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Abstract: We present the intensity of stress singularity for 3D dissimilar material joints based on mesh free method. When 

load is applied to surface of the bonded structure, stress at vertex on interface drastically increases and it appears that this 

stress singularity occur delamination of the bonded structure. Intensity of stress singularity can be expressed by stress 

distribution and the intensity of stress singularity. Therefore, it is necessary to obtain the stress distribution precisely. In this 

study, we focus on the mesh free method for the computation of the stress distribution. When this method is applied to 

compute stress distribution, incompatible cell can be employed and geometrical data for a target structure can be simply 

prepared. To confirm the validity of the results of mesh free method, comparison of the intensity of stress singularity between 

the mesh free and the boundary element methods is carried out. 

Keywords: Stress Analysis by Mesh Free Method, 3D Dissimilar Material Joints, Intensity of Stress Singularity, Order 
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1. Introduction 

In this study, evaluation of intensity of singularity for 

three-dimensional dissimilar material joints based on the 

mesh free method(MFM) [1] is carried out. If the stress 

analysis is carried out for 3D dissimilar material joints, the 

highest value is obtained at vertex on the interface of the 

dissimilar material joints. This stress value depends on the 

element size, the value is approached to infinity in case that 

the element size is gradually small. Therefore, the stress 

value can’t be applied to the design standard for 3D 

dissimilar material joints. To solve this problem, we focus on 

the evaluation by the intensity of singularity.  

It is well known that if distance from crack front is r, and 

stress distribution near crack front is expressed by 
0.51 /ij rσ ∝ . Similarly, stress distribution near edge of 

interface for dissimilar material joints is also expressed by 

the relation equation with respect to distance from edge of 

interface. If the distance from edge of interface is expressed 

by r and order of singularity λ  is introduced, the relation 

equation between stress ijσ  and distance r is expressed by 

1/ij rλσ ∝ . The order of singularity λ  is determined by 

combination of materials and configuration of edge or 

vertex.  

Here, in case that the order of singularity λ  is replaced 

by 1-p, the stress distribution is written as 
1 11/ 1/ p p

ij r r rλσ − −∝ = = . In addition, because the stress 

is expressed as gradient of the displacements iu , the 

relationship the displacements and distance r is given 
p

iu r∝  by  the integration of 1p
ij rσ −∝ . The parameter p 

is refer to as the characteristic root, the investigations for the 

characteristic root of 2D dissimilar material joints is carried 

out by Bogy [2]. This methodology is analytically approach, 

it is said that it is difficult this methodology is directly 

applied to 3D dissimilar material joints. 

On the other hand, there is a methodology that the order of 

singularity is numerically obtained. Yamada et. al. [3] 
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developed the numerical evaluation method for the 

singularity based on the finite element procedure. The 

interpolation function is expressed as the function of pr , 

and the comparison of the stress intensity factor between the 

computational and the theoritical solutions  was carried out 

for a cylindrical bar model with circumferential crack. In 

addition, Pageau et. al. [4] applied this formulation to 3D 

dissimilar material joints, and the characteristic equation 

was derived expressed by the characteristic root p. The 

characteristic root p indicates the eigen value of the 

characteristic equation, and this value is obtained by eigen 

value analysis. In the numerical experiments, the 

characteristic root p at crack front calculated by changing the 

number of Gauss points and mesh division, and it is reported 

that there is a tendency the characteristic root converges to 

an unique value in case that a lot of finite elements are 

generated, even if the number of Gauss points are changed. 

Moreover, an application example for models of an 

anisotoropic three-material junction with a free edge is 

introduced, the numerical results for the characteristic root is 

shown. 

In addition, Koguchi et. al. evaluate the intensity of 

singularity for 3D dissimilar material joints based on stress 

analysis results and the order of singularity λ  [5], [6], [7]. 

The stress analysis is carried out by the boundary element 

method, and the order of singularity λ  is obtained by the 

characteristic root p that is calculated based on the 

methodology by Pageau et. al.. Especially, in reference [7], 

it was clarified that there is a possibility for relationship  

between delamination force and the intensity of singularity. 

If numerical analysis for delamination of material is carried 

out, the remeshing technique is usually introduced. In case 

that the MFM is applied to the numerical analysis, the 

remeshing process can be ignored. Though a lot of studies 

for crack propagation problems using the MFM have been 

carried out [8], [9], it is difficult to say that researches for 

evaluation of intensity of singularity using the MFM based 

on methodology such as the previous studies [5], [6], [7] are 

carried out enough. 

Therefore, the formulation for evaluation of intensity of 

singularity using the MFM is carried out, and some 

numerical results and remarks are shown in this paper. 

2. Discretization of Elastic Equations by 

Mesh Free Method 

The equilibrium equation, the strain-displacement 

relation and the stress-strain relation are written as Equation 

(1). 

