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Abstract: Many studies discussed different numerical representations of DNA sequences. One naive approach for exploring 
the nature of a DNA sequence is to assign numerical values (or scales) to the nucleotides and then proceed with standard time 
series methods. The analysis will depend actually on the particular assignment of numerical values.Discriminant analysis aims 
to examine the dependence of one qualitative (classification) variable from several quantitative variables according to number 
of variations of qualitative variable we can distinction. Actually, there is a discriminant analysis for two or more groups. The 
essential work of discriminant analysis is to get the optimal assigning rules that will minimize the likelihood of incorrect 
classification of elements. In this paper, we discussed the discriminant analysis of the first, second, third and fourth eigenvalues 
of variance covariance matrix of Fast Fourier Transform (FFT) for numerical values representation of DNA sequences of five 
organisms, Human, E. coli, Rat, Wheat and Grasshopper. The analysis is based on three methods (All Variables, Forward 
Selection and Backward Selection) of discrimination. Functions have been reached whereby discrimination is made among 
organisms under consideration. Empirical studies are conducted to show the value of our point of view and the applications 
based on. Therefore, we recommended that, other empirical studies should be done for other organisms and statistical methods 
by using the point of view adopted here. Also, aspects stated here must be used in an applied manner for DNA sequences 
discrimination. 

Keywords: FFT Scaling, DNA, Classification, Discriminant Analysis (DA), All Variables, Forward Selection,  
Backward Selection, Wilks-Lambda, Eigenvalue 

 

1. Introduction 

Discriminant analysis is a multivariate statistical analysis 
method that serves to set up a model to predict group 
memberships. The model consists of discriminant functions 
that appear based on a linear combination of predictive 
variables that provide the best discrimination between 
groups. These functions are derived from a sample whose 
group memberships are known. Afterward, they could be 
applied to new individuals or units with measures related to 
the same variables and unknown group memberships. Thus, 
although discriminant analysis is not frequently used in 

behavioral sciences because its assumptions are not always 
easy to meet, it is a conceptually and mathematically 
powerful multivarite statistical method. Therefore, a 
description and illustration of the discriminant analysis 
method may help increase its use [1]. 

In different areas of applications the term "discriminant 
analysis" has come to imply distinct meanings, uses, roles, 
etc. In the fields of learning, psychology, guidance, and 
others, it has been used for prediction [2-4]; in the study of 
classroom instruction it has been used as avariable reduction 
technique [5]; and in various fields it has been used as an 
adjunct to MANOVA [6]. In this sense, discriminant analysis 
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as a general research technique can be very useful in the 
investigation of various aspects of a multivariate research 
problem. Tatsuoka and Tiedeman [7] emphasized the 
multiphasic character of discriminant analysis in the early 
1950s: (a) the establishment of significant group-differences, 
(b) the study and 'explanation' of these differences, and 
finally (c) the utilization of multivariate information from the 
samples studied in classifying a future individual known to 
belong to one of the groups represented. Essentially these 
same three problems related to discriminatory analysis. 

Originally developed in 1936 by R. A. Fisher [8, 9], 
Discriminant Analysis is a classic method of classification 
that has stood the test of time. Discriminant analysis often 
produces models whose accuracy approaches (and 
occasionally exceeds) more complex modern methods. 
Discriminant analysis can be used only for classification (i.e., 
with a categorical target variable), not for regression. The 
target variable may have two or more categorical data. 

Discriminant analysis is a powerful statistical pattern 
recognition method which has been applied to many DNA 
sequence motif finding problems. On other words, 
discriminant analysis is widely used in biological analyzes, 
including DNA analysis. Some of the relevant scientific 
literatures are as follows. 

Solovyev and Salamov [10], introduced a complex of new 
programs for promoter, 3’-processing, splice sites, coding 
exons and gene structure identification in genomic DNA of 
several model species. The human gene structure prediction 
program FGENEH, exon prediction - FEXH and splice site 
prediction - HSPL have been modified for sequence analysis 
of Drosophila (FGENED, FEXD and DSPL), C. elegance 
(FGENEN, FEXN and NSPL), Yeast (FEXY and YSPL) and 
Plant (FGENEA, FEXA and ASPL) genomic sequences. 
They recomputed all frequency and discriminant function 
parameters for these organisms and adjusted organism 
specific minimal intron lengths. An accuracy of coding 
region prediction for these programs is similar with the 
observed accuracy of FEXH and FGENEH. They have 
developed FEXHB and FGENEHB programs combining 
pattern recognition features and information about similarity 
of predicted exons with known sequences in protein 
databases. These programs have approximately 10% higher 
average accuracy of coding region recognition. Two new 
programs for human promoter site prediction (TSSG and 
TSSW) have been developed which use Ghosh [11] and 
Wingender [12] data bases functional motifs, respectively. 
POLYAH program was designed for prediction of 3"-
processing regions in human genes and CDSB program was 
developed for bacterial gene prediction. They have developed 
a new approach to predict multiple genes based on double 
dynamic programming, that is very important for analysis of 
long genomic DNA fragments generated by genome 
sequencing projects. 

Since the identification of functional motifs in a DNA 
sequence is fundamentally a statistical pattern recognition 
problem. Discriminant analysis is widely used for solving 
such problems. Zhang [13], described two basic parametric 

methods: LDA (linear discriminant analysis) and QDA 
(quadracic discriminant analysis). He demonstrated their 
usage in recognition of splice sites and exons in the human 
genome. 

Dudoit et al. [14] compared the performance of difierent 
discrimination methods for the classification of tumors based 
on gene expression data. These methods included: nearest 
neighbor classifiers, linear discriminant analysis, and 
classifcation trees. They also considered recent machine 
learning approaches such as bagging and boosting. They 
investigated the use of prediction votes to assess the 
confidence of each prediction. The methods are applied to 
datasets from three recently published cancer gene 
expression studies. 

Kwon et al. [15] finded the causal relationship between 
several tumors and the gene-expression data by sequentially 
using the stepwise discriminant analysis method (SDA) and 
Bayesian decision theory (BDT). Eighty-five samples 
containing four tumor classes are used in this study. The 
classes are neuroblastoma (NB), rhabdomyosarcoma (RMS), 
non-Hodgkin lymphoma (BL) and the Ewing family of tumor 
(EWS). SDA is used to select critical genes for accurate 
classification of 4 tumors from original 2308 genes. With the 
selected genes, Bayesian classifier is made, which minimizes 
the misclassification rate. As a result, the classification 
performance increased to 100% and 9 new genes that have 
relation with the development of the tumors is found 
additionally. 

Liu et al. [16] analyzed various functional regions of the 
human genome based on sequence fea- tures, including word 
frequency, dinucleotide relative abundance, and base-base 
correlation. They analyzed the human chromosome 22 and 
classified the upstream, exon, intron, downstream, and 
intergenic regions by principal component analysis and 
discriminant analysis of these features. The results show that 
they could classify the functional regions of genome based 
on sequence feature and discriminant analysis. 

Guo et al. [17] in the same year, presented a modified 
version of linear discriminant analysis, called “shrunken 
centroids regularized discriminant analysis” (SCRDA). The 
SCRDA method is specially designed for classification 
problems in high dimension low sample size situations, for 
example, microarray data. Through both simulated data and 
real life data, it is shown that this method performed very 
well in multivariate classification problems, often 
outperforms the PAM method and can be as competitive as 
the SVM classifiers. It is also suitable for feature elimination 
purpose and can be used as gene selection method. 

Jombart et al. [18], proposed the discriminant analysis of 
principal components (DAPC), a multivariate method 
designed to identify and describe clusters of genetically 
related individuals. When group priors are lacking, DAPC 
uses sequential K-means and model selection to infer genetic 
clusters. They evaluated the performance of our method 
using simulated data, which were also analyzed using 
STRUCTURE as a benchmark. Additionally, they illustrated 
the method by analyzing microsatellite polymorphism in 



28 Salah Hamza Abid and Jinan Hamza Farhood:  Discriminant Analysis for the Eigenvalues of Variance Covariance Matrix of  
FFT Scaling of DNA Sequences: An Empirical Study of Some Organisms 

worldwide human populations and hemagglutinin gene 
sequence variation in seasonal influenza. 

It is well known that outliers are present in virtually every 
data set in any application domain, and classical discriminant 
analysis methods (including linear discriminant analysis 
(LDA) and quadratic discriminant analysis (QDA)) do not 
work well if the data set has outliers. In order to overcome 
the difficulty, Jin and An [19] used the robust statistical 
method. They choosed four different coding characters as 
discriminant variables and an approving result is presented 
by the method of robust discriminant analysis. 

