

International Journal of Intelligent Information Systems
2014; 3(6-1): 10-14

Published online October 17, 2014 (http://www.sciencepublishinggroup.com/j/ijiis)

doi: 10.11648/j.ijiis.s.2014030601.12

ISSN: 2328-7675 (Print); ISSN: 2328-7683 (Online)

Parallel image processing using algorithmic skeletons

Sare Eslami Khorami

Islamic Azad University South Tehran Branch, Tehran, Iran

Email address:
sare.eslami@gmail.com

To cite this article:
Sare Eslami Khorami. Parallel Image Processing Using Algorithmic Skeletons. International Journal of Intelligent Information Systems.

Special Issue: Research and Practices in Information Systems and Technologies in Developing Countries. Vol. 3, No. 6-1, 2014, pp. 10-14.

doi: 10.11648/j.ijiis.s.2014030601.12

Abstract: In the last few decades, image processing has achieved significant theoretical and practical progress. It has been so

fast that image processing can be easily traced in several disciplines and industries. At present, various methods have been

proposed to implement image processing. The present paper aims to present a technique for image processing which utilizes

design and analysis of parallel algorithms. It employs a new approach called “algorithmic skeletons” which is composed of a set

of programming templates; hence facilitating the programmers’ work.

Keywords: Image Processing, Algorithmic Skeletons, Face Detection and Recognition

1. Introduction

Image processing has two major sections: image

enhancement and machine vision. Image enhancement

includes methods such as using fading filters and increasing

contrast to enhance image visibility, picture thickness, and to

make sure they are correctly displayed in the target

environment (such as a printer or a monitor)[15]. Machine

vision involves methods to understand the content of images

to be used in area such as robotics and axis images [17].

Parallel processing has accelerated processing such as

computing speed of computer systems [1]. As image

processing is capable of parallelism, this paper addresses

image processing by using parallelism.

2. Algorithmic Skeletons

Algorithmic skeletons are general models for parallel

programming [1]. It provides a programming language which

is not only simple and independent of machine architecture

but also highly efficient. Skeletons are algorithmic patterns

used in parallel programming. They are usually integrated

with a host language and they are considered the only source

of parallelism in that language. For example, mapping

skeletons run a function on all items in a list in parallel. FARM

skeletons implements master-slave in parallel or D&C

represents divide and conquer parallelism [16]. A task is

recursively sub-divided until a condition is met, then the

sub-task is executed and results are merged while the

recursion is unwound. The most important feature of a

skeleton is its generality that is the ability to be used in

different applications [1]. In most algorithmic skeletons, there

are a set of functions that has to be defined by the user. Once

defined by the user, these functions are compiled into a

specific location in the skeleton and then they are executed

after a pre-processing. Usually every skeleton has a

performance model which is presented as a mathematical

formula and the user is able to predict the performance time by

compiling the related parameters in this model.

3. Classification and Skeletonization of

Image Operations

Image processing operations can be classified as low-level,

intermediate-level and high-level (Table 1); Based on this

classification, it is possible to define a skeleton library for

image operations.

Table 1. Image operations.

Image operations Source Output

Low-level Image Image

Intermediate-level Image Object/vector-data

High-level Object/vector-data Object/vector-data

International Journal of Intelligent Information Systems 2014; 3(6-1): 10-14 11

3.1. Low-Level Image Operations

Low-level image processing operations use the values of

image pixels to modify individual pixels in an image. They

can be divided into point-to point, neighborhood-to-point and

global-to-point operations [5]. Point-to-point operations

depend only on the values of the corresponding pixels from

the input image and the parallelization is simple.

Neighborhood operations produce an image in which the

output pixels depend on a group of neighboring pixels around

the corresponding pixel from the input image. Operations like

smoothing, sharpening, filtering, noise reduction and edge

detection are highly parallelizable. Global operations depend

on all the pixels of the input image, like Discrete Fourier

Transform (DFT) and they are also parallelizable.

3.2. Intermediate-Level Image Operations

Intermediate-level image processing operations work on

images and output other data structures, such as detected

objects (e.g., faces) or statistics, thereby reducing the amount

of information. Operations such as Hough transform [10] (to

find a line in an image), center-of-gravity calculation[11],

labeling an object[12], are examples of intermediate-level

image operations. They are more limited from the aspect of

data parallelism when compared to low level operations. They

can be defined as image to-object operations.

3.3. High-Level Image Operations

High-level image processing operations work on vector

data or objects in the image and return other vector data or

objects. They usually have irregular access patterns and thus

are difficult to run data parallel. They can be divided into

object-to-object or object-to-point operations. Position

estimation [13] and object recognition theory [14] are

examples of this category.

3.4. Skeletons for Image Operations

It is possible to use the data-parallelism paradigm with the

master-slave approach for low level, intermediate-level and

high-level image processing operations. A master processor is

selected for splitting and distributing the data to the slaves.

