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Abstract: This paper has presented a control system for vehicle dynamics and mass estimation. The objective of this paper is 

to use a single-tyre model of slip control integrated with extended Kalman filter (EKF) to estimate the states of a vehicle such 

as the forward velocity, wheel slip, coefficient of friction of the road surface and the mass that cannot be measured directly. In 

order to do this, the dynamics of a vehicle moving with a forward velocity were obtained using a single-tyre model. The 

dynamic equations in continuous time were transformed into their equivalent discrete time form. A two degree of freedom 

proportional integral and derivative (2DOFPID) control algorithm was implemented for the control loop. An estimator was 

designed using the extended Kalman filter algorithm to carry out the estimation based on noisy measurement of wheel 

rotational speed. The entire system was modeled using Matlab/Simulink blocks. Simulations were performed to determine the 

effectiveness of the estimator. The simulation results showed that the extended Kalman filter effectively estimated the states of 

a single-tyre model of a vehicle represented by a slip control system. Though the results obtained seemed promising but will be 

improved if the covariance matrices are calculated with adequate information and are better tuned. 
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1. Introduction 

Many automobiles today include vehicle safety systems 

like the electronic stability control (ESC) system, antilock 

braking system, and traction control system. The 

effectiveness of these systems is a function of vehicles state 

data such as velocity, acceleration, yaw rate, sideslip angle, 

steering wheel angle, etc are obtained [7]. Only a few of 

these states can be obtained by measurement; as a result of 

this, the knowledge of most of these states can be obtained 

using online estimation [11]. 

In the automobile industries today, fuel economy, effective 

driving and passenger safety are of the essence. In order to 

improve these areas, many advanced embedded control 

systems [3] have been developed and implemented. Precise 

operating information of a vehicle can enhanced the 

performance of these control systems. This information can 

be obtained by solving the dynamic equation of a vehicle in 

real time. The states of a vehicle dynamic equation largely 

depend on some prime operating parameters. 

One of such parameters of this equation is the mass of the 

vehicle. In the cause of driving, energy transmission 

management systems of a vehicle often make use of the gear 

selection so as to determine the most appropriate gear at the 

time. An accurate prediction of the right driving torque 

determines the performance of the control strategy. And the 

fact that the determination of the driving torque is also 

dependent on the accuracy of the value of the vehicle mass 

requires that a proper estimate of vehicle mass be performed. 

It is essential to have an accurate knowledge of the states 

of a vehicle. There are different ways to estimate these states. 

Nevertheless, majority of the ways of doing this have their 

restrictions and limitation [11]. If the values of these 
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parameters (like the mass) are not accurately represented, it 

could result to wrong gear selection and this brings about fuel 

waste and reduces driving efficiency. 

Determination of vehicle mass should be done on-board due 

to the fact that it is varying parameter. There are many ways to 

obtain the mass of a vehicle based on its shape and design. For 

example, trucks that are built with pneumatic suspension and 

electronically controlled suspension (ECS), can measure the 

mass of vehicle directly using air pressure [3]. 

A differential equation can be used to represent the 

interrelationship between the dynamic states of a vehicle. 

There are many ways to formulate these equations and can be 

found in literature [11]. The vehicle dynamic equations used 

in this context are those of a single tyre for a vehicle in 

motion. 

In this paper an estimator in the form of an extended 

Kalman filter (EKF) is developed to estimate the dynamics 

and mass of a vehicle. The developed estimator will be 

integrated with a two degree of freedom proportional integral 

and derivative (PID) controller. The entire arrangement is 

modeled using Simulink blocks. The designed controller is a 

discrete time controller. 

In this paper, the various states of a vehicle such as the 

forward velocity, wheel slip, friction coefficient of the road 

surface, and mass are not measured directly and as such must 

be determined by estimation. In order to implement this, an 

extended Kalman filter is designed to carry out the estimation 

by noisy measurement of wheel rotational speed. 

