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Abstract: Mixed-model straight/U-shaped assembly line has been recognized as a relevant component of Just-In-Time (JIT) 

production line system. For this system, “Heijunka” design is also challenged as both the task assignment and the production 

sequence affect the workload imbalance among workstations. In this context and recognizing uncertain task time environment 

that is often observed in actual manufacturing scene, this research addresses the Line Balancing Problem (LBP) and the Product 

Sequencing Problem (PSP) jointly and proposes a mathematical model with stochastic task time which is subjected to normal 

distribution. The objectives of this model are to maximize line efficiency and to minimize the variation of work overload time. A 

Multi-objective Genetic Algorithm (MOGA) and an Ameliorative Structure of Multi-objective Genetic Algorithm (ASMOGA) 

with Priority-based Chromosome (PBC) are applied to solve this problem. At last, this research conducts an experimental 

simulation on a set of benchmark problems to verify the outperformance of the proposed algorithm. 
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1. Introduction 

This research focuses on load balancing, which is an 

important concept of resource management in operational 

systems. The study aims to equalize or reduce imbalance of 

workload among resources in processing systems. This 

objective is important because fair assignment of workload 

on each resource enables high utilization of fixed assets. This 

can be achieved through task assignment procedure. Due to 

the trend towards a larger scale complex structure of 

processing systems, this concept becomes one of the most 

critical issues in operations and production management. The 

pay back of swollen fixed cost of existing configurations is 

highly depending on the utilization of resources in such 

systems. For this reason, this research highlights load 

balancing problem for assembly line production systems. 

Assembly line is a typical flow-line production system that 

normally consists of sequence of workstations. These 

workstations are connected by material transport system such 

as belt conveyors. The transport system moves the products 

along the line at constant speed where products are evenly 

distributed. At each workstation, a group of trained workers 

repeatedly perform predetermined tasks on a partially 

finished product in fixed time called cycle time. These tasks 

are the elementary components of precedence graph which 

represents relation of tasks of assembly line production 

system. Namely, each task is subjected to sequence 

constraints and performs a compulsory operation to complete 

a final product.  

Assembly line systems are categorized by two features: 

The first feature is layout configuration: Straight-shaped 

Assembly Line (SAL) and U-shaped Assembly Line (UAL). 

Most of the new assembly lines tend to be arranged in terms 

of UAL rather than SAL since UAL can be more flexible to 

work across both sides of the line while workers can only 

work on adjacent sections in case of SAL. Consequently, 

UAL has been viewed as an integral component of JIT 

production principle. 
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The second feature is capability of manufacturing variety: 

Single-Model Assembly Line (SMAL) and Mixed-Model 

Assembly Line (MMAL). In the early days, companies 

mainly employed SMAL to produce a volume of single 

products. However, it is difficult to satisfy the various 

requirements of customers. Hence MMAL was developed to 

meet such high level of demands. 

This study deals with the Mixed-model Straight/U-shaped 

Assembly Line (MMS/UAL) due to the advantages 

mentioned above. Comparing to SAL, the optimal design of 

MAL needs to handle both LBP and PSP, which are closely 

interrelated. The optimization of LBP highly depends on PSP, 

which, in turn, is affected by LBP. Especially for MMS/UAL, 

the workload of a workstation is not only related to the 

assigned tasks, but also depending on the model sequence 

processed at this workstation. Regarding this point, load 

balancing problem is extended in terms of multi-decision 

criteria design problem. “Heijunka” criterion, one of the new 

multi-decision criteria, has been developed to solve this 

situation. “Heijunka” is Japanese word meaning level 

equalization. It is one of the LEAN tools used by 

manufacturing companies, but can be applied to any 

operations framework. 

Two objective functions are considered in this “Heijunka” 

design for both LBP and PSP: 1) maximizing line efficiency 

and 2) minimizing the maximum of work overload ratio. In 

order to define the mathematical model with both two 

objectives, task times are assumed to be stochastic variables 

that subjects to normal distributions. Since there are 

numerous uncertain factors in real-life applications (such as 

workers’ skill level, mentation, task complexity, machine 

breakdowns and non-JIT etc.), deterministic task times may 

be quite unrealistic even in full-automatic assembly lines. 

Under this stochastic assumption, both the objectives are 

obliged to be normally distributed. The procurement 

objective 1) is to maximize the mean and to minimize the 

variance of line efficiency variable. On the other hand, 

objective 2) is proposed for leveling the variance of work 

overload times among workstations based on the idea of 

“Heijunka”. 