The master can also process a part of the image (data). Each

slave processes its received part of the image (data) then, the

master gathers and assembles the image (data) back. Based on

the above observation, we identify a number of skeletons for

parallel processing of low-level, intermediate-level and

high-level image processing operations. They are named

according Eto the type of the operator. Headers of some

skeletons are shown in code 1.

//skeleton for point to point operations

void PixelToPixelOp(E_IMG *in, E_IMG

*out,void(*op)());

//skeleton for neighborhood to point operations

void NeighborToPixelOp(E_IMG *in, E_IMG *out,

E_WIN *win,void(*op)());

//skeleton for global to point operations

void GlobalToPixelOp(E_IMG *in, E_IMG *out,

void(*op)());

//skeleton for image to object operations

void ImageToObject(E_IMG *in, E_OBJ *out,

void(*op)());

//skeleton for object to object operations

void ObjectToObject(E_OBJ *in, E_OBJ *out,

void(*op)());

//skeleton for object to point/value operations

void ObjectToPoint(E_OBJ *in, E_Point *out,

void(*op)());

Code 1. Skeleton library

Each skeleton can be executed on a set of processors. From

this set of processors, a host processor is selected to split and

distribute the image to the other processors. The other

processors from the set receive a part of the image and the

image operation which should be applied to it. Then the

computation takes place and the result is sent back to the host

processor. The programmer of the image processing

application should only select the skeleton from the library

and returns the appropriate operation as a parameter.

4. Face Detection and Recognition

For recognizing a face from an image, first, it is necessary

to separate it from the image, and then, it should be recognized

from a data base of known faces. So, the face recognition

process can be divided in two parts:

4.1. Face Detection

For detecting faces, we have proposed an algorithm [3] by

searching for the presence of skin tone colored pixels or

groups of pixels. We have used the YUV color domain,

because it separates the luminance (Y) from the true color

(UV). In the RGB color space, the components represent not

only color but also luminance, which varies from one situation

to another (due to the fact that changing light causes the

reliability to be decreased). By using the YUV color domain,

not only the detection has become more reliable but also the

skin-tone identification has become easier, because the skin

tone can now be indicated in a 2−dimensional space. By

measuring the UV values of human skin-tone, the skin-tone

region has been identified as a rectangle in the UV spectrum

(Figure 1) and every non-skin color out of the ”skin box” is

seen as non face (Figure 2).

Figure 1. Skin region in UV spectrum.

12 Sare Eslami Khorami: Parallel Image Processing Using Algorithmic Skeletons

Figure 2. Skin-tone result.

The face (skin) detection part separates the skin-tone from

the image and sends only the luminance and the coordinate of

the skin to the recognition part. It should be mentioned that the

recognition part distinguishes faces from other parts of the

body such as hands and feet that have the same skin color.

Furthermore, if an image is coded in the RGB color space, it is

first converted to YUV.

4.2. Face Recognition

The next step of the process is the recognition part. Through

this process, an area of skin, detected in the previous step, is

identified with respect to a face database. For this purpose, a

Radial Basis Function (RBF) neural network is used [6]. The

reason for using an RBF neural network is its ability to cluster

similar images before classifying them [4]. An RBF neural

network structure is demonstrated in Figure 3.

Figure 3. Architecture of RBF neural network

Its architecture is similar to that of a traditional three layer

feed forward neural network. The input layer of this network

is a set of n units, which accepts the elements of an

n-dimensional input feature vector. (Here, the RBF neural

network input is the face which is gained from the face

detection part. Since it is normalized to a 64 * 72 pixel face, it

follows that n = 4608.) The input units are completely

connected to the hidden layer with m hidden nodes.

Connections between the input and the hidden layers have

fixed unit weights and, consequently, it is not necessary to

train them. The purpose of the hidden layer is to cluster the

data and decrease its dimensionality. The RBF hidden nodes

are also completely connected to the output layer. The number

of the outputs depends on the number of people to be

recognized (o equals the number of persons plus one

according to Figure).

The output layer provides the response to the activation

pattern applied to the input layer. The change from the input

space to the RBF hidden unit space is nonlinear, whereas the

change from the RBF hidden unit space to the output space is

linear.

For the recognition part, a skin area should be fed to the

neural network input. Subsequently, the output should be

calculated for each person from the database. The network

node has one output node for each person from the database

and the maximum value between the output nodes is

considered to be the recognized person. For distinguishing a

face from other parts of the body and from noise, we have

preserved one of the outputs of the neural network.

5. Skeletonizing

This section shows how it is possible to skeletonize image

processing applications via a skeletons library. According to

Section 4, face recognition can be divided into two main tasks:

Detecting skin in the image, which can be further dived into

two parts:

Finding the skin-tone in the image; we can map this part of

the program as low-level image processing operations,

because the input of this part is an image and the output is also

an image.

