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Abstract: Infrasound signals have a frequency range below the human hearing frequency range, and originate from different 

sources. Since these waves contain useful information about the occurrence of some important event, in this paper we intend to 

present a method for the recognition of sources of these signals. In the present paper, by using the feature spectral moment 

along with Mel-frequency cepstral coefficients (MFCC) and linear prediction coefficients (LPC) and also selecting a subset 

from the feature which plays a more discriminative role for the signal sources, and then by using classifier ensembles, we 

reached a 98.1% precision in the infrasound source identification. 
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1. Introduction 

Infrasound is a technical term to identify acoustical waves 

with frequencies below 20Hz which is beyond human hearing 

capabilities with frequencies between 20Hz to 20KHz [1-4]. 

Infrasound waves propagate through the atmosphere around 

the earth and since they has a very low absorption 

characteristic, they travel very long distances [4-6]. 

Infrasound waves are generated by different kinds of natural 

and man-made sources including earthquakes, volcanoes, 

bolide, thunderstorms, chemical and nuclear explosions, 

airplanes, rockets and so on. Because various events produce 

infrasound by different mechanisms, the energy of the signals 

is also distributed in different frequency [7]. 

Thus we are surrounded by a world of non-perception 

sounds which include valuable information about their original 

sources and clearly determine the necessity of detection and 

the analysis of infrasound waves in the atmosphere. 

On the other hand identifying some of the originating 

sources of the infrasound wave is the specific mission of 

CTBTO
1
 and specific tasks for research institutes, therefore 

scientists and researchers have used different method to 

                                                             

1Comprehensive Nuclear-Test-Ban Treaty Organization 

separate the infrasound waves and one of the best approaches 

to do so is the artificial intelligence approach. 

Infrasound waves are collected by infrasound sensors or 

microbarographs which are set up by a special design in an 

array in infrasound network stations. The most important 

world wide spread infrasound stations operate under the 

International Monitoring System (IMS) which includes sixty 

stations worldwide to collect the infrasound waves for the 

International Data Center (IDC) in Vienna, Austria. 

To identify the sources of infrasound signals, different 

steps should be taken. In preprocessing step, signals are 

normalized and noise is eliminated. In next steps, the feature 

vectors are extracted which best describe the signals. After 

that feature selection is done. Since the entire extracted 

feature vectors are not necessarily used for recognition in 

these signals, we are looking forward to using the methods to 

select the most important features which discriminate the 

signals propagating from different sources the best, so that 

we can use them in the recognition step. In the following, 

when all the trained data are available in this way, using the 

classifier ensembles method, the recognition step is going to 

be implemented. Finally, to test and evaluate the efficiency of 

the algorithms, cross validation method is used. 

The block diagram of an infrasound source identification 

system can be seen in figure 1. 
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Figure 1. An infrasound source identification system block diagram. 

In section 2 we present an overview of the related works. 

Section 3 presents our proposed method to extract the 

features. In section 4 we present our experimental results and 

section 5 offers our conclusions. 

2. Related Works 

Efforts to identify the infrasound signals have been done 

before. In 2005, F. M. Ham proposed a bank of Radial Basis 

Function (RBF) neural networks, to discriminate between six 

different man-made events [8]. Mel-Frequency Cepstral 

Coefficients (MFCC) feature set extracted for this method. 

He improved his method in [9] by a Parallel neural network 

classifier bank (PNNCB) with the same feature vector. 

In 2008 a combination of Wavelet coefficients feature 

vector with a fuzzy K-means clustering method used to 

earthquake prediction [10]. 

In [11] a Hidden Markov Model (HMM) is used to detect 

the presence of elephants with Linear predictive coding 

method for extracting the formants of the elephant rumbles. 

Another paper is published by F. M. Ham in 2011 that is 

focused on exploiting the infrasonic characteristics of 

volcanoes by extracting unique cepstral-based features from 

the volcano’s infrasound signature. These feature vectors are 

then used by a neural-classifier to distinguish the ash-

generating eruptive activity from three volcanoes [12]. 