( ), , ,

1
0, ,

2
ij j ij i j j i ij ijkl klu u Dσ ε σ ε= = + =     (1) 

where ijσ , ijε , iu  and ijklD  indicate stress and strain 

and displacement elastic coefficient matrix. Here, the 

Equations.(1) are represented as Equation (2). 

{ } { } { } [ ]{ } { } [ ]{ }, ,= = =c 0 e B u s D e      (2) 

where { }c , { }e , [ ]B , { }u , { }s  and [ ]D  indicate 

Equation (3).  
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In Equation (3), λ  and  µ   indicate the Lame’s 

constants,  and  the constants are written as  

( )( ) ( )
,

1 2 1 2 1

E Eνλ µ
ν ν ν

= =
− + +         (4) 

Multiplying weighting function ( )*
u x  for both sides of 

equilibrium equation  and integrating a domain influence 

aΩ (See Fig. 1.), Equation (5) is obtained.  

( ){ } ( ){ } 0
a

T

d
Ω

Ω =∫ *u x c x          (5) 

Applying the Green theorem to Equation (5), Equation (6) 

is obtained. 

( ){ } [ ] ( ){ } ( ){ } ( ){ }
a a

T TT
d d

Ω Γ
Ω =∫ ∫* *u x B s x u x t x   (6) 

where t  indicates traction force, and is written as  

{ } { } { }x y z xj j yj j zj jt t t n n nσ σ σ= =t    (7) 

( j; summation convention) 

Substituting the stress-strain relation and the 
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displacement-strain relation in Equations (2) to Equation (6) , 

the Equation (6) is represented as Equation (8). 

( ){ } [ ] [ ][ ] ( ){ } ( ){ } ( ){ }
a a

T TT
d d

Ω Γ
Ω=∫ ∫* *u x B D B u x u x t x  (8) 

 

Figure 1. Domain influence 

If the weighting function u*  and displacement u  at an 

arbitrary point x  is interpolated by each values at referred 

nodes in domain of influence aΩ  based on the Galerkin 

procedure, the interpolation function for each values are 

written as Equations (9) and (10). 

( ) ( ) ( ) ( ) ( ) ( ){ }* * * * *
1 1 2 2 3 3

T

n nu q u q u q u q u q= + + + =x x x x x x⋯  (9) 

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 2 2 3 3

T

n nu q u q u q u q u q= + + + =x x x x x x⋯  (10) 

where  q  indicates shape function, and n  indicates 

number of referred nodes in the domain influence. The shape 

functions are determined by the moving least square method, 

and linear basis and quadratic spline functions are employed 

as the basis function and weighting function.  Applying the 

interpolation functions (Equations (9) and (10)) to the 

Equation (8), Equation (11) is finally obtained. 

[ ] { } { }
a a

d d
Ω Γ

Ω = Γ∫ ∫Κ u f             (11) 

where the left hand side coefficient matrix and the right 

hand side vector indicate the stiffness matrix and external 

force vector, and aΓ  indicates the boundary on domain 

aΩ .The Legendre-Gauss formula is employed as the 

numerical integration for Equation (11). In addition, the 

penalty function method is employed as treatment of 

essential boundary condition. 

3. Computation of Order of Stress 

Singularity 

In this section, the derivation of the characteristic 

equation shown in the reference of Pageau et. al.[4] is simply 

introduced. In this formulation, the computational region is 

defined by spherical configuration whose radius r  is 0r , 

and the spherical coordinate system is introduced (See Fig. 

2.). As the final form of the derived equation, the equation 

on the spherical surface is obtained. Therefore, the surface 

domain is divided into finite elements, and the computation 

for the characteristic equation is carried out. In the reference 

of Pageau et. al.[4], the quadratic isoparametric element is 

employed as the finite elements. 

 

Figure 2. Computational model and quadratic isoparametric element. 

If displacements for each element are expressed by 

interpolation function shown in Equation (12) and the 

interpolation function is substituted to equation of the 

principle of virtual work, a characteristic equation is finally 

derived as shown in Equation (13).  

( )
8
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where iu  is expressed by i ou u− , and iu  and ou  

represent spherical displacements at an arbitrary point in the 

spherical surface. In addition, ih  indicates the shape 

function. In the Equation (13), p  indicates characteristic 

root and vector { }x  denotes superposed displacement 

vector in entire domain, and matrices [ ]A , [ ]B  and [ ]C  

represent the coefficient matrices derived by finite element 

procedure. Detail of this formulation is shown in reference 

[4]. The characteristic root p  is obtained by solving the 

Equation (13) based on eigen analysis. Relationship between 

the characteristic root and order of singularity λ  is 

expressed by ( )Re 1pλ = − . If the parameter λ is 

1 0λ− < < ,  it is denoted that stress fields has a stress 

singularity. On the other hand, if  the parameter λ is 0 λ< , 

it is denoted that the stress singularity disappears. 