Separating the skin-tones from the image as objects, and

determining the coordinates of each of these skin-tones. So we

map this part as intermediate level image processing
operations, because the input is an image and the output is a

set of objects (faces).

Sending each of the skin-tones (faces) to the neural network

for identification, according to the faces which are in the data

base. We map this part as high-level image processing

operations, because the input is an object and the output is the

number of the recognized person.

Code 2 shows the C-code of face recognition.

/*find skin tone*/

for (y=1; y < HEIGHT-1; y++){

for (x=1; x < WIDTH-1; x++){

/* convert color */

Convertcolor(R[x][y],G[x][y],B[x][y],

U[x][y],V[x][y]);

/* find skin-tone */

if(MIN_U<U[x][y]&&U[x][y]< MAX_U &&

MIN_V<V[x][y]&&V[x][y]< MAX_V)

out[x][y] = 1;

else out[x][y] = 0; }

}

/*label the image*/

for (y=1; y < HEIGHT-1; y++)

International Journal of Intelligent Information Systems 2014; 3(6-1): 10-14 13

for (x=1; x < WIDTH-1; x++)

if(out[x][y])

label(label[x][y]);

/*Neural network*/

for (h=0;h< HIDDEN_NODE; h++){

out_hidden[h]=0;

for (i=0;i< INPUTE_NODE; i++){

out_hidden[h] += input[i]*i2h_weight[h][i];

}

out_hidden[h] = ActiveFunc(out_hidden[h]);

}

for (o=0;o< OUTPUT_NODE; o++){

out_rbf[o]= 0;

for (h=0;h< HIDDEN_NODE; h++){

out_rbf[o] += out_hidden[h]*h2o_weight[o][h];

}

}

person = 0;

max = 0;

for (o=0;o< OUTPUT_NODE; o++){

if(out_rbf[o] > max){

max= out_rbf[o];

person = o;

}

}

Code 2: Face recognition

The main parts of the program are the parts which are inside

the loops and they have the same operations for each pixel in

an image or for each object (face). For being able to bring data

parallelism into the program, we use skeletons as mentioned in

Code 1. The code can be divided into the following tasks:

� Convert color: Since in our setup input is in RGB, for

detecting the skin tone in the UV domain, the values of U

and V should be calculated for each pixel.

� Binarization: For each pixel, it should be checked

whether it is within the skin-tone box or not (see Figure

3).

� Labeling: For separating the faces from the image, the

same label should be assigned to pixels which are nearby

in the skin-tone.

� Neural network: The neural network for recognizing the

objects which are detected in the previous part.

The main function of the skeletonized code is shown in

Code 3 where (the first three tasks are mapped onto the first

three skeletons; and the neural network is mapped onto the

second three skeletons).

PixelToPixelOp(RGB, UV, &yc2ycbcr);

PixelToPixelOp(UV, skin, &Binarization);

ImageToObject(skin, obj, &labeling);

for(i= 0; i < num_object; i++){

ObjectToObject(obj,hidden, &NeuralNet_hiddennode);

ObjectToObject(hidden,out, &NeuralNet_outputnode);

ObjectToValue(out, person, &Find_max);

}

Code 3: Main function of skeleton code for face

recognition

6. Evaluation and Discussion

We have implemented the skeletons library for the

IMAP-board. Each implemented skeleton follows a standard

template: first, the control processor reads the image or data

from the external memory; Then, it distributes the data

between the PEs; After that, it sends the determined operations

(instructions) from the skeletons to the PEs; Finally, it gathers

the result from the PEs and writes it in the external memory.

Table 2 shows the execution time for each skeleton in the

program. The image size that we have used is 256 * 240 pixels

and the neural network that we have used has 4608 input nodes,

15 hidden nodes and 6 (5 persons + 1 noise) output nodes.

Table 2. execution time.

Skeleton Time(ms)

PixelToPixelOp(RGB, UV, &yc2ycbcr) 1.9

PixelToPixelOp(UV, skin, &Binarization) 1.75

ImageToObject(skin, obj, &labeling) 1.58

ObjectToObject(obj, hidden, &NeuralNet _hiddennode) 2.1

ObjectToObject (hidden, out, &NeuralNet_outputnode) 0.567

We have also implemented a manually optimized version of

face recognition (without using the skeletons) on the

IMAP-board. The difference is that each skeleton reads the

image (object) from the external memory, distributes it

between the PEs, and again stores the results in this external

memory, whereas in the optimal solution it is not always

necessary to read and write data from/to the external memory.

We have measured the execution time for reading, distributing

and gathering an image (256 * 240 pixels) for each skeleton

and it is 0.16ms. The average time for running each skeleton is

1.58ms (Table 2).