Libbrecht et al. [20], provided an overview of machine 
learning applications for the analysis of genome sequencing 
data sets, including the annotation of sequence elements and 
epigenetic, proteomic or metabolomic data. They introduced 
considerations and recurrent challenges in the application of 
supervised, semi-supervised and unsupervised machine 
learning methods, as well as of generative and discriminative 
modelling approaches. They provided general guidelines to 
assist in the selection of these machine learning methods and 
their practical application for the analysis of genetic and 
genomic data sets. 

Corvelo et al. [21], introduced taxMaps, a highly efficient, 
sensitive, and fully scalable taxonomic classification tool. 
Using a combination of simulated and real metagenomics 
data sets, they demonstrate that taxMaps is more sensitive 
and more precise than widely used taxonomic classifiers and 
is capable of delivering classification accuracy comparable to 
that of BLASTN, but at up to three orders of magnitude less 
computational cost. 

2. DNA Sequence 

In the process of developing the technology, many possible 
interesting adaptations became apparent: One of the most 
interesting directions was the use of the technology in the 
analysis of long DNA sequences. A benefit of the techniques 
was that it combined rigorous statistical analysis with modern 
computer power to quickly search for diagnostic patterns 
within long DNA sequences. Briefly, a DNA strand can be 
viewed as a long string of linked nucleotides. Each 
nucleotide is composed of a nitrogenous base, a five carbon 
sugar, and a phosphate group. There are four different bases 
that can be grouped by size, the pyrimidines, thymine (T) and 
cytosine (C), and the purines, adenine (A) and guanine (G). 
The nucleotides are linked together by a backbone of 
alternating sugar and phosphate groups with the /5  carbon of 

one sugar linked to the /3 carbon of the next, giving the 
string direction. DNA molecules occur naturally as a double 
helix composed of polynucleotide strands with the bases 
facing inward. The two strands are complementary, so it is 
sufficient to represent a DNA molecule by a sequence of 
bases on a single strand; refer to Figure 1. Thus, a strand of 

DNA can be represented as a sequence { }; 1, 2,...,tX t n=  of 

letters, termed base pairs (bp), from the finite alphabet

{ }, , ,A C G T .1 The order of the nucleotides contains the 

genetic information specific to the organism. Expression of 
information stored in these molecules is a complex 
multistage process. One important task is to translate the 
information stored in the protein-coding sequences (CDS) of 
the DNA (Polovinkina et al. (2016) [22]). 

A common problem in analyzing long DNA sequence data 
is in identifying CDS that are dispersed throughout the 
sequence and separated by regions of noncoding (which 
makes up most of the DNA). Another problem of interest that 
we will address here is that of matching two DNA sequences, 
say 1tX and 2tX . The background behind the problem is 
discussed in detail in the study by Waterman and Vingron 
[23]. For example, every new DNA or protein sequence is 
compared with one or more sequence databases to find 
similar or homologous sequences that have already been 
studied, and there are numerous examples of important 
discoveries resulting from these database searches. 

 

Figure 1. The general structure of DNA and its bases. 

One naive approach for exploring the nature of a DNA 
sequence is to assign numerical values (or scales) to the 
nucleotides and then proceed with standard time series 
methods. It is clear, however, that the analysis will depend on 
the particular assignment of numerical values. Consider the 
artificial sequence ACGTACGTACGT... Then, setting A = G 
= 0 and C = T = 1, yields the numerical sequence 
010101010101..., or one cycle every two base pairs (i.e., a 
frequency of oscillation of 1 / 2ω =  Cycle/bp, or a period of 
oscillation of length1 / 2ω = bp=cycle). Another interesting 
scaling is A = 1, C = 2, G = 3, and T = 4, which results in the 
sequence 123412341234..., or one cycle every four bp 
( 1/ 4)ω = . In this example, both scalings of the nucleotides 
are interesting and bring out different properties of the 
sequence. It is clear, then, that one does not want to focus on 
only one scaling. Instead, the focus should be on finding all 
possible scalings that bring our interesting features of the 
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data. Rather than choose values arbitrarily, the spectral 
envelope approach selects scales that help emphasize any 
periodic feature that exists in a DNA sequence of virtually 
any length in a quick and automated fashion. In addition, the 
technique can determine whether a sequence is merely a 
random assignment of letters [22]). 

Fourier analysis has been applied successfully in DNA 
analysis; McLachlan and Stewart [24] and Eisenberg et al. 
[25] studied the periodicity in proteins using Fourier analysis. 

Stoffer et al. [26] proposed the spectral envelope as a 
general technique for analyzing categorical-valued time 
series in the frequency domain. The basic technique is similar 
to the methods established by Tavar´e and Giddings [27] and 
Viari et al. [28], however, there are some differences. The 
main difference is that the spectral envelope methodology is 
developed in a statistical setting to allow the investigator to 
distinguish between significant results and those results that 
can be attributed to chance. 

The article authored by Marhon and Kremer [29], 
partitions the identification of protein-coding regions into 
four discrete steps. Based on this partitioning, digital signal 
processing DSP techniques can be easily described and 
compared based on their unique implementations of the 
processing steps. They compared the approaches, and 
discussed strengths and weaknesses of each in the context of 
different applications. Their work provides an accessible 
introduction and comparative review of DSP methods for the 
identification of protein-coding regions. Additionally, by 
breaking down the approaches into four steps, they suggested 
new combinations that may be worthy of future studies. A 
new methodology for the analysis of DNA/RNA and protein 
sequences is presented by Bajic [30]. It is based on a 
combined application of spectral analysis and artificial neural 
networks for extraction of common spectral characterization 
of a group of sequences that have the same or similar 
biological functions. The method does not rely on homology 
comparison and provides a novel insight into the inherent 
structural features of a functional group of biological 
sequences. The nature of the method allows possible 
applications to a number of relevant problems such as 
recognition of membership of a particular sequence to a 
specific functional group or localization of an unknown 
sequence of a specific functional group within a longer 
sequence. The results are of general nature and represent an 
attempt to introduce a new methodology to the field of 
biocomputing. Fourier transform infrared (FTIR) 
spectroscopy has been considered by Han et al. [31] as a 
powerful tool for analysing the characteristics of DNA 
sequence. This work investigated the key factors in FTIR 
spectroscopic analysis of DNA and explored the influence of 
FTIR acquisition parameters, including FTIR sampling 
techniques, pretreatment temperature, and sample 
concentration, on calf thymus DNA. The results showed that 
the FTIR sampling techniques had a significant influence on 
the spectral characteristics, spectral quality, and sampling 
efficiency. Ruiz et al. [32] proposed a novel approach for 
performing cluster analysis of DNA sequences that is based 

on the use of Genomic signal processing GSP methods and 
the K-means algorithm. We also propose a visualization 
method that facilitates the easy inspection and analysis of the 
results and possible hidden behaviors. Our results support the 
feasibility of employing the proposed method to find and 
easily visualize interesting features of sets of DNA data. A 
novel clustering method is proposed by Hoang et al. [33] to 
classify genes and genomes. For a given DNA sequence, a 
binary indicator sequence of each nucleotide is constructed, 
and Discrete Fourier Transform is applied on these four 
sequences to attain respective power spectra. Mathematical 
moments are built from these spectra, and multidimensional 
vectors of real numbers are constructed from these moments. 
Cluster analysis is then performed in order to determine the 
evolutionary relationship between DNA sequences. The 
novelty of this method is that sequences with different 
lengths can be compared easily via the use of power spectra 
and moments. Experimental results on various datasets show 
that the proposed method provides an efficient tool to 
classify genes and genomes. It not only gives comparable 
results but also is remarkably faster than other multiple 
sequence alignment and alignment-free methods. One 
challenge of GSP is how to minimize the error of detection of 
the protein coding region in a specified DNA sequence with a 
minimum processing time. Since the type of numerical 
representation of a DNA sequence extremely affects the 
prediction accuracy and precision, by this study Mabrouk 
[34] aimed to compare different DNA numerical 
representations by measuring the sensitivity, specificity, 
correlation coefficient (CC) and the processing time for the 
protein coding region detection. The proposed technique 
based on digital filters was used to read-out the period 3 
components and to eliminate the unwanted noise from DNA 
sequence. This method applied to 20 human genes 
demonstrated that the maximum accuracy and minimum 
processing time are for the 2-bit binary representation 
method comparing to the other used representation methods. 
Results suggest that using 2-bit binary representation method 
significantly enhanced the accuracy of detection and 
efficiency of the prediction of coding regions using digital 
filters. Identification and analysis of hidden features of 
coding and non-coding regions of DNA sequence is a 
challenging problem in the area of genomics. The objective 
of the paper authored by Roy and Barman [35] is to estimate 
and compare spectral content of coding and non-coding 
segments of DNA sequence both by Parametric and 
Nonparametric methods. Consequently an attempt has been 
made so that some hidden internal properties of the DNA 
sequence can be brought into light in order to identify coding 
regions from non-coding ones. In this approach the DNA 
sequence from various Homo Sapien genes have been 
identified for sample test and assigned numerical values 
based on weak-strong hydrogen bonding (WSHB) before 
application of digital signal analysis techniques. The 
statistical methodology applied for computation of Spectral 
content are simple and the Spectrum plots obtained show 
satisfactory results. Spectral analysis can be applied to study 
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base-base correlation in DNA sequences. A key role is 
played by the mapping between nucleotides and real/complex 
numbers. In 2006, Galleani and Garello [36] presented a new 
approach where the mapping is not kept fixed: it is allowed 
to vary aiming to minimize the spectrum entropy, thus 
detecting the main hidden periodicities. The new technique is 
first introduced and discussed through a number of case 
studies, then extended to encompass time-frequency analysis. 