In this research, an approach for this multi-criteria 

MMS/UAL model is developed by utilizing MOGA. 

For computational complexity, line balancing and model 

sequencing are both known to be of the NP-hard class of 

combinatorial optimization problems, so the mixed-model 

straight/U-shaped line balancing and sequencing problem is 

also NP-hard. Many meta-hierarchical design procedures for 

this sort of problem is proposed to actualize significant 

improvement. Within these approaches, GA is known as a 

stochastic search algorithm that mimics the process of natural 

selections and genetic mutations. The implementation of 

genetic operators makes GA very effective in performing 

global search, while most of conventional heuristic methods 

usually hard to overcome local search. Since the task 

precedence graph among different models are actually 

integrated, a PBC is advanced to encode the solution of this 

problem into a chromosome efficiently. In addition, to 

improve the performance of MOGA, an ASMOGA is 

presented. In order to optimize the outcomes of GA, the 

evaluation method is proposed as the weight mapping 

function of line efficiency and work overload time, and the 

selection operator is considered as roulette wheel selection 

procedure. 

At last, experimental simulation on the objective problems 

are conducted by comparing the performance of MOGA and 

ASMOGA. Furthermore, the attained performance of straight 

lines and the performance of U-lines are compared to 

confirm the improvement. 

The structure of this dissertation is organized as following: 

section 2 describes the assembly load balancing problem by 

constructing the mathematical model of the problem and 

illustrates the procedure of task assignment; section 3 

proposes a genetic algorithm for solving this problem; 

section 4 provides the experimental results on a set of 

benchmark problems; section 5 concludes this paper. 

2. Assembly Line Load Balancing 

Problem 

As mentioned before, two objectives of maximizing line 

efficiency and minimizing work overload time are proposed 

for both LBP and PSP in MMU/SAL system. Since 

calculating the value of both objectives highly relies on line 

organization, an elaborate task assignment procedure for both 

straight line and U-shaped line is necessary. Therefore, 

Chapter 2 proposes a detailed mathematical model and a 

proper approach of task assignment. 

2.1. Mathematical Model 

2.1.1. Notations 

1) Indices: 

i  task index, � = 1, … , � 

j  workstation index, � = 1, … , � 

m  production model index, 	 = 1, … , 
 

k  chromosome index, � = 1, … , �
����� 

��� priority index of task i at chromosome k, � = 1, … , �, � =
1, … , �
����� 

2) Parameters: 

c  cycle time 

�  maximum load time; � =0.8c 

�� production quantity of product model m; 

�� vector that represents the task index of workstation j; 

�� = �vector of  � ���� = 1�� 

�� vector that represents the task index of model m; 

�� = {vector of � |��� = 1�} 

(�  operation time of task i; (�~*(,� , -�
.) 

0�  workload of workstation j; 0� = ∑ (� �∈34 , 

       0�~*(,5 , -5
.) 

,5  mean of 0�; ,5 = ∑ ,� �∈34  

-5
.  variance of 0�; -�

. = ∑ -�
.

 �∈34  

654(�) probability density function of 0� ; 654(�) =
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7
√.9:;

exp +> +?@A;/B
.:;B / 

C54+�/ cumulative distribution function of 

DE0� F �G � H 654+�/I�?
@J  

K  line efficiency; K � 7
LMN ∑ 0� �L

�O7
,P  mean of K; ,P � 7

LMN ∑ ,�3�O7  

-P.  variance of K; -P. � 7
+LMN/B ∑ -3�O7

D� work overload probability of workstation 

D�0� Q R� � 1 > D�0� F R� � 1 > C54+R/ 

DST? maximum of D�; DST? � 	U��D
V� fitness value of chromosome k, V� �
���+�/   set of predecessors of task i 

WXR+�/   set of successors of task i 

3) Decision Variables: 

��� � Y1, �6 (UW� � �W UWW�Z[�I (
 \
��W(U(�
[
0, 
(^��\�W�                               

��� � Y1, �6 (UW� � �W U[ �_�	�[( 
6
0, 
(^��\�W�                            

2.1.2. Formulations 

1) Objective functions: 

Max ,P  

<Maximize mean of line efficiency> 

Min -P.  

<Minimize variance of line efficiency> 

Min DST?  

