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Abstract: This is the last part of the series studying the fitted hydrostatic thrust spherical bearing. It handles an 

unconventional design of this type of bearings. The conception of this design is to break the rules controlling the bearing 

restrictions, where it is believed that without restrictors no hydrostatic bearing could be got (axiom). The paper focused the 

effort to derive a general characteristic equation that can control the design in turn the bearing performance and behavior. This 

general characteristic equation, through its simple form, gives the designer the ability to get a comprehensive conception about 

his problem and widely opens the door in front of him to design a conventional or unconventional bearing whatever the 

bearing purpose. The effective parameters; needed to be known for designing the bearing; were concentrated into three items; 

the rotor speed, the seat dimensions and the lubricant properties. The characteristic equation shows that the seat radius and the 

inlet angle play the major role in determining the supply pressure, in turn the load carrying capacity. The inertia, the recess 

angle and the lubricant viscosity have the major effect on determining the bearing stiffness in case of the partial hemispherical 

seats while in case of the hemispherical seats the stiffness has slightly been affected. The design shows that the bearings with 

hemispherical seats have extremely low stiffness, practically zero stiffness and very high temperature rise, which make this 

bearing configuration invalid to be self restriction bearing; while the bearings with partial hemispherical seats have a very wide 

stiffness range allowing the designer to control and design the bearing with the stiffness needed for any purpose (from zero 

stiffness to extremely high stiffness). The lubricant temperature rises about three degrees centigrade which practically means 

that the bearing operates at constant temperature. 

Keywords: Hydrostatic Bearings, Spherical Bearings Design, Surface Roughness, Inertia, Viscosity Effects,  

Self Compensation 

 

1. Introduction 

The previous researches offered plenty of the traditional 

studies and designs of the hydrostatic thrust spherical bearing 

with restrictors or with self-compensation. 

Ahmad W. Yacout [1-4] studied the fitted type, with and 

without recess, of the hydrostatic thrust spherical bearing 

with capillaries and orifices restrictors finding the effects of 

the inertia, surface roughness and lubricant fluid viscosity on 

the beating performance and offering an optimal design of 

this bearing. 

Kane N. R. et al [5] offered a design of a hydrostatic rotary 

bearing with angled surface self-compensation consisting of 

five precisely machined parts provided with a sealing system. 

It is concluded that the novel hydrostatic bearing is 

potentially useful for applications that require very high 

rotational precision and stiffness in a low profile package. 

Xiaobo Z. et al [6] investigated the influence of design 

parameters on the static performance of a designed self-

compensating hydrostatic rotary bearing where the results 

showed that the optimum designed resistance ratio is 1; the 

initial clearance ratio should be small, and the inner 

resistance ratio should be large. 

Yuan K. et al [7] studied a hydrostatic bearing with double-

action variable compensation of membrane-type restrictors 

(DAMR) and self-compensation (SC) where it is concluded 

that the critical (ddc) dimensionless deformation coefficient 

value of DAMR which corresponds to infinite stiffness is (2/3) 

and the static characteristics of self-compensation (SC) are 

always same as that of constant restrictors. 
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Xu C. and Jiang S. [8] conducted a comparative study of 

the static behavior between the self-compensation hydrostatic 

spherical hinge and the hydrostatic spherical hinge with 

orifice restrictor where the results showed that the self-

compensation hydrostatic spherical hinge has an advantage in 

the static behavior over the hydrostatic spherical hinge with 

orifice restrictor, including a much larger load capacity, a 

smaller flow rate, and a smaller power loss. 

Khaksea P. G. et al [9] offered a comparative study for the 

performance of a non-recessed hole-entry Hybrid/ 

Hydrostatic conical bearing compensated with capillary and 

orifice Restrictors where it is concluded that, in general, 

orifice compensated non-recess conical journal bearing 

showed higher performance characteristics as compared to 

the counterpart bearing for the applied radial load. 

Zhifeng Li et al [10] offered a fruitful review of 

hydrostatic bearing system where the articles about 

hydrostatic bearings since 1990 were collected in this review. 

Researching status was evaluated in two aspects: basic theory 

and typical application. Basic theory contains equations and 

analysis methods which include analytic, numerical, and 

experimental methods. Typical applications were based on 

rectangular oil pad, circular oil pad, and journal bearings. 

Moreover, the review focused on the analysis of the relevant 

model, solution, and optimization and summarized the 

hotspots and development directions. 