2. Literature Review 

Kidambi et al [6] conducted a research on methods in 

vehicle mass and road grade estimation. It assessed the 

accuracy and performance of four estimations techniques for 

predicting vehicle mass and /or road grade. The estimators 

considered are: recursive least square (RLS) with multiple 

forgetting factors, extended Kalman filter (EKF), dynamic 

grade observer, and parallel mass and grade (PMG) 

estimation using a straight line accelerometer, a method 

developed for the research. The estimation techniques and 

models were generated, and several vehicle tests conducted. 

Data obtained was evaluated off-line by the estimation 

techniques. It was found that RLS and EKF gave estimates 

within 5% of their actual values as long as the initial values 

were close to exact initial states. A mass selection algorithm 

was proposed to improve estimation when incorrect initial 

values were provided so as to determine mass based on 

converged values from concurrently operating EKF 

estimators. Demonstration was done to ascertain its quality 

for mass and grade estimation. It was observed that the PMG 

provided the most reliable and accurate results and showed 

greatest quality in real-time implementation to improve 

performance, economy, and reliability in control for vehicles 

in future. 

Beatriz et al [2] carried-out a research on a constrained 

dual Kalman filter based pdf truncation for estimation of 

vehicle parameters and road bank angle: analysis and 

experimental validation. A new method combining Dual 

Kalman Filter with probability density function (pdf) 

truncation method was proposed for estimating different 

states such as vehicle roll angle and road bank angle, and 

vehicle parameters. The results obtained from experiment 

conducted showed the effectiveness of the proposed method. 

It asserted that incorporation of parameter constraints 

improved the proposed method estimation accuracy. 

Matilde et al [8] conducted a research on parameter 

estimation using a model-based estimator. A model-based 

observer to assess online motion and mass properties was 

presented. The model worked during normal vehicle 

maneuvers using onboard sensors. An extended Kalman filter 

was presented for parameter estimation. The effectiveness of 

the estimation approach was shown using obtained results 

from simulations to ascertain its advantage in the 

implementation of adaptive driving assistance system or to 

adjust the parameters of onboard controllers automatically. 

Sagar et al [9] conducted a review on estimation of vehicle 

parameters using Kalman filter. It stated that a new technique 

of identifying when accurate estimator was developed. The 

estimation algorithm was based on using GPS in a vehicle 

dynamics model based estimator; and was tested both in 

simulation and expected data. 

Wragge-Morley et al [12] presented gradient and mass 

estimation from CAN based data for a light passenger. It 

showed that an application of a supervised output filter to 

anew nonlinear adaptive observer based data fusion 

algorithm with data fusion made part of the extended 

regressor, provided a relatively undisturbed, noise free 

vehicle mass estimate at the same time the road grade 

estimate generated by the data fusion algorithm structure. 

The techniques were demonstrated using real vehicle 

systems. It was shown that the quality of the driving torque 

available limited the present form of the techniques. It 

concluded by saying that the supervised Kalman filter based 

output technique provided rapid convergence on a sensible 

result, with settling time between 50 or 60 seconds with large 

disturbance present at start of data runs. 

3. Modeling 

The wheel slip equation has been used extensively in the 

design of control system in automobiles for passenger safety, 

energy efficiency, and fuel economy. It has been applied 

effectively in vehicle traction control (VTC) such as traction 

control system (TCS) and antilock braking system (ABS). In 

this context it will be employed for extended Kalman filter 

design, where wheel slip has been considered as one of the 

discrete model. The continuous time equation of the wheel 

slip is given by: 

, 0
v r

v
v

ωλ −= ≠                                (1) 

3.1. Continuous Time Dynamics 

Mathematical equations representing the dynamics of a 
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vehicle in motion are obtained using a single-tyre model as 

shown in Figure 1. 

 

Figure 1. A single-tyre model. 

A single-tyre model is used to obtain the forward or 

longitudinal force dynamics. It comprises a single tyre 

carrying a quarter mass, m , of the vehicle, such that the 

vehicle is moving with a longitudinal velocity ( )v t  at any 

time, t. The wheel moves with an angular velocity of ( )tω , 

driven by the mass, m  in the direction of the longitudinal 

motion. 