X. Lui et. al. proposed a classification method based on 

Hilbert-Huang transform (HHT) and support vector machine 

(SVM) to discriminate between three different natural events 

[13]. The frequency spectrum characteristics of infrasound 

signals produced by different events, such as volcanoes, are 

unique, which lays the foundation for infrasound signal 

classification. 

Feature extraction is an important block in any machine 

learning based system. Features extracted from signals can be 

divided into three categories: the time-domain features, the 

frequency-based features and time-frequency features. The 

time-domain features or temporal features are simply 

extracted and have easy physical interpretation, Energy of 

signal, zero crossing rate, maximum amplitude and minimum 

energy are some of the time-domain features. The frequency-

based or spectral features are obtained by converting the time 

based signal into the frequency domain using Fourier 

transform, like: fundamental frequency, spectral centroid, 

spectral moments, etc. Time-frequency features describe a 

signal in both the time and frequency domains 

simultaneously. One of the most basic forms of time-

frequency analysis is Short-Time Fourier Transform (STFT) 

and one more sophisticated technique is wavelet. 

In recent researches the different and various sound and 

infrasound signals feature extraction methods, including 

cepstral coefficients method and spectral methods which 

describe the signal linear characteristics, are more common 

and used. One of the research challenges is dealing with the 

noisy environment of infrasound waves. As mentioned before 

these features, although they describe the signal the best, they 

are not robust in noisy environments. Thus we are trying to 

use other powerful methods for noisy environment to 

combine them with the feature extraction methods for 

improving our algorithm performance. 

One of the feature extraction methods, which is more 

robust in noisy environments and has an ability to describe 

the nonlinear characteristics of the signal, is the spectral 

moment method. In the following, a short description of 

linear spectral features and spectral moment’s features is 

presented. 

Linear spectral features are features derived from power 

spectral density of a signal and they are able to extract the 

linear characteristics of a signal. These features include 

cepstral coefficients which result from discrete cosine 

transform over signal power spectral. Also the perceptual 

linear prediction has cepstral coefficients which are similar to 

the MFCC with one exception which is based on the human 

hearing perceptual model. 

These features are used in some research [8, 9, 11, 12, 14] 

and usually used as a standard feature in the most of 

automatic speech recognition (ASR) systems. This set of 

features extract the linear speech signal information suitably, 

but it is not able to describe the nonlinear characteristics or 

higher order statistical features of the signal. Furthermore, 

one of the most important weaknesses of the spectral features 

is its low robustness in noisy environment. These features are 

very sensitive to additive noise [15]. 

To improve the robustness of these features, with respect 

to background noise and other distortions, an effort has been 

made to search for alternative features [16-20]. 

Since the upper sections of the spectral amplitude (such as 

formants) are less susceptible to noise, Paliwal [20] 

suggested spectral sub-band centroids (SCC) as new features 

to complete the cepstral coefficients features. These features 

are obtained by dividing the frequency band into some 

specific sub-bands and then finding sub-band centroids using 

the power spectral and Fourier transform methods. He tested 

these features over the recognition of English alphabets and 

showed that the centroids features is more robust due to the 

noise, but is still weaker compared to linear prediction 

cepstral coefficients (LPCC) in clean speech. This idea was 

improved in [21] and it was proved that these new features 

have a lot of capabilities for robust speech recognition. 

The spectral sub-band centroids idea or the same first 

order spectral moments is extended to higher order 
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normalized spectral sub-band moments (NSSM) [22]. 

3. The Proposed Method 

We tried to extend the first order spectral moment to a 

higher-ordered one and while presenting a two-dimension 

definition of these features, we introduce the mixed moments 

and used them in our work. 