For analyzing periodicities in categorical valued time 
series, the concept of the spectral envelope was introduced by 
Stoffer et al. [37] as a computationally simple and general 
statistical methodology for the harmonic analysis and scaling 
of non-numeric sequences. However, the spectral envelope 
methodology is computationally fast and simple because it is 
based on the fast Fourier transform and is nonparametric (i.e., 
it is model independent). This makes the methodology ideal 
for the analysis of long DNA sequences. Fourier analysis has 
been used in the analysis of correlated data (time series) since 
the turn of the century. Of fundamental interest in the use of 
Fourier techniques is the discovery of hidden periodicities or 
regularities in the data. Although Fourier analysis and related 
signal processing are well established in the physical sciences 
and engineering, they have only recently been applied in 
molecular biology. Since a DNA sequence can be regarded as 
a categorical-valued time series it is of interest to discover 
ways in which time series methodologies based on Fourier 
(or spectral) analysis can be applied to discover patterns in a 
long DNA sequence or similar patterns in two long 
sequences. Actually, the spectral envelope is an extension of 
spectral analysis when the data are categorical valued such as 
DNA sequences. 

An algorithm for estimating the spectral envelope and the 
optimal scalings given a particular DNA sequence with 

alphabe { }1 2 1, ,...., rb b bξ += , is as follows [26]. 

(1) Given a DNA sequence of length n, from the 1r ×
vectors , 1,2,...,tY t n= ; namely, for 1, 2,..., , t jj r Y e= = if 

t jX b=  where je is a 1r × vector with a 1 in the jth position 

as zeros elsewhere, and 0tY = if 1t jX b += . 

(2) Calculate the Fast Fourier Transform FFT of the data, 

( )
1

( / ) exp 2
n

tt
d j n Y itj n nπ

=
= −∑ . 

Note that ( / )d j n is a 1r × complex-valued vector. 
Calculate the periodogram, 

( ) ( )*( / ) ,f j n d j n d j n=ɶ  for [ ]1, 2,...., 2 ,j n= and 

retain only the real part, say ( )~re
f j n . 

(3) Smooth the real part of the periodogram as preferred to 

obtain ( )~re
f j n , a consistent estimator of the real part of 

the spectral matrix. 
(4) Calculate the r r×  variance–covariance matrix of the 

data, ( )( )
1

n

t tt
S Y Y Y Y n

=

′
= − −∑ , where Y  is the sample 

mean of the data. 

(5) For each [ ], 1, 2,...., 2 ,j n j nω = = determine the 

largest eigenvalue and the corresponding eigenvector of the 

matrix ( )~1 2 1 22 .
re

jS f S nω− −  

(6) The sample spectral envelope ( )ˆ
jλ ω  is the eigenvalue 

obtained in the previous step. 

(7) The optimal sample scaling is ( ) ( )1 2ˆ ,j jS vβ ω ω−=

where ( )jv ω  the eigenvector obtained in the previous step. 

In this paper, we discussed the discriminant analysis of the 
first, second, third and fourth eigenvalues of variance 
covariance matrix of Fast Fourier Transform (FFT) for 
numerical values representation of DNA sequences of five 
organisms, Human, E. coli, Rat, Wheat and Grasshopper. The 
analysis is based on three methods (All Variables, Forward 
Selection and Backward Selection) of discriminating. It 
should be noted that it is the first time that the variance 
covariance matrix eigenvalues of Fast Fourier Transform 
(FFT) for numerical values representation of DNA 
sequences, is used in an analysis like this and related 
analyzes. 

3. Discriminant Analysis 

Discriminant analysis aims to examine the dependence of 
one qualitative (classification) variable from several 
quantitative variables according to number of variations of 
qualitative variable we can distinction [38]). Actually, there 
is a discriminant analysis for two or more groups. The 
essential work of discriminant analysis is to get the optimal 
assigning rules that will minimize the likelihood of incorrect 
classification of elements. Every element is distinguished by 
some aspects which reflect its properties. This means that 
corresponding to measured characteristics; the examined 
elements are realizations of the random vector

( )1 2, ,...., nX X X X= . The process starts with an analysis of 

group of elements in which is known relation to a specific 
group and also values of the random variables. The analysis 
result of the training set is to determine discriminant function 
that define the likelihood of classification of new unclassified 
element to certain group according to measured values. 

( )1 2, , ...., mx x x x=  of its characteristics [39]. 

Two basic aims of discriminant analysis are stated by 
Stankovičová and Vojtková [38], the first aim is to find 
appropriate statistical way to distinguish between groups 
(Descriptive or analytical). The second aim is to include new 
statistical unit (object) that is recognized by a vector of k 
features to one of the based groups (Classification). 

4. Discriminant Analysis: Aims and 

Assumptions 

Discriminant analysis aims is offered by Meloun et al. 
[40]. 

(1) Define whether there are significant statistical 
differences among profiles of the average score of 
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discriminators for two or more pre-defined classes. 
(2) Define which of the discriminator is reflected the most 

in differential profiles of average score of two or more 
classes. 

(3) Define procedures to involve objects into classes 
according to their score in discriminators set. 

(4) Define the number of dimensions compilation of 
discrimination among classes created by a discriminators set. 

Assumptions of discrimination model 
(1) Multivariate normal distribution 
conduct tests of significance of individual discriminatory 

variables and discriminatory functions are needful to assure 
this assumption. If the data is not distributed as multi-
dimensional normal, then the results of classification are 
inaccurate. Moreover, the classification total error is not 
violated by Lack of performance of normal assumption 
because the classification error in one group may be 
overestimated and in the other group underestimated. [39] 

(2) At least two groups must be there, with each case 
belonging to only one group so that the groups are 
independent and collectively exhaustive. 

(3) Each group must be well defined and clearly 
distinguished from any one of groups. 

(4) Before collecting the data, the groups should be well 
defined [41]. 

(5) Equality of variance-covariance within group. 
(6) The covariance matrix within each group should be 

equal. Equality Test of Covariance Matrices can be used to 
verify it. When in doubt, try re-running the analyses using the 
Quadratic method, or by adding more observations or 
excluding one or two groups. 

(7) Low multicollinearity of the variables 
When high multicollinearity among two or more variables 

is present, the discriminant function coefficients will not 
reliably predict group membership. We can use the pooled 
within-groups correlation matrix to detect multicollinearity 
[42]. 

5. Practical and Computational Steps for 

Discrimination and Classification 

In this section, we will introduce the discrimination and 
classification from practical and computational aspect. 

5.1. Discrimination Among Several Populations 

Suppose that we have p of populations, from the first 

population a sample 11 2, , , nX X X…  is drown, from the 

second population a sample 1 1 1 21 2, , ,n n n nX X X+ + +…  is drown 

and so on from the pth population a sample

1 1 1, ,
p Tn n nX X

−+ + +…
… , where 1 2 p Tn n n n+ + + =… . Let jX  

be the sample mean for the population j, 1, ,j p= … , and 

1

Tn

i T

i

X X n

=

=∑ . Then the sample between matrix is, 

1

( )( )
p

t
j j j

j

B n X X X X

=

= − −∑  

Thus, 

( )( ) ( )( )
1 1

p p
tt t t t t t

j j j j j j

j j

a Ba n a X X X X a n a X a X X a X a

= =

= − − = − −∑ ∑ ( )2

1

p

j j

j

n Y Y

=

= −∑ ,                      (1) 

, 1, , ,t
i i TY a X i n= = …  jY  is the mean for the j’th population, 1, ,j p= … . 