<Minimize the maximum probability of work overload 

times> 

2) Subject to: 

��� � 0 
� 1  � � 1, … , �; � � 1,

a ��� � 1
L

�O7
� � 1, … , �

<Each task must be assigned to one and only one 

workstation> 

��� � 0 or 1 � � 1, … , �; 	 � 1, … 


a ��� � 1
S

�O7
� � 1, … ,

<Each task must belong to one and only one product 

model> 

∑ �+�b� c ��� F 0/L
�O7  ∀� ∈ ���+�/ 

<All the predecessors for task i are assigned to the same or 

to an earlier workstation> 

∑ �+�b� c ��� F 0/L
�O7  or ∑L

�O
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   (1) 

   (2) 

 

   (3) 

<Minimize the maximum probability of work overload 

, … �   (4) 

� 

<Each task must be assigned to one and only one 


   (5) 

� 

<Each task must belong to one and only one product 

 (6: Straight Line) 

are assigned to the same or 

�+�e� c ��� F 0/O7

 ∀� ∈ ���+�/, ∀W ∈ WXR
<All the predecessors or all successors for task 

assigned to the same or an earlier workstation>

2.2. Task Assignment 

The mixed-model assembly line studied in this paper 

consists of a set of workstations which are arranged along a 

straight/U-shaped conveyor that automatically moves at a 

constant speed. Different products with similar characteristics 

are launched onto the conveyor according to the product 

sequence at a fixed rate. Tasks are moved through the 

workstations sequentially and processed into finished 

products after leaving the last workstation. During the period 

of manufacturing, there are several different products 

processed at different workstations. After a lapse of time 

called cycle time, each product enters the next workstation and 

the worker returns back to the upstream boundary of the 

workstation to manufacture the next product.

2.2.1. Problem Description 

For load balancing, it concerns the assignment of a set of 

tasks to different workstations regarding some special 

objectives, such as minimizing the number of workstations for 

a given cycle time (Type 1), minimizing the cycle time for a 

given number of workstations (Type 2), maximizing the line 

efficiency by minimizing both the cycle time and the number 

of workstations (Type E), or optimizing a certain objective for 

a given combination of cycle time and number of workstations 

(Type F). Since the objective of thi

efficiency and minimize workload variation simultaneously 

with given task properties and workstation properties, the type 

of this problem will be Type F. 

U-shaped assembly line load balancing probl

demonstrate the assignment.  

(1) Line properties: quantity of workstations 

time c = 15; maximum workload 

Figure 1. Straight Assembly Line

Figure 2. U-shaped Assembly Line
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WXR+�/  (7: U-shaped Line) 

<All the predecessors or all successors for task i are 

assigned to the same or an earlier workstation> 

model assembly line studied in this paper 

consists of a set of workstations which are arranged along a 

shaped conveyor that automatically moves at a 

constant speed. Different products with similar characteristics 

eyor according to the product 

sequence at a fixed rate. Tasks are moved through the 

workstations sequentially and processed into finished 

products after leaving the last workstation. During the period 

of manufacturing, there are several different products 

processed at different workstations. After a lapse of time 

called cycle time, each product enters the next workstation and 

the worker returns back to the upstream boundary of the 

workstation to manufacture the next product. 

oad balancing, it concerns the assignment of a set of 

tasks to different workstations regarding some special 

objectives, such as minimizing the number of workstations for 

a given cycle time (Type 1), minimizing the cycle time for a 

ions (Type 2), maximizing the line 

efficiency by minimizing both the cycle time and the number 

of workstations (Type E), or optimizing a certain objective for 

a given combination of cycle time and number of workstations 

(Type F). Since the objective of this paper is to maximize line 

efficiency and minimize workload variation simultaneously 

with given task properties and workstation properties, the type 

 Examples for both straight and 

shaped assembly line load balancing problem are used to 

 

(1) Line properties: quantity of workstations J = 4; cycle 

= 15; maximum workload � = 0.8c = 12. 

 

Straight Assembly Line 

 

shaped Assembly Line 
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As shown in Figure 1 and Figure 2, the layout of U

lines is significantly different from straight line. U

lines allow the forward and backward task assignment. For 

instance, the first task and the last task must be placed at the 

last workstation, which is impossible for a stra

Besides, there are two kinds of workstation in U

Crossover workstation, where tasks are able to be allocated to 

both the front and back part of workstations and operators can 

work at both sides. 2) Regular workstation, where the 

difference between front and back part of the workstations 

does not exist. As for the U-shaped line in Figure 2, 

workstation 1, 2, 3 are crossover workstations while 

workstation 4 is regular workstation. Furthermore, not all the 

parts of a workstation need to be assigned with tasks. The 

parts assignment depends on the product sequence as shown in 

Figure 3 illustrated in the following head. 

