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Abstract: In the last few decades, image processing has achieved significant theoretical and practical progress. It has been so 

fast that image processing can be easily traced in several disciplines and industries. At present, various methods have been 

proposed to implement image processing. The present paper aims to present a technique for image processing which utilizes 

design and analysis of parallel algorithms. It employs a new approach called “algorithmic skeletons” which is composed of a set 

of programming templates; hence facilitating the programmers’ work. 
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1. Introduction 

Image processing has two major sections: image 

enhancement and machine vision. Image enhancement 

includes methods such as using fading filters and increasing 

contrast to enhance image visibility, picture thickness, and to 

make sure they are correctly displayed in the target 

environment (such as a printer or a monitor)[15]. Machine 

vision involves methods to understand the content of images 

to be used in area such as robotics and axis images [17]. 

Parallel processing has accelerated processing such as 

computing speed of computer systems [1]. As image 

processing is capable of parallelism, this paper addresses 

image processing by using parallelism. 

2. Algorithmic Skeletons 

Algorithmic skeletons are general models for parallel 

programming [1]. It provides a programming language which 

is not only simple and independent of machine architecture 

but also highly efficient. Skeletons are algorithmic patterns 

used in parallel programming. They are usually integrated 

with a host language and they are considered the only source 

of parallelism in that language. For example, mapping 

skeletons run a function on all items in a list in parallel. FARM 

skeletons implements master-slave in parallel or D&C 

represents divide and conquer parallelism [16]. A task is 

recursively sub-divided until a condition is met, then the 

sub-task is executed and results are merged while the 

recursion is unwound. The most important feature of a 

skeleton is its generality that is the ability to be used in 

different applications [1]. In most algorithmic skeletons, there 

are a set of functions that has to be defined by the user. Once 

defined by the user, these functions are compiled into a 

specific location in the skeleton and then they are executed 

after a pre-processing. Usually every skeleton has a 

performance model which is presented as a mathematical 

formula and the user is able to predict the performance time by 

compiling the related parameters in this model. 

3. Classification and Skeletonization of 

Image Operations 

Image processing operations can be classified as low-level, 

intermediate-level and high-level (Table 1); Based on this 

classification, it is possible to define a skeleton library for 

image operations. 

Table 1. Image operations. 

Image operations Source Output 

Low-level Image Image 

Intermediate-level Image Object/vector-data 

High-level Object/vector-data Object/vector-data 
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3.1. Low-Level Image Operations 

Low-level image processing operations use the values of 

image pixels to modify individual pixels in an image. They 

can be divided into point-to point, neighborhood-to-point and 

global-to-point operations [5]. Point-to-point operations 

depend only on the values of the corresponding pixels from 

the input image and the parallelization is simple. 

Neighborhood operations produce an image in which the 

output pixels depend on a group of neighboring pixels around 

the corresponding pixel from the input image. Operations like 

smoothing, sharpening, filtering, noise reduction and edge 

detection are highly parallelizable. Global operations depend 

on all the pixels of the input image, like Discrete Fourier 

Transform (DFT) and they are also parallelizable. 

3.2. Intermediate-Level Image Operations 

Intermediate-level image processing operations work on 

images and output other data structures, such as detected 

objects (e.g., faces) or statistics, thereby reducing the amount 

of information. Operations such as Hough transform [10] (to 

find a line in an image), center-of-gravity calculation[11], 

labeling an object[12], are examples of intermediate-level 

image operations. They are more limited from the aspect of 

data parallelism when compared to low level operations. They 

can be defined as image to-object operations. 

3.3. High-Level Image Operations 

High-level image processing operations work on vector 

data or objects in the image and return other vector data or 

objects. They usually have irregular access patterns and thus 

are difficult to run data parallel. They can be divided into 

object-to-object or object-to-point operations. Position 

estimation [13] and object recognition theory [14] are 

examples of this category. 

3.4. Skeletons for Image Operations 

It is possible to use the data-parallelism paradigm with the 

master-slave approach for low level, intermediate-level and 

high-level image processing operations. A master processor is 

selected for splitting and distributing the data to the slaves. 

The master can also process a part of the image (data). Each 

slave processes its received part of the image (data) then, the 

master gathers and assembles the image (data) back. Based on 

the above observation, we identify a number of skeletons for 

parallel processing of low-level, intermediate-level and 

high-level image processing operations. They are named 

according Eto the type of the operator. Headers of some 

skeletons are shown in code 1. 