The concept of moment is used to describe the features of 

a population. In general, the Kth moment centroid of a 

random variable with a single real variable X is defined as 

follow: [23] 

�� = ���� − ���	
�	                      (1) 

Moments could be defined in two centroid and non-

centroid types. Unlike the non-centroid moments which are 

computed around zero, centroid moments are calculated 

around the average value and with respect to it. 

Each two-dimensional probability density function could 

be described with sets of unlimited numbers. The lower order 

moments tend to describe the more generalized 

characteristics of distribution form. While the higher order 

moments describe the noise characteristics and their details. 

A two-dimensional density function could be considered as a 

two-dimensional shape which we supposed to extract its 

characteristics. 

With the two-dimensional moment concept definition in 

hand, we can extend it to a two-dimensional distribution 

density function, and in such case, the two-dimensional 

spectral moments of this distributed density function describe 

its spectral form. On the other hand it presents a description 

of the spectrograph. The second dimension of the distribution 

function for our infrasound signals is the frames of the signal 

related to the specific event which has resulted from the 

implementation of the window function and of filter bank on 

the signal. 

Two-dimensional Cartesian moments,��
, from the � + � 

order, is defined with a distribution function ���, �
 , as 

bellow: 

��
 = � � ���
���, �
�����
��

�
��          (2) 

The two-dimensional moment for a digitized picture of 
�� × �
  with a discrete distribution density ���, �
  is as 

follows: [24] 

��
 = ∑ ∑ ���
���, �
���
 !"

#��
$!"             (3) 

��
 is a set of n order moment including all moments so 

that � + � ≤ &, and includes 
�

'
�& + 1
�& + 2
 elements. 

The first order moments, *��", �"�+ , are used for 

localizing the centroid of the shape mass. The coordinate of 

the centroid mass, ��,, �-
 , is determined by the following 

formulas: 

�, = ./0

.00
, �- = .0/

.00
                             (4) 

The second order moments, *�"', ���, �'"+  which are 

known as the moments of inertia are used to define the object 

principal axes. These principal axes are the pair of axes about 

which there is the minimum and the maximum second 

moment. The two third-order centroid moment, *�1", �"1+ , 
describe the image projection skewness. The skewness is a 

classic statistical measure of the degree of asymmetric of a 

symmetrical distribution around the average value. 

The two fourth-order moments, *�2", �"2+, are describing 

the kurtosis of a picture visualization. The kurtosis is a 

classical statistic measure of the peakedness of a distribution. 

Moments beyond 4th-order moments are High-order 

moments. In [25], M. Vuskovic and S. Du analysed the 

impact of noise in temporal signals and found to be very high 

at higher order moments. 

Now, by presenting a proposal about the moments, we 

expand them and extract more characteristics of the signal by 

moments named mixed moments. 

Assuming � = ���, �', … , �4
 is a multi-variables random 

vector with n dimensions, with the finite moments up to 

fourth order, the average vector ���	 = 5�6��, … , ���4	78 
briefly becomes a µ = ���, … , �4
. The nth order centroid 

moment’s matrix is specified by ����	 with 9 = 2,3,4. 

The covariance, which is the extended concept of variance, 

is the measure of coordinate variations of the two random 

variables. The covariance matrix is a matrix whose elements 

show the correlation among the different parameters of the 

system. For k=2 the& × & covariance matrix is as follow: 

�'��	 = <��	 = 5=>?8, 1 ≤ @, A ≤ &                (5) 

The elements of the matrix are: 

=>? = �6��> − �>
5�? − �?87                       (6) 

Now the idea of extending the variance moment to 

covariance could be used to extend the skewedness and 

kurtosis moments to obtain the coskewness and cokurtosis 

matrices. 

The coskewness matrices which is& × &'  , is defined as 

follows: 

�1��	 = 5B>?�8, 1 ≤ @, A, 9 ≤ &                   (7) 

Its elements are: 

B>?� = �6��> − �>
5�? − �?8��� − ��
7     (8) 

Then the matrix 

�2��	 = 5C>?�D8, 1 ≤ @, A, 9, E ≤ & which is & × &1  and its 

elements are: 

C>?�D = �6��> − �>
5�> − �?8��� − ��
��D − �D
7     (9) 

is known as a cokurtosis matrix [26]. 