The sample within group matrix is 

( ) ( ) ( )( ) ( )( )
1 1 2

1 1 1

1 1 2 2
1 1 1

T

g

n n n n
tt t

i i i i i g i g

i i n i n n

W X X X X X X X X X X X X

−

+

= = + = + +

= − − + − − + + − −∑ ∑ ∑
⋯

⋯                      (2) 

Thus, 

( ) ( ) ( ) ( )
1

1 1

1 1
1 1

T

g

n n
ttt t t

i i i p i p

i i n n

a Wa a X X X X a a X X X X a

−= = + + +

= − − + + − −∑ ∑
…

⋯  

( ) ( ) ( )
1 1 2

1 1 1

22 2

1 2
1 1 1

T

g

n n n n

i i i g

i i n i n n

Y Y Y Y Y Y

−

+

= = + = + + +

= − + − + + −∑ ∑ ∑
…

⋯                                                    (3) 

The pooled estimate based on 1 2, , ,
TnY Y Y…  is  

( ) ( ) ( )
1 1 2

1 1 1

22 2

1 2
1 1 1

T

p

n n n n

i i i p
t

i i n i n n

T T

Y Y Y Y Y Y

a Wa

n p n g

−

+

= = + = + + +

− + − + + −

=
− −

∑ ∑ ∑
…

…

                                             (4) 
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The pooled estimate based on 1 2, , ,
TnX X X…  is 
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                                         (5) 

Now we will present Fisher’s linear discriminant method for several populations. Fisher’s discriminant method for several 
populations is as follows steps, 

Find the vector 1̂a  maximizing the separation function 
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,                                                    (6) 

subject to 1 1ˆ ˆ 1.t
pooleda S a =  

The linear combination 1̂
ta X  is called the sample first 

discriminant. 
Find the vector 2â  maximizing the separation function 

( )S a  subject to 2 2ˆ ˆ 1t
pooleda S a =  and 2 1ˆ ˆ 0t

pooleda S a = . So on, 

Find the vector ˆ
sa  maximizing the separation function 

( )S a  subject to ˆ ˆ 1t
s pooled sa S a =  and ˆ ˆ 0, .t

s pooled la S a l s= <  

Note that, ˆ ˆt
j pooled ja S a  is the estimate of 

ˆ( ), 1, ,t
jVar a X j s= …  and ˆ ˆ , .t

j pooled la S a j l≠  is the estimate 

of ˆ ˆ( , ), .t t
j lCov a X a X j l≠  

The condition ˆ ˆ 0t
j pooled la S a =  is like to the condition 

given in the principal component analysis. 
Axiomatically, ( )S a  measures the difference among the 

transformed means reverberated by ( )2

1

p

j j

j

n Y Y

=
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j

n Y Y

=

−∑  

should be large even as the random variation of the 
transformed data is taken into account. 

Two Important results provide ways to obtain the 
discriminants, 

Let 1 2, , , se e e…  be the orthonormal eigenvector of 
1 1

2 2W BW
− −  corresponding to the eigenvalues 

1 2 0.sλ λ λ≥ ≥ ≥ >⋯  Then, 1/2ˆ , 1, , ,j pooled ja S e j s−= = …  

where 1/2 1/2 1 .pooled pooled pooledS S S− − −=  

Let 1 2, , , se e e…  be the eigenvectors of 1
W B

−  

corresponding to the eigenvalues 1 2 0.sλ λ λ≥ ≥ ≥ >⋯  

Then, ˆ , 1, , ,ja j s= …  are the scaled eigenvectors satisfying 

ˆ ˆ 1t
j pooled ja S a = . That is, ˆ j

j
t
j pooled j

e
a

e S e
=  

5.2. Classification for Several Populations 

Fisher’s classification procedure according to the first 
r s≤  sample discriminants is to assign observation 0X  to 
the first population if 
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Where, 0
ˆ ˆ ˆ, , 1, , ; 1,t j t
j j i j iY a X Y a X j r i p= = = =… …  

Intuition of Fisher’s method, 
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−∑  represent the total square distance between 

the transformed 0X  ( 1
ˆ ˆ, , rY Y… ) and the transformed mean of 

the first population ( 1
1 1, , rY Y… ). 
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−∑  represent the total square distance 

between the transformed 0X  ( 1
ˆ ˆ, , rY Y… ) and the transformed 

mean of the second population ( 1
2 2, , rY Y… ) and so on, 
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−∑  represent the total square distance 

between the transformed ( 1
ˆ ˆ, , rY Y… ) 0X and the transformed 
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p pY Y… ). 
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− ≤ − ≠∑ ∑  imply the total 

distance between the transformed 0X  and the transformed 
mean of the first population is smaller than the one between 
the one between the transformed 0X  and the transformed 

mean of the other populations. In another meaning, 0X  is 
closer to the first population than to the other populations. 
Therefore, 0X  is assigned to the first population. 

6. Stepwise Discriminant Analysis 

In stepwise discriminant analysis, large number of variables 
are entered, then with a series of steps, we are selected 
variables which discriminate the best and from them is created 
discriminant function. We can identify by some criteria how 
the stepwise discriminant analysis seeks at chosen of these 
variables (Stankovičová and Vojtková (2007) [38]). 

(1) Forward selection: Variables come in into the 
discriminant function progressively and constantly is chosen 
the one that has the paramount profit in terms of 
discrimination. If this benefit is not statistically significant, 
no new variable enter into the function. 

(2) Backward selection: here we get in all variables In the 
discriminant function and gradually are outcasted those 
whose removal does not case a statistically significant 
decrease rate of discrimination. When any other throw away 
would intend significant decrease in discrimination between 
groups, Then this process is completed. 

(3) Stepwise selection: This chosen is mixing of the two 
past procedures. Here, enter new variables by degrees into 
discriminant function and it is always selection one with the 
utmost assist in terms of discrimination, while in every step 
is confirmed the possibility whether the variable would be 
eliminated and if eliminated variable does not have 
significant effect on decrease rate of discrimination [39]. 

Whatever, these procedures attain same outcomes but 
stipulation is that the input data have to be mutually 

uncorrelated. Otherwise if the correlation between input 
variables is significant, it is approperate to take Stepwise 
selection, where initially selected variable may be excluded 
in further steps because it is only correlation of other 
variables in the model. Criteria for making decision about 
enter of variable into the model or its elimination from the 
model avail following statistics. [40] 

Wilks Lambda (λ) 
The ratio of intra – group variability to the total variability 

represent Wilks λ  statistic. At every step is chosen the 
variable that satisfies the minimum value of this statistic. The 
significance of changes of Wilks criteria after discriminators 
submitting into the model or abstraction from the model is 
based on F test criterion. The value of F for change of Wilks 
criteria while adding discriminator into the model so that the 
model includes p discriminators is calculated as follows, 
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+
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                       (7) 

Where p represent the number of discriminators in the 
model, n represent the total number of objects, g  represent 

the number of classes, and pλ  and 1pλ + represent Wilks 

criterion before and after adding discriminators to the model 
respectively. 

Härdle and Simar (2012) [43], derived Wilks lambda as 
follows, 

withn groups

total

SS

SS

−Ψ =                             (8) 

So the smaller value of Ψ  implies to more doubt upon the 
null hypothesis. 

Determination the amount of variance in the grouping 
variable is interpreted by predictor variables by subtracting 
Ψ from one [41]. 

7. An Empirical Study 

The following algorithm steps is performed to achieve our 
aims. 

Generate the DNA sequence for five organisms, Human, 
E. coli, Rat, Wheat and Grasshopper with corresponding 
information in table 1. 

Table 1. Relative proportions (%) of Bases in DNA. 

Organisms A T G C 

Human 30.9 29.4 19.9 19.8 
E. coli 26.0 23.9 24.9 25.2 
Rat 28.6 28.4 21.4 21.5 
Wheat 27.3 27.1 22.7 22.8 
Grasshopper 29.3 29.3 20.5 20.7 

The sequence size is n=500 and run size is k=205. 
Transform DNA sequence to numerical values by setting 

one to the base that appears and zero to the other bases. 
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Transform the sequence of numerical values to the 
corresponding FFT values. 