Simplified differential equations representing the 

mathematical model of a single-tyre subjected to longitudinal 

brake torque and road surface frictional forces are given: 

3.1.1. Frictional Force 

The frictional or tractive force opposes the forward 

motion. It is responsible for the firmness of a vehicle on the 

road surface. This is given in Equation (2). 

( )T NF Fµ λ=                                  (2) 

Where NF mg=  

3.1.2. Forward Motion Velocity 

The differential equation of vehicle forward motion can be 

obtained by using the laws of dynamic motion. 

1
( ) Nv F

m
µ λ=ɺ                                   (3) 

3.1.3. Wheel Rotational Speed 

The differential rotational equation of the wheel is given 

by [4] as: 

1
( ) ( ( ))N bF T sign

J
ω µ λ ω= −  ɺ                        (4) 

where ω  is the angular velocity of the wheel, J  is the 

moment of inertia of the wheel, r is the radius of the wheel, 

and bT  is the braking torque. 

3.1.4. Actuator Equation 

The equation of hydraulic fluid lag of brake system is 

given by the first order transfer function [5]: 

( )
1

k
G s

sτ
=

+
                                  (5) 

where k  is the braking gain, which is a function of the brake 

radius, brake pad friction coefficient, brake temperature and 

the number of pads [1], and τ  is the hydraulic torque time 

constant. 

To compensate for the fluid lag or delay, a time delay 

function STe− is added to Equation (5) and this yield: 

1

sT
b ref

k
T e T

sτ
−=

+
                             (6) 

3.1.5. Tyre-Friction Equation 

The Pacejka friction equation is very detailed, and it is the 

tyre-road friction description most commonly used in 

commercial vehicle simulators such as, for example, Car 

Sim, Adams/Tyre, and Bikesim [10]. The Pacejka friction 

model is given in Equation (7) and the parameters are defined 

in Table 1. 

( )1 b
x a e cλµ λ−= − −                             (7) 

where a, b, c are constants. The corresponding parameters 

values of � = ���,� = ��� and � = ��	 are given in Table 1 

for different road conditions. 

Table 1. Values of the parameters for different road conditions [10]. 

Road condition 
�� 
�
 
�� 

Dry asphalt 1.28 23.990 0.52 

Wet asphalt 0.86 33.82 0.35 

Cobblestone 1.37 6.46 0.67 

Snow 0.19 94.13 0.06 

Equations (2) to (5) are the dynamic equations of a car in 

longitudinal motion in continuous time. These equations are 

then discretized. 

3.2. Discretizing the Single-Tyre Model 

The single-tyre model in continuous time differential 

equations is transformed into it equivalent discrete time 

equations in this section. This is because the extended 

Kalman filter (EKF) uses a set of discrete equations for its 

implementation. The forward Euler method is used in this 

context to discretize the continuous time equations and is 

given below: 

1 1

1

k k
k

k

v r

v

ωλ − −

−

−
=                                 (8) 

Nk kF m g=                                      (9) 

Tk Nk xkF F µ=                                  (10) 
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1 ( 1)k k x k

t
v v F

m
− −

∆= −                             (11) 

( 1) 1( ( )k k T k b k

t
rF T sign

J
ω ω ω− −

∆= + −                   (12) 

1
1(1 )kb

x ka e c
λµ λ−−

−= − −                          (13) 

The subscript k represents a discrete sampling point in 

time and k-1 represents a previous sampling time point. 

Equations (8) through (13) contain both the dynamics of a 

vehicle and the discretized model of the single-tyre. 

The entire control loop model for the estimation is shown 

in Figure 2. It comprises a discrete two degree of freedom 

proportional integral and derivative controller, an actuator 

dynamics, a single-tyre model dynamics and the EKF. 

 
Figure 2. Configuration of Estimation Loop. 

where 1 and 4 = forward velocity terminals, 2 and 5 = 

wheel rotational speed terminals, 3 and 6 = wheel slip 

terminals, 7 and 8 = coefficient of friction and mass 

terminals respectively. BLWN means Band Limited White 

Noise. Terminals 1, 2 and 3 are for actual signals while 4, 5, 

6, 7, 8 are for estimated values. 