On the other hand, since we cannot ignore the features in 

which the power spectral function is extracted with regards to 

spectral specifications of the signal, we always use these 

features with the spectral moment features. 

There are different methods to select the features from the 

feature space. An approach is a correlation-based feature 
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selection [27]. In this approach we have to search the feature 

space and find subsets of features that are highly correlated 

with the class while having low intercorrelation. By scattering 

search method we first select some candidate subsets [28] and 

then evaluate the worth of a subset of attributes by considering 

the individual predictive ability of each feature along with the 

degree of redundancy between them. 

4. Experiments 

As was mentioned in the introduction, the infrasound 

waves originate from different sources. In this paper we have 

used the data released from six sources of infrasound from 

Defense Threat Reduction Agency (DTRA) data centre and it 

includes infrasound signals obtained from IMS and DoE 

arrays. The detailed information about these six events is 

shown in table 1. 

Table 1. Detailed infrasound data. 

Event name Number of Signals 

Bolide 15 

Chemical Explosion 88 

Earthquake 9 

Suspected Mine Blast 279 

Rocket Lunch 37 

Volcano 179 

After feature extraction and a subset selection from the 

proper features, we start the source identification process 

from the different available source signals through the 

classifier ensembles method [29]. 

The purpose of this algorithm is to make precise and 

diverse classifiers. The main idea is to implement the feature 

extraction over the subsets of features and to make one set 

with all features for each classification, so the PCA is used 

here. 

Table 2. Comparison of the proposed method results with some recent 

research. 

Feature extraction method Classification method 
Accuracy 

(%) 

Wavelet coefficients Multilayer perceptron (2007) 78 

Wavelet coefficients Decision table (2007) 60 

Wavelet coefficients RBF network (2007) 87 

Wavelet coefficients K-means clustering (2008) 96 

LPC Hidden Markov Model (2011) 90.5 

MFCC RBF network (2012) 96 

HHT SVM 97.7 

Spectral moments Rotation Forest 98.1 

In methods that we use in this section for classification, to 

develop the trained data for a classifier, the features set is 

divide randomly into k-subsets (k is the algorithm 

parameter), and the PCA is applied to each subset. All PCAs 

are retained in order to preserve the variability information in 

the data. Thus k-axis rotations are executed to form the new 

features. The reason to use the decision trees for 

classification, here, is that they are sensitive to rotation of the 

feature axes. The purpose is to train multi-classifier systems 

based on uniform classification model over the different 

subsets. 

Assume � = *��, … , �4+F  is a sample with n described 

features, and we consider X as a set of data including trained 

data in the form of � × & matrix. We consider Y as a vector 

with a class label for the data as G = ���, … , ��	F in such a 

way �>  adapts a value from class labels set *H�, … , HI+. We 

also consider the classifications as a collective one in form of 

<�, … , <J and the feature set in form of F. All the classifiers 

can train in parallel. 

After data preparation, we applied the algorithms to the 

data and the algorithms performances are evaluated by the 

10-fold cross validation method. 

5. Results 

In this paper we used spectral moment features and 

combine them with the linear spectral features. Also, using a 

feature selection technique and a classifier ensembles 

method, produce a system which is able to recognize the 

infrasound signals propagated from different natural and 

man-made sources from each other. The system uses the 

spectral moment features to extract nonlinear features and 

higher order statistical specifications of the signals, and 

combine them with linear spectral features to have a proper 

linear description of the signal. Furthermore, by using the 

feature selection technique the system is able to obtain the 

smallest optimal feature vector which is able to have a better 

discrimination of the infrasound events. We obtained a 

recognition precision of 98.1% by using the classifier 

ensembles method. 
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