(2) Task properties: task quantity I 

(�~*+,�, -�./ ; one PBC ���  +� � 1, …
precedence diagram; quantity of products M

Figure 3. Task Precedence Diagram

Because of the technical requirements, each product has its 

own precedence relationships among tasks called precedence 

diagram. Generally, these diagrams of different products can 

be combined into a single precedence diagram. For instance, 

Figure 3 illustrates the precedence diagrams of 3 kinds of 

products, in which each node represents a task and each arrow 

connecting two different nodes indicates their precedence 

relationship. 

Since the difference between straight line and U

is not negligible, the sequence of assignment for both lines is 

quite different: For straight line, task 1 must be assigned to the 

first workstation and task 11 must be assigned to the last 

workstation, the sequence of searching available tasks starts 

with task 1 and ends with task 11(From first to last); For 

U-shaped line, task 1 and task 11 must be assigned to the first 

workstation, the sequence of searching available tasks starts 

with task 1 and task 11 (From two edges to middle).

Table 1. Task Time 

i 1 2 3 4 5 6 7 8 9 

,� 6 2 5 7 1 2 3 6 5 

-5. 2 1 3 4 2 3 2 5 1 

Different from deterministic mathematical model in other 

researches, task times are assumed to be stochastic in this 

literature. As described in Table 1, time of task 1 is subject to 

normal distribution of N (6, 2). Since determining the 

workload of workstation with random task times is extremely 
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 = 11; task time 

, �, � � 1/ ; task 

M = 3. 

 

Task Precedence Diagram 

Because of the technical requirements, each product has its 

own precedence relationships among tasks called precedence 

diagram. Generally, these diagrams of different products can 

bined into a single precedence diagram. For instance, 

Figure 3 illustrates the precedence diagrams of 3 kinds of 

products, in which each node represents a task and each arrow 

connecting two different nodes indicates their precedence 

difference between straight line and U-shaped line 

negligible, the sequence of assignment for both lines is 

quite different: For straight line, task 1 must be assigned to the 

first workstation and task 11 must be assigned to the last 

he sequence of searching available tasks starts 

with task 1 and ends with task 11(From first to last); For 

shaped line, task 1 and task 11 must be assigned to the first 

workstation, the sequence of searching available tasks starts 

(From two edges to middle). 

 10 11 Total 

 5 4 46 

 2 3 2 

Different from deterministic mathematical model in other 

researches, task times are assumed to be stochastic in this 

literature. As described in Table 1, time of task 1 is subject to 

(6, 2). Since determining the 

ation with random task times is extremely 

hard, this paper presumes that the mean of task time is the 

actual task time during the procedure of assignment.

Table 2. Task Priority & Product ID (A Chromosome)

i 1 2 3 4 5 6

��7 7 2 2 3 
1

0 
2 4 2 5 3 8

Figure 4. Regular Structure for Task Assignment

Figure 5. Ameliorative Structure for Task Assignment
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that the mean of task time is the 

actual task time during the procedure of assignment. 

Task Priority & Product ID (A Chromosome) 

6 7 8 9 10 11 

8 3 9 1 6 3 
1

1 
1 1 2 3 1 

    

Regular Structure for Task Assignment   

    

Ameliorative Structure for Task Assignment 
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Each task has a priority value which is randomly generated 

as shown in Table 2, which represents a chromosome of GA. 

These priorities are different from each other because the 

same priorities probably lead to a tie of task assignment.

Besides, product sequence is determined by the priority 

number of tasks: When the conditions of priorities 

{7,2,10,5,8,9,11,6,1,3} ) and quantity of products (

given, the ID of product is able to be deducted by calculating 

the function of {	
I+��� , 
/ c 1}. For example, {

= 3} → task 1 represents product 2 (7 mod 3 + 1 = 2). In this 

analogy, the product sequence of this chromosome is 

{2,3,2,2,3,3,1,3,1,2,1} and the quantities for each product are 

{�7= 3, �. = 4, �g �4}. 

2.2.2. Assignment Procedure 

Two kinds of assignment procedure are proposed as shown 

in Figure 4 and Figure 5: 1) Regular structure for MOGA and 

2) Hierarchical ameliorative structure for ASMOGA. This 

ameliorative structure is originally developed by Katayama.

The assignment sequence for workstations is from the fi

workstation to the last workstation. For straight line, the first 

task is obliged to be assigned to the first workstation while 

both the first and the last task are obliged to be assigned at the 

first workstation of U-shaped line. After assigning first

first workstation (or first and last task to first workstation), 

available tasks are selected to be candidates according to the 

task precedence diagram. Task with the largest priority is 

about to be assigned before other available tasks. This 

select-assign process does not stop until the load of this 

workstation exceeds the maximum workload

excess occurs, the task that has the second largest priority is 

selected to replace the task that has the most priority. The rest 

assignment of workstations can be done in the same manner. 