Calculate the eigenvalues of variance covariance matrix 
for each run results, and then we get 205 fourth order vectors 
of eigenvalues for each organism. Each vector contains the 
four eigenvalues, rank from the largest one to the smallest. 

All Variables, Forward Selection and Backward Selection 
methods of discrimination have been applied of the first, 
second, third and fourth variance- covariance matrix 
eigenvalues of Fast Fourier Transform (FFT) for numerical 
values representation of DNA sequences of five organisms, 
Human, E. coli, Rat, Wheat and Grasshopper. It should be 
noted that it is the first time that the variance covariance 
matrix eigenvalues of Fast Fourier Transform (FFT) for 
numerical values representation of DNA sequences, is used 
in an analysis like this and related analyzes. 

For convenient, in the following discussions, we will refer 
to the organism by the first letter of his name. 

7.1. Results and Discussion 

Table 2. Eigenvalues and canonical correlation. 

Discriminant 
Eigenvalue 

Relative Canonical 

Function Percentage Correlation 

1 1.21447 75.87 0.74056 
2 0.357763 22.35 0.51332 
3 0.0262985 1.64 0.16008 
4 0.0021347 0.13 0.04615 

The three methods (All Variables, Forward Selection and 
Backward Selection) methods of discriminating are 
designed to develop a set of discriminating functions which 
can help predict cf based on the values of other quantitative 
variables. 1017 cases were used to develop a model to 
discriminate among the 5 levels of cf. Using a stepwise 
selection algorithm, it was determined that 4 variables were 
significant predictors of cf. That is, 4 predictor variables 
were entered. The 3 discriminating functions with P-values 
less than 0.05 are statistically significant at the 95.0% 
confidence level. 

Table 3. Wilks lambda and P-value. 

Functions Wilks 
   

Derived Lambda Chi-Square DF P-Value 

1 0.323375 1141.9250 16 0.0000 
2 0.716104 337.7694 9 0.0000 
3 0.9723 28.4141 4 0.0000 
4 0.99787 2.1569 1 0.1419 

When we use the forward selection method for the stepwise 

regression, we consider the following: 

F-to-enter: 4.0 
F-to-remove: 4.0 
Step 0: 
0 variables in the model. 
Step 1: 
Adding variable 3 with F-to-enter = 189.851 
1 variables in the model. 
Wilk's lambda = 0.571298 Approximate F = 189.851 with 

P-value = 0.0000 
Step 2: 
Adding variable 4 with F-to-enter = 65.601 
2 variables in the model. 
Wilk's lambda = 0.453574 Approximate F = 122.54 with 

P-value = 0.0000 
Step 3: 
Adding variable 2 with F-to-enter = 10.9635 
3 variables in the model. 
Wilk's lambda = 0.434699 Approximate F = 82.424 with 

P-value = 0.0000 
Step 4: 
Adding variable 1 with F-to-enter = 86.8387 
4 variables in the model. 
Wilk's lambda = 0.323375 Approximate F = 86.1478 with 

P-value = 0.0000 
Final model selected. 

and when we use the backward selection method for the 

stepwise regression, we consider the following: 

F-to-enter: 4.0 
F-to-remove: 4.0 
Step 0: 
4 variables in the model. 
Wilk's lambda = 0.323375 Approximate F = 86.1478 with 

P-value = 0.0000 
Final model selected. 
The following Classification Function Coefficients for cf 

shows the functions used to classify observations. There is a 
function for each of the 5 levels of cf. For example, the 
function used for the first level of cf is 

-263305. + 1054.3*1 + 1051.03*2 + 1052.79*3 + 
1054.87*4 

These functions are used to predict which level of cf new 
observations belong to. 

Table 4. Classification Function Coefficients for cf of each of five organisms. 

 
e g h r w 

1 1054.3 1052.06 1054.39 1053.32 1052.99 
2 1051.03 1048.78 1051.12 1049.96 1049.65 
3 1052.79 1050.27 1052.53 1051.6 1051.38 
4 1054.87 1052.4 1054.71 1053.72 1053.49 
CONSTANT -263305 -262129 -263284 -262760 -262621 

The classification function coefficients for cf in table 4, 
shows the functions used to classify observations. There is a 
function for each of the 5 levels of cf. For example, the 
function used for the first level of cf is 

-263305. + 1054.3*1 + 1051.03*2 + 1052.79*3 + 
1054.87*4 

These functions are used to predict which level of cf new 
observations belong to. 

Table 5. Discriminant Function Coefficients for cf of each of five organisms. 

 
1 2 3 4 

1 -1.42552 10.3929 -2.29605 -0.837972 

2 -1.20084 9.37211 -0.758743 -0.578266 

3 -1.85225 8.41815 -1.2011 -1.29646 

4 -1.88923 9.5499 -1.61871 0.0991884 
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Unstandardized Coefficients 

 
1 2 3 4 

1 -0.192768 1.4054 -0.310486 -0.113316 
2 -0.183743 1.43404 -0.116096 -0.0884812 
3 -0.306698 1.39389 -0.198879 -0.214669 
4 -0.27933 1.41199 -0.239333 0.0146654 
CONSTANT 117.068 -705.273 108.875 51.6442 

The discriminant function coefficients for cf in table 5, 
shows the coefficients of the functions used to discriminate 
amongst the different levels of cf. Of particular interest are 
the standardized coefficients. The first standardized 
discriminating function is 

-1.42552*1 - 1.20084*2 - 1.85225*3 - 1.88923*4 
From the relative magnitude of the coefficients in the 

above equation, you can determine how the independent 
variables are being used to discriminate amongst the groups. 

The following Classification Table 6 shows the results of 
using the derived discriminant functions to classify 
observations. It lists the two highest scores amongst the 
classification functions for each of the 1017 observations 
used to fit the model, as well as for any new observations. 
For example, row 1 scored highest for cf = e and second 
highest for cf = w. In fact, the true value of cf was e. 
Amongst the 1017 observations used to fit the model, 583 or 
57.3255% were correctly classified. You can predict 
additional observations by adding new rows to the current 
data file, filling in values for each of the independent 
variables but leaving the cell for cf blank. 

Table 6. Classification Table of each of five organisms. 

Actual Group Predicted cf 
   

cf Size e g h r w 

e 203 168 0 1 29 5 

  
(-82.76%) (0.00%) (-0.49%) (-14.29%) (-2.46%) 

g 203 9 115 41 22 16 

  
(-4.43%) (-56.65%) (-20.20%) (-10.84%) (-7.88%) 

h 205 8 0 168 29 0 

  
(-3.90%) (0.00% (-81.95%) (-14.15%) (0.00%) 

r 203 33 37 36 57 40 

  
(-16.26%) (-18.23%) (-17.73%) (-28.08%) (-19.70%) 

w 203 68 14 6 40 75 

  
(-33.50%) (-6.90%) (-2.96%) (-19.70%) (-36.95%) 

Percent of cases correctly classified: 57.33% 

Table 7. Group Centroids for cf of each of five organisms. 

Group 1 2 3 4 

e -1.52919 0.456441 0.172723 -0.0272532 
g 1.09833 -0.772067 0.179081 -0.0154093 
h 1.31789 0.874488 -0.0143922 0.0279504 
r -0.0312728 -0.132379 -0.246469 -0.0589958 
w -0.868747 -0.435099 -0.0908001 0.0734325 

The group centroids for cf in table 7, shows the average 
values of each of the 4 discriminant functions for each of the 
5 values of cf. 

The following summary statistics by group in table 8, 
shows the averages and standard deviations of each 
independent variable for each level of cf. 

Table 8. Summary Statistics by Group of each of five organisms. 

cf e G h r w TOTAL 

COUNTS 203 203 205 203 203 1017 
MEANS 

      
1 139.002 152.004 154.26 148.687 143.425 147.489 
2 129.323 138.523 141.248 132.763 129.461 134.277 
3 121.549 110.033 107.429 114.702 118.538 114.436 
4 110.127 98.3395 97.0624 103.335 107.925 103.345 
STD. DEVIATIONS 

      
1 6.22749 7.05805 7.31945 9.22462 6.79524 9.26124 
2 4.12905 7.57472 6.97772 7.73094 5.53362 8.12094 
3 4.66854 7.38305 6.3962 6.47941 4.80889 7.97446 
4 6.93967 6.62588 6.36103 7.53226 6.28599 8.48025 

 

Table 9. Pooled Within-Group Statistics for cf of each of five organisms. 