4. Numerical Examples 

A bonded structure consists of iron and aluminum is 

employed as the computational model. Scale of 

computational model is shown in Fig. 3. In this study, the 
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width “b” of the bonded structure is set 0.25, 0.5, 1.0, 2.0, 

4.0, 6.0, 8.0 and 50.0mm, and variation of intensity of stress 

singularity is investigated. Material properties for each 

material and total number of evaluation points and cells are 

shown in Tabs.1 and 2.  

 

Figure 3. Computational model and nodal distribution at vertex on 

interface 

Table 1. Material properties 

Material 
Young’s modulus E 

(GPa) 
Poisson ratio ν 

Fe 216.00 0.30 

Al 69.69 0.33 

Table 2. Total number of evaluation points and cells for each case 

Width b (mm) Number of evaluation points Number of  cells 

0.25 5,663 4,224 

0.5 5,034 3,618 

1.0 6,140 4,506 

2.0 5,891 4,280 

4.0 7,546 5,564 

6.0 9,506 7,100 

8.0 11,466 8,636 

50.0 8,255 5,976 

Computational results by the MFM are shown below. Figs. 

4 and 5 show the stress distribution of θθσ on the interface 

for the radius direction at ϕ =45deg and θ =90deg and the 

variation of the stress singularity with respect to model 

width “b”. Here, the order of singularity λ  at vertex is 

0.121. In Fig.4, it is seen that stress distribution near vertex 

decreases with decreasing the width “b”. In addition, it is 

found that if the least square approximation for Fig.5 by 

1K b
β

θθ α= , i.e., α and β are fitting coefficients, is 

carried out, α and β is obtained 7.721 and 0.113, and the 

value of β  is close to the order of stress singularity λ  at 

vertex. 

Nextly, the results obtained by the MFM are compared 

with the results obtained by the boundary element method.  

The boundary element mesh in case of b=1.0mm is shown in 

Fig.6. and total number of nodes and elements for each case 

are shown in Tab.3. The tensile stress same as the case of the 

MFM is given on the top surface of the bonded structure.  

Computational results are shown in Figs. 7 and 8. Fig. 7 

shows the comparison of stress distribution of θθσ  in case 

of the MFM and the BEM. The stress indicates the value on 

the interface for the radius direction from vertex at ϕ
=45deg and θ =90deg. In addition, Fig.8 shows the 

relationship between the intensity of the stress singularity 

and the width of the bonded structure obtained by the MFM 

and the BEM. In Fig.7, it is seen that the stress distribution 

obtained by the BEM is linearly obtained in 

semi-logarithmic graph comparing to the results obtained by 

the MFM. In addition, in Fig.8, it is found that the intensity 

of the stress singularity obtained by the MFM is close to that 

obtained by the BEM. However, it is seen that though the 

gradient of the intensity of the stress singularity with respect 

to the width of the bonded structure obtained by the MFM is 

not constant comparing with the result obtained by the BEM. 

Therefore it appears that some improvements are needed to 

obtain results with high reliability. 

 

Figure 4. Stress distribution of θθσ for radius direction from vertex 

(φ=45deg θ=90deg)  
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Figure 5. Variation of intensity of stress singularity with respect to model 

width “b” 

 

Figure 6. Boundary element mesh and magnified figure around vertex 

(b=1.0mm) 

Table 3. Total number of nodes and elements for boundary element model 

Width b(mm) 
Number of evaluation 

point 

Number of evaluation 

cell 

0.5 8,930 2,976 

1.0 8,576 2,858 

2.0 18,554 6,184 

 

 

Figure 7. Comparison of stress distribution of θθσ for radius direction 

from vertex in case of MFM and BEM (φ=45deg θ=90deg)     

 

Figure 8. Comparison of intensity of stress singularity with respect to 

model width “b” in case of  MFM and BEM 

5. Conclusions 

In this paper, we present the intensity of stress singularity 

based on the stress distribution by the MFM. As the 

computational model, the bonded structure consists of iron 

and aluminum is employed. The relationship between width 

of the structure and the intensity of the stress singularity is 

investigated by numerical experiments. The width of the 

bonded structure is varied 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 

50.0mm, and linear relationship is consequently obtained 

between the intensity of the stress singularity and the width 

of the bonded structure in double-logarithmic graph and if 

the least square approximation is carried out for the intensity 

of the stress singularity and the width of interface by 

1K b
β

θθ α= , the value of β  is close to the order of stress 

singularity λ  at vertex. In addition, it is found that the 

results obtained by the MFM are close to the results obtained 

by the BEM. However, in case that detailed comparison is 

carried out for the results between the MFM and the BEM, it 
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is seen that though the gradient of intensity of the stress 

singularity with respect to the width obtained by the BEM is 

approximately constant, that obtained by the MFM is not 

constant. Therefore, it appears that it is necessary to improve 

the MFM to increase the reliability of the intensity of the 

stress singularity.  
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