3.3. Defining the Equations of EKF 

The rotational speed of the wheel ω is usually measurable 

in automobile industry; despite its being corrupted by noise. 

It has been assumed as a measurable entity in this context. 

The following are the states are to be estimated: wheel 

rotational speed ω , estimated from filtered noisy 

measurement; vehicle forward velocity v ; wheel slip λ ; road 

surface friction coefficient xµ ; and mass of vehicle m , 

quarter mass.
 

Equations (14) and (15) are the measured output and the 

state vector that are to be estimated. 

ky ω=ɶ                                        (14) 

ˆˆˆ ˆ ˆ ˆ
T

k k k k k kx v mω λ µ =
 

                        (15) 

In this context, some states in Equation (15) are arbitrarily 

chosen to aid the design. A typical state that needs estimating 

is the forward velocity of a vehicle. The wheel slip, 

coefficient of friction, and specifically vehicle mass, in the 

states are choice made for this design. An initial look at the 

mass, may give the impression that it is an odd parameter to 

be estimated. This impression will be wrong when a vehicle 

is configured in such a way that it can carry loads which 

could be heavy, very light or no-load; then it becomes 

necessary to estimate mass. 

A two step predictor-corrector algorithm is used by the 

extended Kalman filter (EKF). Two Jacobians matrices kF  

and kG are formulated as part of the algorithm in Equations 

(16) and (17). These matrices are stated below: 

2

ˆ ˆ1 0 0

0 1 0 ( ) 0

ˆ
0 0 0

ˆ ˆ( )

0 0 ( ) 0 0

0 0 0 0 1

k

k k

k

k k

b

t t
rgm rg

J J

t g

r rF

v v

a be c
λ

µ

ω

−

∆ ∆ 
 
 

− ∆ 
 =  −
 
 

− 
 
 

 (16) 

[ ]1 0 0 0 0kG =                              (17) 

The mass of a vehicle is assumed constant as shown by the 

last row of the matrix equation (16). Due to the randomly 

determined nature of EKF, the mass is allowed to vary 

moderately. 

4. Simulation Results and Discusion 

4.1. Simulation Results 

The extended Kalman filter (EKF) is integrated with entire 

control loop of a single-tyre model and a discrete two degree 

of freedom proportional integral and derivative (2DOFPID). 

The entire system is implemented in Matlab/Simulink 

environment. It should be noted that the covariance matrices 
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Q and R used in the implementation of the EKF where 

estimated without adequate information. The results obtained 

from the simulation performed in Matlab/Simulink are 

presented below. 

 

Figure 3. Actual wheel slip, λ . 

 

Figure 4. Actual velocity, ,v ω . 

 

Figure 5. Estimated wheel slip, λ . 

 

Figure 6. Estimated velocity, ,v ω . 

 
Figure 7. Estimated mass, m . 

 

Figure 8. Estimated friction coefficient, xµ . 

4.2. Discussion 

In Figures 2 and 4, the actual signals for tracking slip and 

desired slip, vehicle velocity and wheel speed are presented. 

The tracking slip λ  is the slip to be estimated, and it is shown 

in Figure 5. The estimated signals for vehicle velocity and 

wheel speed are presented in Figure 6. In Figures 7 and 8, the 

estimated mass and estimated friction coefficient are presented. 

It can be seen that the estimated slip is somewhat noisy. 

This is not unusual of slip data; nevertheless this can be 

improved by properly tuning of the covariance matrices. 

Figure 7 shows a graph of the estimated mass. The actual 

mass of the vehicle is chosen as 350kg. It can be seen that 

the estimated mass was able to initialize at this defined 

value and shows no substantial change. This can be 

attributed to the time range of 3s for the simulation. Though 

it can change at a longer simulation time frame when the 

designed model is expected to accommodate fuel usage and 

load variation. 

5. Conclusion 

The simulations performed showed that the system was 

able to estimate the chosen vehicle states in this context. It 

should be noted also that the wheel rotational speed has been 

assumed measurable in this context. 
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