Within-Group Covariance Matrix 

 
1 2 3 4 

1 54.686 -3.04941 -22.4781 -29.0527 
2 -3.04941 42.7123 -18.3195 -21.103 
3 -22.4781 -18.3195 36.4736 4.43221 
4 -29.0527 -21.103 4.43221 45.7441 

Within-Group Correlation Matrix 

 
1 2 3 4 

1 1 -0.0630959 -0.503306 -0.580872 
2 -0.0630959 1 -0.464138 -0.477419 
3 -0.503306 -0.464138 1 0.108508 
4 -0.580872 -0.477419 0.108508 1 

In addition, the following pooled within-group statistics 
for cf in table 9, shows the estimated correlations between 
the independent variables within each group. The within 
group information from all of the groups has been pooled. 
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This can be seen in figure 2 down. 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Plots of: (a) Two dimension scatter plot, (b) Three dimension scatter plot, (c) Discriminant functions. 

8. Summary 

Functions have been reached whereby a discrimination is 
made among organisms according to eigenvalues of variance 
covariance matrix of FFT for numerical values representation 
of DNA sequences, and then classify any other observation to 
any of organisms belong. 

The methods used here are aimed to discriminant among 
different organisms using another point of view. This point of 
view is based on eigenvalues of variance covariance matrix 
of FFT for numerical values representation of DNA 
sequences. It should be noted that, it is the first time this 
point of view is used to achieve aims like ours. 

Empirical studies are conducted to show the value of our 
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point of view and the applications based on. Therefore, we 
recommended that, 

1. Other empirical studies should be done for other 
organisms and statistical methods by using the point of 

view adopted here. 
2. Aspects stated here must be used in an applied manner 

for DNA sequences discrimination. 

Appendix 

Table A1. Actual and highest two groups for each observation. 

Row 
Actual Highest Highest Squared 

Prob. 
2nd Highest 2nd Highest Squared 

Prob. 
Group Group Value Distance Group Value Distance 

1 e e 263318 2.32255 0.7162 w 263317 4.54363 0.2359 
2 e e 263286 0.611535 0.5394 w 263285 2.06059 0.2614 
3 e e 263306 2.52435 0.7935 w 263305 5.50989 0.1783 
4 e e 263323 1.59725 0.5233 w 263323 2.50057 0.3331 
5 e e 263307 0.329547 0.5967 w 263307 1.79854 0.2863 
6 e e 263301 1.51209 0.6882 w 263299 3.65553 0.2356 
7 e *r 263311 1.38723 0.3531 w 263311 1.65234 0.3092 
8 e e 263287 0.756714 0.6499 w 263286 2.77045 0.2374 
9 e e 263296 0.280903 0.6548 w 263295 2.22558 0.2477 
10 e e 263304 0.303498 0.6662 w 263303 2.2509 0.2516 
11 e e 263322 3.24033 0.7671 w 263321 5.88307 0.2047 
12 e e 263294 1.85343 0.5933 w 263293 3.50248 0.2601 
13 e e 263323 3.82238 0.7813 w 263322 6.60322 0.1945 
14 e e 263316 0.694525 0.6521 w 263315 2.44216 0.2722 
15 e e 263306 0.570849 0.3741 w 263305 0.916633 0.3147 
16 e e 263301 1.14726 0.6362 w 263301 2.94301 0.2592 
17 e e 263306 2.33252 0.807 w 263304 5.46231 0.1688 
18 e e 263307 0.44653 0.6718 w 263306 2.40104 0.2528 
19 e e 263299 1.14912 0.5835 w 263298 2.62183 0.2794 
20 e e 263307 2.36445 0.741 w 263306 4.85805 0.213 
21 e e 263267 3.88883 0.5018 w 263266 5.41709 0.2337 
22 e e 263318 2.83505 0.7333 w 263317 5.19423 0.2254 
23 e e 263298 2.55544 0.546 w 263297 3.92338 0.2755 
24 e e 263310 0.230065 0.5876 w 263309 1.62754 0.2922 
25 e e 263282 1.14422 0.458 w 263281 2.30997 0.2557 
26 e e 263315 1.58014 0.6668 w 263314 3.45231 0.2615 
27 e e 263296 0.709799 0.6838 w 263295 2.85819 0.2336 
28 e e 263321 1.8433 0.7198 w 263320 4.07177 0.2362 
29 e e 263294 0.915504 0.7313 w 263293 3.41748 0.2093 
30 e e 263293 1.66903 0.3331 r 263292 2.11359 0.2667 
31 e e 263290 0.675837 0.4885 w 263289 1.84403 0.2724 
32 e e 263293 0.655956 0.6928 w 263292 2.88175 0.2277 
33 e e 263282 1.69514 0.555 w 263282 3.22829 0.2579 
34 e *r 263287 1.19922 0.3004 e 263287 1.26536 0.2906 
35 e e 263312 3.15163 0.7894 w 263310 6.06688 0.1838 
36 e *r 263294 0.766822 0.3471 w 263294 1.61339 0.2273 
37 e e 263277 2.24763 0.6094 w 263276 4.127 0.2381 
38 e e 263306 1.05394 0.6859 w 263305 3.13326 0.2425 
39 e e 263276 8.59582 0.4498 w 263276 9.66047 0.2641 
40 e e 263288 1.3139 0.6103 w 263288 3.05912 0.255 
41 e e 263322 1.29199 0.4453 w 263321 1.78103 0.3487 
42 e e 263287 2.3495 0.3946 w 263286 3.22796 0.2543 
43 e e 263289 1.80866 0.3141 r 263289 2.08926 0.273 
44 e *w 263335 3.603 0.3899 e 263335 3.86512 0.342 
45 e e 263322 1.51194 0.6756 w 263321 3.39272 0.2638 
46 e *r 263285 4.44316 0.401 w 263284 5.51328 0.2348 
47 e *w 263323 2.26932 0.3534 e 263323 2.27222 0.3529 
48 e e 263326 1.7479 0.4799 w 263326 2.37626 0.3505 
49 e *r 263290 2.23961 0.3633 e 263289 2.92666 0.2577 
50 e e 263287 1.19163 0.7155 w 263286 3.6258 0.2118 
51 e e 263307 0.585495 0.5783 w 263307 1.96943 0.2895 
52 e *r 263292 1.25049 0.3355 h 263292 1.70278 0.2676 
53 e *r 263310 1.33908 0.4061 w 263309 2.71064 0.2045 
54 e e 263288 1.05333 0.7146 w 263287 3.48134 0.2122 
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Row 
Actual Highest Highest Squared 