At last, the workload of final workstation has an inevitable 

probability of exceeding the maximum workload. To cope 

with this excess, this ameliorative structure lets

0L  Q  �), then reassigns the tasks until 0
procedure is also the difference between the regular structure 

and the ameliorative structure. 

The results of assignment for the examples of Chapter 2.2.1 

are proposed as shown in Figure 6 and Figure 7. This 

assignment is based on both regular structure and ameliorative 

structure. 

Figure 6. Regular & Ameliorative Structure for Straight Line Assignment

For the example of straight line, the assignment results for 

regular structure are different from those for ameliorative 

structure. The workload of last workstation in the regular 
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Structure for Straight Line Assignment 

straight line, the assignment results for 

regular structure are different from those for ameliorative 

tructure. The workload of last workstation in the regular 

assignment actually exceeds the maximum workload time. 

Hence, the amount of workstation is about to be 5 according to 

the ameliorative assignment structure.

Figure 7. Regular & Ameliorative Struct

For the example of U-shaped line, 

both structures are same. Tasks are assigned to all the parts on 

workstations 1 and 4 while workstation 2 and 3 do not have all 

the parts assigned. 

3. Genetic Algorithm Design

3.1. The Procedure of Genetic Algorithm

Figure 8. Process of Genetic Algorithm

The multi-objective problem formalized in the previous 

section cannot be easily solved by traditional mathematical 

techniques. This forces researchers to employ faster and more 

effective algorithms such as genetic algorithm. GA, which is 

differing from conventional search techniques, starts with an 

initial set of random solutions called “population”. Each 

individual in the population is called a “chromosome”, 

representing a solution to the problem at hand. A chromosome 

is a string of symbols; it is usually,

binary bit string. The chromosomes “evolve” through 

successive iterations, called 

generation, the chromosomes are evaluated, using the 

measures of “fitness”. To create next generation, new 

chromosomes called “offspring” are formed by selecting 

current chromosomes which are called “parents” according to 

the fitness values. Chromosomes have higher fitness are more 

likely to be selected. Consequently, new selected offspring are 
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assignment actually exceeds the maximum workload time. 

Hence, the amount of workstation is about to be 5 according to 

the ameliorative assignment structure. 
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shaped line, the assignment results for 

both structures are same. Tasks are assigned to all the parts on 

workstations 1 and 4 while workstation 2 and 3 do not have all 

orithm Design 

The Procedure of Genetic Algorithm 

 

Process of Genetic Algorithm 

objective problem formalized in the previous 

section cannot be easily solved by traditional mathematical 

techniques. This forces researchers to employ faster and more 

effective algorithms such as genetic algorithm. GA, which is 

ventional search techniques, starts with an 

initial set of random solutions called “population”. Each 

individual in the population is called a “chromosome”, 

representing a solution to the problem at hand. A chromosome 

is a string of symbols; it is usually, but not necessarily, a 

binary bit string. The chromosomes “evolve” through 

successive iterations, called “generations”. During each 

generation, the chromosomes are evaluated, using the 

measures of “fitness”. To create next generation, new 

ed “offspring” are formed by selecting 

current chromosomes which are called “parents” according to 

the fitness values. Chromosomes have higher fitness are more 

likely to be selected. Consequently, new selected offspring are 
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reformed by either merging two parents using a “crossover” 

operator or modifying a current parent using a “mutation” 

operator under a given probability. After several of 

generations, the algorithm converges to the best chromosome, 

which hopefully represents the optimum or sub-optimum 

solution of the problem. 

This section proposes a MOGA with PBC and an 

ASMOGA with PBC to deal with the mixed-model 

straight/U-shaped assembly load balancing problem. As 

shown in Figure 6, the process for both algorithms are same, 

except that the task assignment is distinguished from regular 

structure and ameliorative structure. 

3.2. Encoding and Decoding 

3.2.1. Encoding 

Encode the parameters of problem into chromosomes is a 

key issue for the genetic algorithm. Gen et al. (1997) 

developed priority-based GA. This method is proposed to 

handle the difficulty of how to produce an efficient encoding 

that satisfies all the constraints of actual world. Recall that a 

gene contains two kinds of information: 1) The locus that 

represents the position of a gene located within the structure of 

chromosome; 2) The allele that represents the value taken by 

the gene. In this research, the initial generation are formed by 

randomly reproducing chromosomes which have both locus 

and allele. The locus is used to denote the task ID, and the 

allele is used to denote the priority and product ID, as shown 

in Table 3. Table 3 states a generation consists of 10 

chromosomes. Within each chromosome, there are 11 priority 

values for each task. Furthermore, the product ID is conceived 

by the method mentioned at Chapter 2.2.1. 