Alexander S. [11-12] discussed and compared between 

bearings with restrictors and others of self compensation 

using different lubricants (oil & water) where the study 

proved the priority of the self compensation type numerating 

its advantages and concluding that it makes the system far 

less sensitive to contamination especially if water is used, it 

provides greater stiffness and load capacity and it makes the 

system insensitive to manufacturing tolerances. Besides the 

bearings are self-tuning where the stiffness automatically 

optimizes itself for the bearing as soon as it is turned on (no 

manual tuning of capillary or orifice size is required) and the 

bearing is not significantly affected by large gap variations 

caused by manufacturing tolerances which make the bearing 

suitable for use with water or water based coolant as a 

bearing lubricant. 

Z. Y. Dong et al [13] obtained the relationships of 

worktable displacement, load capacity, and static stiffness by 

using flow continuity equations of a self-compensated 

hydrostatic bearing. The results revealed that the appropriate 

range of design parameters for self-compensated hydrostatic 

bearing can obtain the maximum stiffness. 

Mohit Agarwal [14] studied the stiffness of an opposed 

pad hydrostatic bearing showing that the performance of a 

hydrostatic bearing can be improved over a certain range of 

load capacity if the design parameters of the restrictor set-up 

are properly chosen where the design restriction ratio should 

be chosen differently for lower and higher loading conditions 

for high static stiffness. 

Antony Wong [15] presented, through the master thesis, a 

design and manufacturing method for a new surface self 

compensating hydrostatic bearing where a lumped resistance 

model was used to analyze the performance of the bearing 

and provide guidance on laying out the bearing features; 

concluding the results of the model indicate the design is 

extremely robust. 

The present design of hydrostatic thrust spherical bearing 

is utilizing a new untraditional technique, self-restriction, 

which helps the designer to get rid of the compensators 

allowing very low design complexity. 

2. Mathematics 

The mathematical bearing expressions are listed in the 

appendix. 

2.1. Bearing General Characteristic Equation 

2.1.1. Bearing with Orifice Restrictor 

From Yacout [1-4] 
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From equations (2, 6): 

3 3 33
( )
2560

c ioe Q m d=                                     (7) 

2.1.3. The Relation Between the Two Restrictors 

From equating equations (5, 7): 

Re 768 & Re 2000o c= =  

Hence, the general characteristic governing equation for 

this type of bearings is: 
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Put: 

c om m m= =  

3 3 3 3(1.172 10 ) ioe Q x m d−=                         (9) 

Equation (9) is the general characteristic governing 

equation for this type of bearings. 

2.2. Restrictor-less Bearing 

Equating (m) with the unity, equation (8 or 9) becomes: 
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3. Restrictor-less Bearing Design 

Generally, Equation (9) could be used to design a bearing 

with or without restrictors as needed and equation (10) could 

directly be used for designing the restrictor-less (self 

restriction) bearing. 

3.1. Determining the Supply Pressure 

From equations (4, 9): 
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3.2. Determining the Seat Inlet Angle ( iφ ) 

The angle ( iφ ) could be determined as: 
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Relating with equation (11), then: 
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To get the best benefit from the inertia in the design, the 

speed parameter (S = 1) 

3.3. Determining the Design Eccentricity 

From equations (13, 15 and 16) the quantity (
3e Q ) could 

be calculated at different values of (e) at the design speed 

parameter (S). Drawing this quantity against (e), the design 

eccentricity (e) which satisfies equation (10) could be 

graphically determined in turn the design (Q). 

3.4. Determining the Load Carrying Capacity 

Getting the design (e), the inlet and exit bearing angles 

( &i eθ θ ) could be calculated as in Yacout [1-4], the 

dimensionless load carrying capacity (W) could be calculated 

from equation (17). 

3.5. Determining the Total Losses (Pt) 

From equations (18-21) the total bearing losses could be 

calculated. 

3.6. Temperature Rise and Distribution 

From equations (22-23) the temperature rise could be 

theoretically and numerically calculated. 

3.7. Determining the Bearing Stiffness 

The theoretical or numerical stiffness calculations of this type 

of bearings are extremely tedious due to the crescent shape of 

the film thickness and the complicated relation between the load 

and the film thickness. However, the stiffness will be handled in 

some details based on the film thickness direction. 

3.7.1. Axial Bearing Stiffness ( aλ ) 

Putting into consideration that the film thickness in the 

thrust direction is: 

2cosah e θ=  

The stiffness could be calculated numerically in the thrust 

direction following the same procedures as found in the 

appendix to be: 
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3.7.2. Transversal Bearing Stiffness ( tλ ) 

The film thickness in the transversal direction is: 

cos sinth e θ θ=  

Hence: 
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3.7.3. Radial Bearing Stiffness ( rλ ) 

The film thickness in the transversal direction is: 

cosrh e θ=  

Hence: 
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3.7.4. Internal Bearing Stiffness ( θλ ) 

The detailed theoretical derivation is in the appendix 

where: 

The internal localized stiffness is: 
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4. Design Example 

It is required to design a high speed bearing with (50 mm) 

radius, maximum rotor speed (N =500 r. p. s) and intended 

load (L = 20 KN). 