Prob. 
2nd Highest 2nd Highest Squared 

Prob. 
Group Group Value Distance Group Value Distance 

55 e *r 263296 1.45779 0.3339 e 263296 1.72554 0.292 
56 e *r 263298 2.5653 0.3045 w 263298 3.00824 0.244 
57 e e 263293 0.630536 0.569 w 263292 2.14739 0.2665 
58 e *r 263265 3.98211 0.3049 e 263265 4.13897 0.2819 
59 e e 263307 0.428474 0.5724 w 263306 1.75938 0.2942 
60 e e 263278 3.52538 0.3759 r 263277 4.0931 0.283 
61 e e 263298 2.05163 0.3766 w 263298 2.48003 0.304 
62 e e 263305 0.242478 0.4423 w 263304 0.935955 0.3127 
63 e e 263312 1.41194 0.3452 w 263312 1.54317 0.3233 
64 e e 263315 2.39604 0.7629 w 263313 5.03633 0.2038 
65 e *r 263318 2.55336 0.4871 w 263317 4.06385 0.2289 
66 e e 263319 0.79105 0.5421 w 263319 1.8374 0.3213 
67 e e 263305 0.194699 0.4709 w 263305 1.02627 0.3107 
68 e e 263289 0.77199 0.424 w 263288 1.60482 0.2796 
69 e *r 263290 2.38 0.3022 w 263290 3.14839 0.2058 
70 e e 263295 1.78155 0.4839 w 263295 2.76725 0.2956 
71 e e 263301 2.26304 0.5289 w 263300 3.49411 0.2858 
72 e e 263300 0.0594097 0.4986 w 263299 1.09936 0.2964 
73 e e 263327 1.51277 0.6014 w 263326 2.84391 0.3091 
74 e *r 263293 0.933136 0.3556 w 263292 1.61701 0.2526 
75 e e 263313 2.54073 0.7838 w 263312 5.39063 0.1885 
76 e e 263311 0.55169 0.4714 w 263311 1.31297 0.3222 
77 e e 263314 0.556485 0.5101 w 263313 1.4694 0.3232 
78 e e 263335 2.65766 0.566 w 263334 3.7089 0.3346 
79 e *r 263254 10.3034 0.346 e 263253 11.066 0.2363 
80 e *r 263314 2.5466 0.4736 w 263314 3.8423 0.2478 
81 e *r 263303 2.51479 0.3309 w 263302 3.19855 0.2351 
82 e e 263313 1.51124 0.4969 w 263312 2.40471 0.3179 
83 e *r 263337 5.57066 0.5084 w 263336 7.4 0.2037 
84 e e 263318 1.23402 0.6295 w 263317 2.83123 0.2833 
85 e e 263328 1.98278 0.6008 w 263327 3.30775 0.3097 
86 e e 263270 4.96895 0.6935 w 263269 7.41056 0.2046 
87 e e 263304 0.454412 0.5703 w 263303 1.83712 0.2857 
88 e e 263303 0.317217 0.4497 w 263303 1.07604 0.3077 
89 e e 263306 1.43259 0.7054 w 263305 3.65 0.2328 
90 e *r 263307 1.01706 0.373 w 263306 1.77899 0.2549 
91 e e 263282 1.632 0.6436 w 263281 3.65068 0.2346 
92 e e 263299 0.259963 0.5343 w 263299 1.50335 0.287 
93 e e 263270 7.14301 0.6126 w 263269 9.10526 0.2297 
94 e e 263313 2.24836 0.3934 w 263313 2.54358 0.3394 
95 e e 263309 0.908499 0.6704 w 263308 2.85096 0.2538 
96 e *h 263286 1.26569 0.4013 r 263285 1.70775 0.3217 
97 e *r 263344 5.70577 0.3943 w 263344 5.85367 0.3662 
98 e e 263302 1.51455 0.6587 w 263301 3.4484 0.2505 
99 e e 263290 0.781306 0.3825 w 263290 1.40453 0.2801 
100 e e 263280 3.0155 0.6984 w 263279 5.38804 0.2133 
101 e e 263310 0.303126 0.5281 w 263310 1.35291 0.3124 
102 e e 263309 0.750599 0.5432 w 263308 1.92519 0.3019 
103 e e 263297 1.41181 0.6171 w 263297 3.09412 0.2661 
104 e e 263273 5.0622 0.7285 w 263271 7.71463 0.1934 
105 e e 263311 0.437637 0.603 w 263311 1.90785 0.2891 
106 e e 263319 1.84284 0.5494 w 263318 2.94837 0.3161 
107 e *r 263296 1.68545 0.44 w 263295 3.39992 0.1867 
108 e *r 263286 0.875928 0.3475 w 263286 1.86788 0.2116 
109 e e 263265 3.51752 0.3167 r 263265 3.78759 0.2767 
110 e e 263313 2.36718 0.3414 w 263313 2.49253 0.3207 
111 e e 263334 2.9092 0.639 w 263333 4.44596 0.2964 
112 e e 263323 1.60184 0.6474 w 263322 3.27302 0.2807 
113 e e 263313 3.03356 0.769 w 263312 5.73921 0.1988 
114 e e 263285 1.43349 0.6271 w 263284 3.31531 0.2447 
115 e e 263314 3.68124 0.8099 w 263313 6.80732 0.1697 
116 e e 263274 4.63719 0.7651 w 263272 7.5658 0.1769 
117 e e 263321 2.25078 0.7364 w 263320 4.61735 0.2255 
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Row 
Actual Highest Highest Squared 

Prob. 
2nd Highest 2nd Highest Squared 

Prob. 
Group Group Value Distance Group Value Distance 

118 e e 263327 2.08234 0.6515 w 263326 3.75474 0.2823 
119 e e 263284 1.08144 0.6586 w 263283 3.16669 0.2322 
120 e e 263295 1.4689 0.7596 w 263294 4.18787 0.1951 
121 e e 263292 2.66088 0.5316 w 263291 3.9277 0.2822 
122 e e 263295 1.4689 0.7596 w 263294 4.18787 0.1951 
123 e e 263280 4.33962 0.6461 w 263279 6.37089 0.234 
124 e e 263279 1.66312 0.5999 w 263279 3.47097 0.243 
125 e e 263315 0.51406 0.6389 w 263314 2.18896 0.2765 
126 e e 263272 2.88592 0.4742 w 263272 4.2058 0.2451 
127 e e 263296 0.876421 0.6251 w 263295 2.62408 0.2609 
128 e e 263310 0.643232 0.5546 w 263310 1.83727 0.3053 
129 e e 263299 0.556122 0.6216 w 263298 2.2853 0.2618 
130 e e 263285 1.58973 0.7231 w 263284 4.09542 0.2066 
131 e e 263296 1.60058 0.3508 w 263296 2.06845 0.2777 
132 e e 263241 20.3701 0.5256 r 263240 22.1704 0.2137 
133 e e 263298 0.704482 0.7102 w 263297 3.00424 0.2249 
134 e e 263293 0.756636 0.7127 w 263292 3.12052 0.2186 
135 e e 263329 1.84379 0.4881 w 263329 2.47955 0.3552 
136 e e 263335 2.74903 0.4855 w 263335 3.31449 0.366 
137 e e 263315 0.687011 0.474 w 263315 1.39033 0.3335 
138 e e 263282 2.298 0.6904 w 263281 4.59903 0.2185 
139 e e 263286 0.983223 0.3653 w 263286 1.66441 0.2599 
140 e e 263294 0.797287 0.5838 w 263293 2.33412 0.2707 
141 e e 263301 0.237512 0.4303 w 263300 0.929764 0.3044 
142 e e 263328 2.27045 0.6224 w 263328 3.73325 0.2995 
143 e e 263290 1.59418 0.5547 w 263289 3.10364 0.2608 
144 e e 263331 2.63401 0.6552 w 263330 4.30764 0.2838 
145 e e 263309 0.575169 0.5166 w 263308 1.61167 0.3077 
146 e e 263312 1.54306 0.7204 w 263311 3.83443 0.2291 
147 e *w 263308 2.05838 0.3004 e 263308 2.07262 0.2983 
148 e *r 263289 2.50691 0.3842 w 263289 3.39692 0.2462 
149 e e 263267 7.84914 0.5339 w 263266 9.46247 0.2383 
150 e e 263286 1.6261 0.7416 w 263285 4.26988 0.1977 
151 e *r 263326 2.89343 0.4008 w 263326 3.44268 0.3046 
152 e e 263291 0.5681 0.4781 w 263291 1.61176 0.2837 
153 e e 263320 1.494 0.7022 w 263319 3.58439 0.2469 
154 e e 263339 3.36943 0.4919 w 263339 3.93612 0.3705 
155 e e 263280 1.18674 0.5697 w 263279 2.85034 0.248 
156 e e 263317 2.90105 0.7857 w 263316 5.75218 0.1889 
157 e *r 263309 1.14256 0.3115 w 263309 1.15814 0.3091 
158 e e 263297 1.00421 0.4134 w 263297 1.63606 0.3014 
159 e *r 263320 2.00448 0.3552 w 263320 2.15024 0.3303 
160 e e 263265 4.21504 0.4395 r 263264 5.46907 0.2348 
161 e e 263314 1.49222 0.4482 w 263314 2.06361 0.3368 
162 e e 263287 0.624206 0.5635 w 263286 2.15243 0.2624 
163 e e 263290 1.52025 0.7625 w 263289 4.30334 0.1896 
164 e e 263321 3.92416 0.8004 w 263320 6.9146 0.1795 
165 e e 263321 2.25078 0.7364 w 263320 4.61735 0.2255 
166 e e 263289 2.07229 0.7631 w 263288 4.86155 0.1892 
167 e e 263301 1.96695 0.4293 w 263301 2.7125 0.2957 
168 e e 263302 2.19225 0.8052 w 263300 5.32082 0.1685 
169 e *r 263303 0.739077 0.3538 w 263303 1.28623 0.2691 
170 e e 263289 0.626525 0.4573 w 263289 1.65663 0.2732 
171 e e 263317 0.620179 0.5765 w 263316 1.88202 0.3068 
172 e e 263292 0.629164 0.6494 w 263291 2.57878 0.245 
173 e e 263309 0.910641 0.7099 w 263308 3.13544 0.2334 
174 e e 263297 0.674076 0.67 w 263296 2.69766 0.2436 
175 e e 263309 0.575169 0.5166 w 263308 1.61167 0.3077 
176 e *w 263323 2.00753 0.355 e 263323 2.20798 0.3211 
177 e *r 263288 1.98753 0.3037 e 263288 2.70256 0.2124 
178 e e 263304 0.303498 0.6662 w 263303 2.2509 0.2516 
179 e *r 263308 0.915298 0.3568 w 263308 1.32576 0.2906 
180 e e 263330 2.04731 0.6143 w 263329 3.44502 0.3054 
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Row 
Actual Highest Highest Squared 