Table 3. Population 

i 1 2 3 4 5 6 7 8 9 10 11 

��7 7 2 2 3 10 2 4 2 5 3 8 3 9 1 11 3 6 1 1 2 3 1 

��. 2 3 7 2 11 3 5 3 4 2 9 1 8 3 10 2 1 2 3 1 6 1 

��g 6 1 5 3 4 2 2 3 1 2 3 1 10 2 11 3 8 3 7 2 9 1 

��h 10 2 7 2 2 3 4 2 5 3 11 3 9 1 1 2 10 1 8 3 3 1 

��i 3 1 9 1 4 2 10 2 5 3 8 3 7 2 4 3 6 1 5 3 1 2 

��j 5 3 11 3 10 2 4 2 3 1 2 3 1 2 9 1 8 3 7 2 6 1 

��k 4 2 6 1 10 2 2 3 5 3 3 1 9 1 7 2 11 3 8 3 1 2 

��l 9 1 2 3 5 3 7 2 3 1 6 1 1 2 11 3 4 2 10 2 8 3 

��m 1 2 8 3 3 1 10 2 6 1 7 2 5 3 4 2 2 3 9 1 11 3 

��7n 8 3 2 3 10 2 11 3 9 1 3 1 5 3 4 2 1 2 6 1 7 2 

 

3.2.2. Task Assignment 

In address to calculate the fitness value of chromosome, a 

known task assignment is necessary. Like mentioned at 

Chapter 2.2.2, assignment results for each chromosome of 

each generation is able to be achieved by the assignment 

procedure. 

3.2.3. Decoding 

Decoding, a reverse process of encoding, is used to convert 

chromosomes into understandable solutions. After the 

terminal condition is satisfied, a chromosome with the best 

fitness is decoded into the best solution. The decoding method 

of this paper is converting the priority-based chromosome into 

the information of actual task assignment. This information 

consists of the status of workstations which are supposed to 

have the optimal line balance and product sequence. After 

obtaining the information of task assignment among 

workstations, the parameters of mathematical model defined 

in the Chapter 2.1 can be easily figured out. At last, the 

problems of line balancing and product sequencing are 

considered to be solved by outputting the final solution 

 

3.3. Evaluation 

Fitness evaluation is used to calculate and check the value 

of the objectives. In this case, the study considers the 

standards of evaluation function as all the three objective 

functions simultaneously. 

The first fitness standard +67/ maximizes the mean of line 

efficiency: 

67E,PG � ,P � 7
LMN ∑ 0� � 7

LMN ∑ (�3�O7
L
�O7  (8) 

The second fitness standard +6./ is to minimize the mean 

of line efficiency: 

67E-P.G � -P. � 7
+LMN/B ∑ -�.3�O7    (9) 

The third fitness standard +6g/  is to minimize the 

maximum value of work overload probability of workstation j: 

6g+DST?/ �  DST? =
   	U� oD� = 1 − H 7

√.9:;
exp (− (N@A;)B

.:B IR?
@J |� ∈ ��p (10) 
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The evaluation function consists of the three factors: 

C+V�/ � V� � 67E,PG > 6.E-P.G > 6g+DST?/ � ,P >
-P. > DST?    (11) 

The above C+V�/ is the objective function combining ,P, 

-P.  and DST?  of the k-th chromosome. Since 67E,PG  is a 

maximization function, 67E-P.G  and 6g+DST?/  are both 

minimization functions, the evaluation function converts these 

functions into maximization functions. By this analogy, all the 

fitness of individual chromosome can be evaluated.  

3.4. Selection 

When the search of GA proceeds, the population undergoes 

evolutional change according to fitness, and relatively good 

chromosomes are survived while relatively bad solutions are 

died in order that the offspring composed of good solution are 

reproduced for offspring. To distinguish solutions, a principle 

of Darwinian natural selection is necessary. Generally, 

selection provides the driving force to the evolution. 