5. Design Procedures 

5.1. Selections 

5.1.1. Lubricant Fluid Properties 

(µ = 0.086 N.s /m
2
, Kv = 0.5, ρ = 867 N.s

2
/m

4
, Cv =1880 

J/Kg. c
0
) 

5.1.2. Geometrical Dimensions 

2eφ ηπ= , ( )i tobecalculatedφ  r eYφ φ= , 0.81η = , 0.3Y =  

5.1.3. Surface Roughness Specifications 

(ξ = 0.05) 

5.2. Design Calculations 

5.2.1. Determining the Seat Inlet Angle ( iφ ) 

From equation (12): 
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5.2.2. Determining the Supply Pressure ( sP
) 

From equation (11): 
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5.2.3. Determining the Eccentricity (e) 

The quantity (
3e Q ) could be easily calculated at different 

values of (e), drawn against (e) and the design eccentricity 

which satisfies equation (10) could be graphically determined 

in turn the design (Q). 

From figure 1-a: 
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Figure 1. Partial with recess. 

5.2.4. Determining the Load Capacity (w) 

From equation (17) the load could be calculated to be: 

20.718w KN=  

Hence, the load factor of safety ( sf  ) is: 
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So, this load should not be exceeded. 

5.2.5. Determining the Flow Rate (q) 
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5.2.6. Determining the Pump Power ( pP
) 

From equation (19): 
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5.2.7. Determining the Temperature Rise (∆T) 

The temperature rise could be theoretically calculated as: 
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Or numerically by equation (22) and from the temperature 

distribution figure 1: 

2.86 oT C∆ =  

5.2.8. Determining the Stiffness 

Applying equations (24-29) the localized stiffness and the 

mean stiffness could be determined. 

a) Determining the radial Stiffness ( Rλ ) 

From figure 2-a & table 1 

110 /R N mλ µ=  

b) Determining the axial stiffness ( Aλ ) 

From figure 2-b & table 1 

188.4 /A N mλ µ=  

c) Determining the transversal stiffness ( Tλ ) 

From figure 2-c & table 1 

347 /T N mλ µ=  

d) Determining the internal stiffness ( θλ ) 

 

 

From figure 2-d & table 1 

132 /N mθλ µ=  

 

Figure 2. Partial with recess. 

 

Figure 3. Partial without recess. 

 

Figure 4. Partial without recess. 
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Figure 5. Hemi with recess. 

 

Figure 6. Hemi with recess. 

 

Figure 7. Hemi without recess. 

 

Figure 8. Hemi without recess. 

 

Figure 9. Partial hemi with recess for comparison. 

 

Figure 10. Partial hemi with recess for comparison. 
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Table 1. Collecting the bearing data. 

Bearing 

Parameters 

Without recess With recess 

H. S P.H. S H. S P. H. S 

ξ 0.05 0.05 0.05 0.05 

η 1 0.81 1 0.81 

ϕi (deg) 0.8 0.8 0.8 0.8 

ϕr ≈ 0 0 27 21.9 

ϕe ≈ 90 72.9 90 72.9 

∆ (mm) 0 0 5 5 

dio ≈ 1.4 1.4 1.4 1.4 

R ≈ 50 50 50 50 

Aw (cm)2 79 79 79 79 

Load (KN) 20 20 20 20 

N (r. p. s) 500 500 500 500 

ρ (N.s2 /m4) 867 867 867 867 

µ (N.s /m2) 0.068 0.068 0.068 0.068 

Cv (J/ Kg.c) 1880 1880 1880 1880 

θi (degree) 0.79 0.8 0.79 0.8 

θr ≈ 0 0 26.5 21.8 

θe ≈ 89 72.7 89 72.7 

β (dim-less) 2/3 2/3 2/3 2/3 

Ps (MN / m2) 2.41 2.41 2.41 2.41 

e (mm) 0.9233 0.203 0.9217 0.1682 

he ( µm) 17 60.5 17 50 

Ke (dim-less) 1/54.2 1/246 1/60 1/300 

S ≈ 1 1 1 1 

w (KN) 38.45 5.29 38.7 20.718 

fs = (w/L) 1.87 0.264 1.88 1.0359 

Q (dim-less) 0.0041 0.3802 0.0041 0.6725 

q (m / hr) 0.1429 0.1429 0.1429 0.1429 

Pp (N. m/s) 95.43 95.62 95 95.77 

λA (N / µm) 0.009 12.8 0.0056 188.4 

λR ≈ 0.0009 8.5 0.0006 110 

λT ≈ 0.002 23.7 0.0012 347 

λθ ≈ 29 25 29.2 132 

∆Tn (deg. c) 656 3.33 649 2.86 

∆Tth (deg. c) 1.48 1.48 1.47 1.48 

6. Bearing Configuration Checking 

The selected configuration is checked to find out the effect 

of different parameters ( , , ,r vkη θ ξ ) on the design. 