Prob. 
2nd Highest 2nd Highest Squared 

Prob. 
Group Group Value Distance Group Value Distance 

181 e *w 263322 2.14979 0.3496 r 263322 2.37287 0.3127 
182 e e 263297 0.553969 0.6979 w 263295 2.78099 0.2292 
. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

913 w w 262297 6.8555 0.4844 r 262297 7.2855 0.3907 
914 w *e 263300 0.558083 0.3707 w 263299 0.974156 0.3011 
915 w *e 263307 0.538307 0.3961 w 263307 0.95683 0.3213 
916 w w 262251 1.60299 0.521 e 262251 2.41744 0.3467 
917 w *e 263295 1.12119 0.5861 w 263294 2.70489 0.2655 
918 w *e 263306 0.352091 0.4347 w 263306 0.980218 0.3175 
919 w *r 263292 0.708351 0.3588 h 263291 1.60071 0.2297 
920 w w 262259 1.96504 0.4916 r 262258 2.87881 0.3113 
921 w *h 263269 1.95497 0.3553 r 263269 2.34554 0.2922 
922 w *g 261153 4.39359 0.8402 r 261151 8.78819 0.0933 
923 w w 262249 3.33382 0.4842 r 262248 4.30831 0.2975 
924 w w 262205 9.53868 0.4045 e 262204 10.1388 0.2996 
925 w w 261188 4.05228 0.4631 g 261187 5.05645 0.2803 
926 w *r 263291 7.06487 0.4345 h 263290 7.83502 0.2957 
927 w w 261189 5.66834 0.6711 r 261188 9.01728 0.1258 
928 w *e 263297 2.55968 0.3473 w 263297 2.85 0.3004 
929 w w 262218 4.30627 0.4042 r 262217 5.1983 0.2588 
930 w *g 260116 14.9224 0.4453 w 260116 15.0015 0.4281 
931 w *r 263318 2.50473 0.4484 w 263318 3.44026 0.2809 
932 w w 262207 6.26982 0.2986 r 262207 6.2701 0.2985 
933 w w 261169 7.16851 0.5817 g 261168 9.81915 0.1546 
934 w w 261190 4.86953 0.5106 g 261189 6.35082 0.2435 
935 w w 262267 1.34679 0.5714 e 262266 2.91804 0.2605 
936 w *r 262252 1.20763 0.3608 g 262252 1.33978 0.3377 
937 w w 262232 3.67251 0.3179 r 262232 3.98965 0.2713 
938 w *r 263319 1.75623 0.3467 w 263319 1.87595 0.3265 
939 w *r 263349 8.00885 0.5114 w 263348 9.01594 0.3091 
940 w w 262262 1.93686 0.4361 r 262262 2.54264 0.3222 
941 w *r 263275 3.01569 0.347 e 263275 3.68749 0.248 
942 w *e 263317 0.889507 0.4374 w 263317 1.38322 0.3417 
943 w *e 263318 0.678704 0.6223 w 263317 2.217 0.2884 
944 w *h 263283 0.805881 0.4234 r 263283 1.67768 0.2738 
945 w w 261206 4.29759 0.4637 r 261206 5.49854 0.2544 
946 w *e 263270 2.39781 0.4854 w 263269 3.84839 0.235 
947 w *e 263308 0.282265 0.4829 w 263308 1.12122 0.3174 
948 w w 262243 1.18312 0.4351 r 262242 2.15117 0.2681 
949 w *e 263301 1.01974 0.4638 w 263301 1.90927 0.2973 
950 w *e 263297 0.385144 0.6306 w 263296 2.18556 0.2563 
951 w *e 263287 1.29586 0.5649 w 263287 2.87684 0.2563 
952 w w 261219 5.00107 0.6165 r 261218 7.08509 0.2175 
953 w *e 263292 0.609023 0.5655 w 263291 2.07312 0.272 
954 w w 261202 5.30642 0.6736 r 261201 8.36247 0.1461 
955 w w 262266 1.77418 0.5669 e 262265 3.28624 0.2662 
956 w *r 263320 2.49712 0.3555 w 263320 2.77949 0.3087 
957 w *e 263316 1.64346 0.3576 w 263316 1.77593 0.3347 
958 w w 262258 2.77047 0.4559 r 262257 3.28935 0.3517 
959 w w 262243 0.836017 0.4542 r 262243 1.71723 0.2923 
960 w *e 263318 2.32255 0.7162 w 263317 4.54363 0.2359 
961 w *r 263312 1.91358 0.3948 w 263312 3.09637 0.2185 
962 w *r 262251 0.778578 0.3647 w 262251 1.08196 0.3134 
963 w w 263352 6.76886 0.4265 e 263352 7.51776 0.2933 
964 w w 261182 4.89619 0.5059 g 261181 6.32623 0.2475 
965 w w 262257 1.3866 0.5487 e 262256 3.0925 0.2338 
966 w *r 263299 1.26018 0.3104 e 263298 1.49431 0.2761 
967 w *e 263294 1.61637 0.5492 w 263294 2.94976 0.282 
968 w *e 263300 2.19279 0.8108 w 263298 5.39287 0.1637 
969 w *r 263337 4.98619 0.4929 w 263337 6.24057 0.2632 
970 w w 263338 4.68794 0.3891 r 263338 5.14101 0.3102 
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Row 
Actual Highest Highest Squared 

Prob. 
2nd Highest 2nd Highest Squared 

Prob. 
Group Group Value Distance Group Value Distance 

971 w *e 263288 0.583037 0.499 w 263287 1.82275 0.2685 
972 w *e 263339 3.49047 0.5158 w 263339 4.19525 0.3626 
973 w w 262258 1.5635 0.3871 r 262257 1.80911 0.3423 
974 w *r 263273 2.25524 0.2879 h 263273 2.39444 0.2685 
975 w w 261210 4.89524 0.596 r 261209 6.81651 0.2281 
976 w *h 263297 2.29402 0.3938 r 263297 2.87603 0.2943 
977 w *e 263314 1.15481 0.3625 w 263314 1.2996 0.3372 
978 w w 262228 2.07541 0.3517 r 262228 2.58998 0.2719 
979 w *r 263328 3.54526 0.3863 w 263328 3.78649 0.3424 
980 w *e 263310 0.303126 0.5281 w 263310 1.35291 0.3124 
981 w *r 263306 1.34984 0.315 w 263306 1.51078 0.2907 
982 w *r 263335 6.32257 0.5516 w 263334 8.00663 0.2377 
983 w *g 262224 1.15157 0.3611 r 262224 1.56673 0.2934 
984 w *e 263310 1.41283 0.4387 w 263310 1.983 0.3299 
985 w w 262242 2.4498 0.3368 r 262242 2.66287 0.3028 
986 w *g 261184 4.78087 0.5328 w 261183 6.24223 0.2566 
987 w w 262239 2.03947 0.495 e 262239 2.71362 0.3533 
988 w *r 262245 2.55275 0.4008 g 262245 2.86909 0.3422 
989 w *e 263257 7.09848 0.5506 w 263256 8.97815 0.2151 
990 w w 262266 1.07911 0.5679 e 262265 2.9327 0.2248 
991 w *e 263285 1.61155 0.7033 w 263284 3.97915 0.2153 
992 w *e 263299 3.50479 0.3405 r 263298 3.71411 0.3067 
993 w w 262249 0.284409 0.4861 r 262248 1.54317 0.259 
994 w *e 263275 4.11977 0.7209 w 263273 6.70068 0.1984 
995 w *e 263316 1.70664 0.6374 w 263315 3.3692 0.2776 
996 w w 262275 2.33474 0.4541 r 262274 2.78425 0.3627 
997 w *e 263311 0.391118 0.6103 w 263310 1.92053 0.2841 
998 w w 262261 4.10211 0.5076 e 262261 4.506 0.4148 
999 w w 261222 5.40593 0.7207 r 261220 8.4337 0.1586 

* = incorrectly classified. 
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