This paper uses roulette wheel selection, a method to 

reproduce a new generation that is proportional to the fitness 

of each individual. The basic idea of this selection is to 

determine the cumulative selection probabilities for each 

chromosome by fitness. A roulette wheel is formed by these 

probabilities. After spinning the wheel population-sized times, 

a same-sized generation is reproduced. The procedure of 

selection can be described as five steps: 

Step 1: Evaluate the fitness value of the chromosome q� of 

current population 

C+V�/ � V�  , � = 1, … , �
�����   (12) 

Step 2: Calculate the total fitness for the current population: 

0
(U_ =  ∑ C(V�)brbs�tu
�O7 , � = 1, … , �
�����   (13) 

Step 3: Calculate the selection probability ��  for 

chromosome q�: 

�� = v(wx)
5ryTz, � = 1, … , �
�����    (14) 

Step 4: Calculate the cumulative selection probability �� 

for chromosome q�: 

�� = ∑ ��
�
{O7 , [ = 1, … , �   (15) 

Step 5: Generate a random number � ∈ |0,1}, and select 

chromosomes 

1) if  � ≤ �7 , then select the first chromosome q7 ; 

� = 1, … , �
�����. 

2) else, select the kth chromosome q�  when ��@7 < � ≤
��; � = 1, … , �
�����. 

3.5. Crossover Operator 

A cross over operator called Weight Mapping Crossover 

(WMX) is proposed to diversify the chromosome as shown in 

Figure 6. This crossover operator combines the features of two 

parent whose corresponding random value is less than 

crossover rate DN. 

 

Figure 9. Two Point-based Weight Mapping Crossover Operator 

3.4. Mutation Operator 

Swap Mutation used in this algorithm is described as Figure 

7. Two positions are randomly selected and their contents are 

swapped. This mutation operator arbitrarily alters two 

components of a selected chromosome and increases the 

variability of the population. Each chromosome undergoes a 

random change when the corresponding random rate is less 

than mutation rate D�.  

 

Figure 10. Swap Mutation Operator 

4. Numerical Experiment 

In this numerical experiment, the test problems are 

described using the well-known benchmark problems of 

Thomopoulos, Kim and Arcus to compare MOGA with 

ASMOGA. Besides, a comparison between straight lines and 

U-lines is conducted to confirm the outperformance of U-lines. 

The following parameters are applied to GA throughout the 

simulations: 

Population size:   popSize = 10 

Maximum generation:  maxGen = 100 

Crossover probability:  DN = 0.25 

Mutation probability:  D� = 0.25 

Terminating condition: Reach the last generation defined at 

start 

The algorithm is coded in C# and the experiments are 

implemented on a Core i7 3.00GHz PC. To illustrate how 

ASMOGA of U-lines improves the performance of load 

balancing by using an ameliorative structure on a set of 
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numerical examples, two tables and a figure are listed. 

As shown in Table 4 and Table 5, the workstations of line 

are supposed to be increased according to 

workload of last workstation is bigger than the cycle time. 

Also, the product sequence for each problem is obtained by 

the function mentioned at Chapter 2.2.1. At the last column of 

these tables, the quantities for individual product is 

enumerated. Furthermore, Figure 8 illustrates th

Figure

Problem I M c J 

Thomopoulos 19 3 

3 3 

3 3 

4 3 

Kim 61 4 

138 6 

205 6 

324 12 

Arcus 111 5 

27 12 

33 15 

34 27 

Problem I M c J 

Thomopoulos 19 3 

3 3 

3 3 

4 3 

Kim 61 4 

138 6 

205 6 

324 12 

Arcus 111 5 

27 12 

33 15 

34 27 
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Procedure-Combined Approach 

ure are listed.  

As shown in Table 4 and Table 5, the workstations of line 

increased according to whether the 

is bigger than the cycle time. 

Also, the product sequence for each problem is obtained by 

the function mentioned at Chapter 2.2.1. At the last column of 

these tables, the quantities for individual product is 

urthermore, Figure 8 illustrates the best results 

for both MOGA and ASMOGA (Jackson 11 tasks). Based on 

these results, the theory that the proposed ASMOGA can 

improve the load balancing can be confirmed.

Next, another comparison is conducted to describe the 

advantages of U-shaped line as sh

line is able to obtain improvements at line efficiency and 

workload variance concurrently.