Consequently, the execution time for sending and gathering

an image, takes 11% of skeleton execution time

(0.16/(1.58−0.16) = .11). Note that in general, it is not

necessary to send/collect the entire image to/from a skeleton

(For instance, for the neural network, it’s only necessary to

send the skin-tone region). From these measurements, we may

deduce that in general the execution time for skeletonized

code is in the order of 10% worse than the execution time of an

optimized program (on the IMAP-board and assuming that

similar types of skeletons are used in the application).

For the face recognition case study, the skeletonized code

takes 8.21ms and the optimized code takes 7.8ms, which is an

overhead of approximately 5%. Based on this initial

experience, we expect that skeletonization can be used as a

very convenient programming and implementation method

which does not result in an excessive execution time overhead.

It relieves the programmer from many tedious low level

implementation and parallelization details.

References

[1] H. Gonz´alez-V´elez, M. Leyton, “A Survey of Algorithmic
Skeleton Frameworks: High-Level Structured Parallel
Programming Enablers,” in Research Monographs in Parallel
and Distributed Computing. MIT Press, 2008.

14 Sare Eslami Khorami: Parallel Image Processing Using Algorithmic Skeletons

[2] Aldinucci, M.; Danelutto, M.; Antoniu, G.; Jan, M.
"Fault-Tolerant Data Sharing for High-level Grid: A
Hierarchical Storage Architecture". Achievements in European
Research on Grid Systems, 2008.

[3] Wang, Q., Wu, J. Long, C. Li, B, “P-FAD: Real-time face
detection scheme on embedded smart cameras ,” in Distributed
Smart Cameras (ICDSC), 2012 Sixth International
Conference,2012.

[4] Y. Hu and J. Hwang, Handbook of neural network signal
processing. CRC Press, 2002.

[5] C. H. Chu, E. J.Delp, L.H. Jamieson,H. J. Siegel, F. J.Weil, and
A. B. Whinston, “A model for an intelligent operating system
for executing image understanding tasks on a reconfigurable
parallel architecture,” Journal of Parallel and Distributed
Computing, vol. 6, pp. 598–662, June 1998.

[6] J. Haddadnia, K. Faez, and P. Moallem,“Human face
recognition with moment invariants based on shape
information,” in Proceedings of the International Conference
on Information Systems, Analysis and Syn-thesis, vol. 20,
(Orlando, Florida USA), International Institute of Informatics
and Systemics(ISAS), 2001.

[7] Mario Leyton, Jose M. Piquer. "Skandium: Multi-core
Programming with algorithmic skeletons", IEEE Euro-micro
PDP 2010.

[8] G. Yaikhom, M. Cole, S. Gilmore, and J. Hillston. "A structural
approach for modelling performance of systems using
skeletons." Electronic Notes in Theoretical Computer Science,
190(3):167–183,2007.

[9] N. Zhang, Y. Chen, W. Jian-Li,” Image parallel processing
based on GPU ,“ Advanced Computer Control (ICACC), 2010
2nd International Conference, March 2010.

[10] S. Eghtesadi, M. Sandler, “Implementation of the Hough
transform for intermediate-level vision on a transputer
network”, Journal of Parallel and Distributed Computing,
Volume 13, Issue 3, Pages 212–218, April 1989.

[11] R. Boynton, “Measuring weight and all three axes of the center
of gravity of a rocket motor without having to re-position the
motor”, presentation at the 61st Annual Conference of the
Society of Allied Weight Engineers Virginia Beach, Virginia
May 20-22, 2002.

[12] Z. Fang , X. Li , “A parallel processing approach to image
object labeling problems”, CSC '87 Proceedings of the 15th
annual conference on Computer Science, Page 423, New York,
1987.

[13] C.Papamanthou, F. Preparata, R.Tamassia, “Algorithms for
Location Estimation Based on RSSI Sampling”,
Springer-Verlag Berlin Heidelberg, 2008.

[14] S. Bohlhalter, C.Fretz, B. Weder, “Hierarchical versus parallel
processing in tactile object recognition: a
behavioural-neuroanatomical study of aperceptive tactile
agnosia”, Brain ,2002.

[15] P. Jonker and W. Caarls, “Application driven design of
embedded real-time image processing,” in Proceedings of
ACIVS 2003 (Advanced Concepts for Intelligent Vision
Systems), (Gent, Belgium), 2003.

[16] J. darlingtons, Y. Guo, H.W. To, J. Yang, “Functional Skeletons
for Parallel coordination”, proceeding of 1st EuroPar
Conference, Stokholm, Sweden, pp. 55-66, Agust 1995.

[17] R. Jones, “Machine vision applications”, science direct,
Volume 1, Issue 4, 1991, Pages 439–446.