//skeleton for point to point operations 

void PixelToPixelOp(E_IMG *in, E_IMG 

*out,void(*op)()); 

//skeleton for neighborhood to point operations 

void NeighborToPixelOp(E_IMG *in, E_IMG *out, 

E_WIN *win,void(*op)()); 

//skeleton for global to point operations 

void GlobalToPixelOp(E_IMG *in, E_IMG *out, 

void(*op)()); 

//skeleton for image to object operations 

void ImageToObject(E_IMG *in, E_OBJ *out, 

void(*op)()); 

//skeleton for object to object operations 

void ObjectToObject(E_OBJ *in, E_OBJ *out, 

void(*op)()); 

//skeleton for object to point/value operations 

void ObjectToPoint(E_OBJ *in, E_Point *out, 

void(*op)()); 

Code 1. Skeleton library 

Each skeleton can be executed on a set of processors. From 

this set of processors, a host processor is selected to split and 

distribute the image to the other processors. The other 

processors from the set receive a part of the image and the 

image operation which should be applied to it. Then the 

computation takes place and the result is sent back to the host 

processor. The programmer of the image processing 

application should only select the skeleton from the library 

and returns the appropriate operation as a parameter. 

4. Face Detection and Recognition 

For recognizing a face from an image, first, it is necessary 

to separate it from the image, and then, it should be recognized 

from a data base of known faces. So, the face recognition 

process can be divided in two parts: 

4.1. Face Detection 

For detecting faces, we have proposed an algorithm [3] by 

searching for the presence of skin tone colored pixels or 

groups of pixels. We have used the YUV color domain, 

because it separates the luminance (Y) from the true color 

(UV). In the RGB color space, the components represent not 

only color but also luminance, which varies from one situation 

to another (due to the fact that changing light causes the 

reliability to be decreased). By using the YUV color domain, 

not only the detection has become more reliable but also the 

skin-tone identification has become easier, because the skin 

tone can now be indicated in a 2−dimensional space. By 

measuring the UV values of human skin-tone, the skin-tone 

region has been identified as a rectangle in the UV spectrum 

(Figure 1) and every non-skin color out of the ”skin box” is 

seen as non face (Figure 2). 

 

Figure 1. Skin region in UV spectrum. 
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Figure 2. Skin-tone result. 

The face (skin) detection part separates the skin-tone from 

the image and sends only the luminance and the coordinate of 

the skin to the recognition part. It should be mentioned that the 

recognition part distinguishes faces from other parts of the 

body such as hands and feet that have the same skin color. 

Furthermore, if an image is coded in the RGB color space, it is 

first converted to YUV. 

4.2. Face Recognition 

The next step of the process is the recognition part. Through 

this process, an area of skin, detected in the previous step, is 

identified with respect to a face database. For this purpose, a 

Radial Basis Function (RBF) neural network is used [6]. The 

reason for using an RBF neural network is its ability to cluster 

similar images before classifying them [4]. An RBF neural 

network structure is demonstrated in Figure 3. 

 

Figure 3. Architecture of RBF neural network 

Its architecture is similar to that of a traditional three layer 

feed forward neural network. The input layer of this network 

is a set of n units, which accepts the elements of an 

n-dimensional input feature vector. (Here, the RBF neural 

network input is the face which is gained from the face 

detection part. Since it is normalized to a 64 * 72 pixel face, it 

follows that n = 4608.) The input units are completely 

connected to the hidden layer with m hidden nodes. 

Connections between the input and the hidden layers have 

fixed unit weights and, consequently, it is not necessary to 

train them. The purpose of the hidden layer is to cluster the 

data and decrease its dimensionality. The RBF hidden nodes 

are also completely connected to the output layer. The number 

of the outputs depends on the number of people to be 

recognized (o equals the number of persons plus one 

according to Figure).  

The output layer provides the response to the activation 

pattern applied to the input layer. The change from the input 

space to the RBF hidden unit space is nonlinear, whereas the 

change from the RBF hidden unit space to the output space is 

linear. 

For the recognition part, a skin area should be fed to the 

neural network input. Subsequently, the output should be 

calculated for each person from the database. The network 

node has one output node for each person from the database 

and the maximum value between the output nodes is 

considered to be the recognized person. For distinguishing a 

face from other parts of the body and from noise, we have 

preserved one of the outputs of the neural network. 

5. Skeletonizing 

This section shows how it is possible to skeletonize image 

processing applications via a skeletons library. According to 

Section 4, face recognition can be divided into two main tasks: 

Detecting skin in the image, which can be further dived into 

two parts: 

Finding the skin-tone in the image; we can map this part of 

the program as low-level image processing operations, 

because the input of this part is an image and the output is also 

an image.  

Separating the skin-tones from the image as objects, and 

determining the coordinates of each of these skin-tones. So we 

map this part as intermediate level image processing 
operations, because the input is an image and the output is a 

set of objects (faces). 

Sending each of the skin-tones (faces) to the neural network 

for identification, according to the faces which are in the data 

base. We map this part as high-level image processing 

operations, because the input is an object and the output is the 

number of the recognized person. 

Code 2 shows the C-code of face recognition. 