Figure 11. Best Results from the MOGA and ASMOGA 

Table 4. Result of Straight Line 

�� 
MOGA ASMOGA 

�� ��� ���� �� ��� 

4 73.2% 0.022 27.1% 76.6% 0.013 

4 69.5% 0.090 18.8% 70.7% 0.009 

4 67.9% 0.108 23.5% 72.0% 0.010 

7 70.8% 0.054 26.2% 75.0% 0.031 

7 73.3% 0.049 30.1% 78.2% 0.029 

 14 68.8% 0.102 27.6% 77.7% 0.047 

 15 66.6% 0.129 42.5% 71.7% 0.103 

 18 69.7% 0.113 57.3% 70.6% 0.097 

 33 71.5% 0.098 66.7% 73.4% 0.084 

Table 5. Results of U-shaped Line 

�� 
MOGA ASMOGA 

�� ��� ���� �� ��� 

4 74.5% 0.017 11.0% 79.0% 0.011 

4 73.8% 0.018 6.5% 75.0% 0.010 

4 77,8% 0.021 12.8% 82.3% 0.015 

7 76.9% 0.047 18.9% 81.1% 0.028 

7 73.7% 0.036 23.1& 82.5% 0.023 

 13 81.1% 0.047 14.5% 85.5% 0.035 

 16 75.3% 0.114 28.2% 77.6% 0.087 

 19 66.6% 0.086 25.7% 69.6% 0.093 

 35 79.7% 0.102 20.5% 81.3% 0.075 
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for both MOGA and ASMOGA (Jackson 11 tasks). Based on 

these results, the theory that the proposed ASMOGA can 

improve the load balancing can be confirmed. 

Next, another comparison is conducted to describe the 

shaped line as shown in Table 5. U-shaped 

line is able to obtain improvements at line efficiency and 

workload variance concurrently. 

 

��, ��, … , �� 
 ���� 

 11.0% 6,7,6 

 6.5% 6,7,6 

 12.8% 6,7,6 

 18.9% 15,16,15,15 

 23.1& 15,16,15,15 

 14.5% 15,16,15,15 

 28.2% 22,23,22,22,22 

 25.7% 22,23,22,22,22 

 20.5% 22,23,22,22,22 

��, ��, … , �� 
 ���� 

 7.8% 6,7,6 

 8.4% 6,7,6 

 10.1% 6,7,6 

 17.7% 15,16,15,15 

 25.9& 15,16,15,15 

 16.4% 15,16,15,15 

 36.3% 22,23,22,22,22 

 24.7% 22,23,22,22,22 

 18.8% 22,23,22,22,22 



 International Journal of Intelligent Information Systems 2015; 4(2-1): 49-58 57 

 

Table 6. Straight Line vs U-shaped Line from ASMOGA 

Problem I M c J �� 
Straight U-shaped ��, ��, … , �� ,P -P

. DST? ,P -P
. DST? 

Thomopoulos 19 3 

3 3 4 76.6% 0.013 11.0% 79.0% 0.011 7.8% 6,7,6 

3 3 4 70.7% 0.009 6.5% 75.0% 0.010 8.4% 6,7,6 

4 3 4 72.0% 0.010 12.8% 82.3% 0.015 10.1% 6,7,6 

Kim 61 4 

138 6 7 75.0% 0.031 18.9% 81.1% 0.028 17.7% 15,16,15,15 

205 6 7 78.2% 0.029 23.1& 82.5% 0.023 25.9& 15,16,15,15 

324 12 13 77.7% 0.047 14.5% 85.5% 0.035 16.4% 15,16,15,15 

Arcus 111 5 

27 12 16 71.7% 0.103 28.2% 77.6% 0.087 36.3% 22,23,22,22,22 

33 15 19 70.6% 0.097 25.7% 69.6% 0.093 24.7% 22,23,22,22,22 

34 27 35 73.4% 0.084 20.5% 81.3% 0.075 18.8% 22,23,22,22,22 

 

5. Conclusion 

This paper studies the load balancing of mixed-model 

straight/U-shaped assembly line problem. This problem is one 

of the most classic researches of production management 

system. The objective of the problem is to maximize the line 

efficiency and to minimize the work overload imbalance 

simultaneously for a given combination of cycle time and 

number of workstations. To solve this problem, the variable 

notations and the mathematical formulations are employed to 

obtain a model of problem. Then a multi- objective genetic 

algorithm with priority-based chromosome is developed and 

structured in terms of a hierarchical ameliorative design to 

find a near-optimal solution. To evaluate the performance of 

this algorithm, two sets of experiments are conducted 

respectively. One is comparison of MOGA with ASMOGA, 

and another is the comparison of straight line with U-line. As 

the result of numerical experiments, it was revealed that the 

proposed approaches can solve these multi-objective 

problems more quickly than conventional heuristic methods.  

For future researches, I wish this proposed method could 

make a certain contribution toward more research areas such 

as logistics, SCM and further scheduling problems. 
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