copy(tempOutputData, 0, trainOutput, 0, num); 
                    } 
                } 
finally 
                { 
// Always call Close when done reading. 
                    reader.Close(); 
                    connection.Close(); 
                } 
 
//Construct data displayed in chart 
                data = newdouble[trainNum, 2]; 
for (int i = 0; i < trainNum; i++) 
                { 
                    data[i, 0] = trainInput[i][0]; 
                    data[i, 1] = trainOutput[i][0]; 
                } 
 
// Display chart boundary label 
                labelMinHour.Text = 

minInput[0].ToString(); 

                labelMaxHour.Text = 
maxInput[0].ToString(); 

                labelMinAmount.Text = 
minOutput[0].ToString(); 

                labelMaxAmount.Text = 
maxOutput[0].ToString(); 

 
// normalization 
for (int i = 0; i < trainNum; ++i) 
                { 
for (int j = 0; j < inputNum; ++j) 
                    { 
                        trainInput[i][j] = 

premnmxInput(trainInput[i][j], minInput[j], maxInput[j]); 
                    } 
for (int j = 0; j < outputNum; j++) 
                    { 
                        trainOutput[i][j] = 

premnmxOutput(trainOutput[i][j], minOutput[j], 
maxOutput[j]); 

                    } 
                } 
            } 
        } 
 
privatevoid trainNetwork(int inputNum, int hideNode, int 

outputNum, double learningRate, double Momentum, int 
iterate) 

        { 
//Training network 
 
//create multi-layer neural network 
            network = 

newActivationNetwork(newBipolarSigmoidFunction(2), 
inputNum, hideNode, outputNum); 

//create teacher 
BackPropagationLearning teacher = 

newBackPropagationLearning(network); 
//set learning rate and momentum 
            teacher.LearningRate = learningRate; 
            teacher.Momentum = Momentum; 
 
int iteration = 0; 
double error = 0; 
 
while (iteration < iterate) 
            { 
                error = teacher.RunEpoch(trainInput, 

trainOutput) / trainNum; 
                ++iteration; 
            } 
        } 
 
ii. Two-dimensional simulation of data: The trained 

neural network can predict the growth of vibrio 
parahaemolyticus at any time, and the predicted value 
can be simulated by a two-dimensional image. The 
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key codes are as follows. 
//Two-dimensional simulation 
privatevoid simulateTwoDimension() 
        { 
            chart.RangeX = 

newRange((float)minInput[0], (float)maxInput[0]);             
            chart.UpdateDataSeries("data", data); 
            chart.UpdateDataSeries("solution", null); 
 
double[,] solution = newdouble[50, 2]; 
double[] networkInput = newdouble[1]; 
 
// calculate X values to be used with solution function 
for (int j = 0; j < 50; j++) 
            { 
                solution[j, 0] = chart.RangeX.Min + 

(double)j * chart.RangeX.Length / 49; 
            } 
 
// calculate solution 
for (int j = 0; j < 50; j++) 
            { 
                networkInput[0] = 

premnmxInput(solution[j, 0], minInput[0], 
maxInput[0]);//normalization 

                solution[j, 1] = 
getOriginalOutput(network.Compute(networkInput)[0], 
minOutput[0], maxOutput[0]); 

            } 
            chart.UpdateDataSeries("solution", 

solution); 
 
        } 
iii. Data prediction: The trained neural network can 

predict the growth of vibrio parahaemolyticus for a 
single time entered by user. The key codes are as 
follows. 

publicdouble predict(double input) 
        { 
double[] networkInput = newdouble[1]; 
            networkInput[0] = premnmxInput(input, 

minInput[0], maxInput[0]);//normalization 
return  

getOriginalOutput(network.Compute(networkInput)[0], 
minOutput[0], maxOutput[0]); 

  } 

5.3. System Implementation 

5.3.1. Implementation of Data Management Module 

In the data management module, the experimental data can 
be added, deleted, queried, and data can be also loaded from 
the database. 

Data addition is as shown in Figure 5. Enter data that is 
needed to add in the input box, and then click the Add button 
to add. 

 

Figure 5. Data Add. 

Data query interface is similar to data addition, enter the 
data into the corresponding input boxes to temperature and 
time, and then click on the Query button to search. If the 
queried data does not exist in the database, it will give tips. 

Data loading is as shown in Figure 6, after clicking on the 
Load button, the experimental data of the corresponding state 
in the database will be loaded into the table. 

 

Figure 6. Data loading. 

Data deletion interface is similar to data loading interface, 
select a record in the table, and then click the Del button, you 
can delete the data from the database. 

5.3.2. Implementation of Data Simulation Module 

Data simulation is as shown in Figure 7. Select the 
condition that is needed to be simulated at the top of the list 
box, and then click on the Simul button, you can perform 
neural network training and two-dimensional data simulation. 
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Figure 7. Data simulation. 

5.3.3. Implementation of Data Prediction Module 

Data prediction is as shown in Figure 8. Enter the prediction 
condition in the corresponding condition box, and then click 
the Pred button, and the results of the prediction will be 
displayed on the bacterial value box. 

 

Figure 8. Data prediction. 

6. Conclusions 

According to the requirements of a research project, sub 
project of National Science and Technology Support Program 
of China: Key Integrated and Demonstrated Technologies for 
Quality and Safety Control in Aquatic Product Processing 
Process (No. 2012BAD29B06), the authors of this paper have 
developed a set of bread shrimp microbial growth simulation 
and prediction system. The system is established by taking 
vibrio parahemolyticus in bread shrimp as research objects, 
according to effects of temperature, salt and time on their 
growth, and employing neural network technology. The 
system consists of three parts: data management, data 
simulation and data prediction, which would provide an 
effective analytical tool for bread shrimp safe production. In 
order to improve its compatibility, the system is developed by 
using C# on Visual Studio 2008 platform, and its design and 
implementation are based on Aforge.NET framework and 
sliding-window modeling method. 

The system is developed as an easy-to-use microbial growth 
simulation and prediction system, in which experimental 
growth data of vibrio parahaemolyticus in bread shrimp in the 
six states of temperature, salinity, pH, low temperature, 
temperature + PH, temperature + salinity at some time points 
are taken as input data for neural network. Neural network 
algorithm, Back Propagation Learning, is used for neural 
network simulation. The program structure of the system is to 
take Visual Studio 2008 as its front, SQL Server2008 as its 
database, and use open source AForge.NET for its framework. 
The front desk interface displays two-dimensional data 
graphics, while in the background the system loads 
experimental data stored in the database, applies open source 
framework AForge.NET for neural network simulation, and 
outputs the prediction results to the front desk interface. After 
tested carefully, the system can meet the requirements of the 
project design. 

Through intelligent simulation and prediction in the system, 
users can predict vibrio parahemolyticus growth and survival 
data in various conditions only providing a limited number of 
vibrio parahemolyticus growth and survival data in the 
conditions. By this way, users do not need to perform 
experiments in each condition, greatly reducing the number of 
experiments and saving experimental time and costs. 
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