/*find skin tone*/ 

for (y=1; y < HEIGHT-1; y++){ 

for (x=1; x < WIDTH-1; x++){ 

/* convert color */ 

Convertcolor(R[x][y],G[x][y],B[x][y], 

U[x][y],V[x][y]); 

/* find skin-tone */ 

if( MIN_U<U[x][y]&&U[x][y]< MAX_U && 

MIN_V<V[x][y]&&V[x][y]< MAX_V) 

out[x][y] = 1; 

else out[x][y] = 0;  } 

} 

/*label the image*/ 

for (y=1; y < HEIGHT-1; y++) 
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for (x=1; x < WIDTH-1; x++) 

if(out[x][y]) 

label(label[x][y]); 

/*Neural network*/ 

for (h=0;h< HIDDEN_NODE; h++){ 

out_hidden[h]=0; 

for (i=0;i< INPUTE_NODE; i++){ 

out_hidden[h] += input[i]*i2h_weight[h][i]; 

} 

out_hidden[h] = ActiveFunc(out_hidden[h]); 

} 

for (o=0;o< OUTPUT_NODE; o++){ 

out_rbf[o]= 0; 

for (h=0;h< HIDDEN_NODE; h++){ 

out_rbf[o] += out_hidden[h]*h2o_weight[o][h]; 

} 

} 

person = 0; 

max = 0; 

for (o=0;o< OUTPUT_NODE; o++){ 

if( out_rbf[o] > max){ 

max= out_rbf[o]; 

person = o; 

} 

} 

Code 2: Face recognition 

The main parts of the program are the parts which are inside 

the loops and they have the same operations for each pixel in 

an image or for each object (face). For being able to bring data 

parallelism into the program, we use skeletons as mentioned in 

Code 1. The code can be divided into the following tasks: 

� Convert color: Since in our setup input is in RGB, for 

detecting the skin tone in the UV domain, the values of U 

and V should be calculated for each pixel. 

� Binarization: For each pixel, it should be checked 

whether it is within the skin-tone box or not (see Figure 

3). 

� Labeling: For separating the faces from the image, the 

same label should be assigned to pixels which are nearby 

in the skin-tone. 

� Neural network: The neural network for recognizing the 

objects which are detected in the previous part. 

The main function of the skeletonized code is shown in 

Code 3 where (the first three tasks are mapped onto the first 

three skeletons; and the neural network is mapped onto the 

second three skeletons). 

PixelToPixelOp(RGB, UV, &yc2ycbcr);  

PixelToPixelOp(UV, skin, &Binarization);  

ImageToObject(skin, obj, &labeling);  

for( i= 0; i < num_object; i++){  

ObjectToObject(obj,hidden, &NeuralNet_hiddennode);   

ObjectToObject(hidden,out, &NeuralNet_outputnode);   

ObjectToValue(out, person, &Find_max);  

} 

Code 3: Main function of skeleton code for face 

recognition 

6. Evaluation and Discussion 

We have implemented the skeletons library for the 

IMAP-board. Each implemented skeleton follows a standard 

template: first, the control processor reads the image or data 

from the external memory; Then, it distributes the data 

between the PEs; After that, it sends the determined operations 

(instructions) from the skeletons to the PEs; Finally, it gathers 

the result from the PEs and writes it in the external memory. 

Table 2 shows the execution time for each skeleton in the 

program. The image size that we have used is 256 * 240 pixels 

and the neural network that we have used has 4608 input nodes, 

15 hidden nodes and 6 (5 persons + 1 noise) output nodes. 

Table 2. execution time. 

Skeleton Time(ms) 

PixelToPixelOp(RGB, UV, &yc2ycbcr) 1.9 

PixelToPixelOp(UV, skin, &Binarization) 1.75 

ImageToObject(skin, obj, &labeling) 1.58 

ObjectToObject(obj, hidden, &NeuralNet _hiddennode) 2.1 

ObjectToObject (hidden, out, &NeuralNet_outputnode) 0.567 

We have also implemented a manually optimized version of 

face recognition (without using the skeletons) on the 

IMAP-board. The difference is that each skeleton reads the 

image (object) from the external memory, distributes it 

between the PEs, and again stores the results in this external 

memory, whereas in the optimal solution it is not always 

necessary to read and write data from/to the external memory. 

We have measured the execution time for reading, distributing 

and gathering an image (256 * 240 pixels) for each skeleton 

and it is 0.16ms. The average time for running each skeleton is 

1.58ms (Table 2). 

Consequently, the execution time for sending and gathering 

an image, takes 11% of skeleton execution time 

(0.16/(1.58−0.16) = .11). Note that in general, it is not 

necessary to send/collect the entire image to/from a skeleton 

(For instance, for the neural network, it’s only necessary to 

send the skin-tone region). From these measurements, we may 

deduce that in general the execution time for skeletonized 

code is in the order of 10% worse than the execution time of an 

optimized program (on the IMAP-board and assuming that 

similar types of skeletons are used in the application). 

For the face recognition case study, the skeletonized code 

takes 8.21ms and the optimized code takes 7.8ms, which is an 

overhead of approximately 5%. Based on this initial 

experience, we expect that skeletonization can be used as a 

very convenient programming and implementation method 

which does not result in an excessive execution time overhead. 

It relieves the programmer from many tedious low level 

implementation and parallelization details. 
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