6.1. Effect of (η ) 

The seat arc length is lengthened to be (0.85) of the 

hemispherical one to be put in comparison with the designed 

one. 

6.2. Effect of (y) 

The recess arc length is extended to be (0.4) of seat arc one 

through increasing recess angle ( rθ ). 

6.3. Effect of ( vk ) 

The lubricant is treated as a constant fluid viscosity i.e. 

( 0vk = ). 

 

6.4. Effect of (ξ ) 

The bearing surface is treated as an utmost allowed 

roughened conformal surface in the hydrodynamic regime 

i.e. ( 1ξ = ). 

7. Results 

As previously stated, it is the last part of a study handling 

this type of bearings. A new technique is used to design an 

unconventional bearing. A general characteristic equation is 

derived to express this bearing function and test its design 

validation. A bearing is designed as an example to test the 

ability of the new technique, through the general 

characteristic equation, to offer a self-restriction bearing i.e. 

restrictor-less bearing. Ten figures (1-10) and two tables (1-

2) express the calculations results. 

8. Discussion 

Because of the novelty, the discussion may contain some 

necessary details needed to reveal the author opinion and 

options. 

8.1. Bearing Design Technique 

The design technique is merely based on unifying the 

dominant bearing parameters, the supply pressure, the 

lubricant flow rate and seat inlet orifice diameter ( . ,s ioP q d ) 

through the derived general characteristic equation to ease 

and simplify the bearing selection (regardless of it is with or 

without restrictor) depending only on its configuration that 

succeeds to meet the required application demands. 

8.2. General Characteristic Equation 

This new equation is derived through relating the capillary 

and orifice restrictors of the bearing and equating the two 

ratios ( cm and om ) to get equation (9). The equation expresses 

the characteristic of this type of bearing in general. Despite 

of its simplicity the equation relates the eccentricity (e), the 

lubricant flow rate, the central pressure ratio, central and 

supply pressures ( , ,i sp p β  ); through (Q); the bearing 

inlet orifice diameter and the restrictor diameter; through (m). 

Hence, it could be truly considered as the General 

Characteristic Bearing Equation, it controls the bearing 

parameters and never act the bearing outside its domination. 

Equating the ratio (m) with unity makes the restrictor 

parameter (m) disappear yielding equation (10). Now, this 

equation does not point to or contain a restrictor, which 

theoretically means that it expresses a restrictor-less 

bearing. The physical meaning of disappearing (m) is that 

the inlet bearing orifice does not only act as a flow 

passage but also as an orifice restrictor. The previous 

studies handling the subject of designing untraditional 

bearings depend on the bearing outlet passage to act as a 

restrictor where the bearings are called as self 

compensation [5-10]. 

So, the author prefers to call the present bearing, 
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mathematically, as a restrictor-less bearing or, physically as a 

self-restriction bearing. 

For the aforementioned reasons the author chooses the 

self-restriction bearing as a name of this new bearing. 

8.3. The Eccentricity 

The odd figures (1-7 a) and Table 1 show the 

determination of the eccentricity values for the different 

baring configurations. 

8.4. Load Carrying Capacity 

Table 1 shows that the partial un-recessed bearing 

configuration has failed to carry the required load. 

8.5. The Temperature Rise and Distribution 

The temperature rise is theoretically and numerically 

calculated. 

8.5.1. The Theoretical Solution 

Equation (22) is applied to calculate the temperature rise 

but it is impotent to help the designer finding the feature of 

this rise. 

8.5.2. The Numerical Solution 

While Equation (22) is unable to give the designer an idea 

about the temperature rise feature equation (23) can do. 

8.5.3. The Calculation Results 

The odd figures (1-7 c) express the temperature variation 

along the lubricant passage which got through the numerical 

solution of equation (23). Figures (5, 7 c) show that the 

temperature has gone up to 650 C which makes the 

hemispherical bearing configuration with or without recess 

unsuitable for the design required conditions in spite of its 

stiffness which will be discussed in the next item to assure its 

invalidity. 

8.6. The Bearing Stiffness (λ) 

The stiffness in the author previous studies hasn't been 

handled in details. 

8.6.1. The Numerical Solution 

This numerical solution depends on disturbing the bearing 

eccentricity (e) through changing it by an infinitesimal 

quantity resulting in changing the radial thickness ( rh ), the 

pressure (p) and in turn the load capacity (w) by infinitesimal 

quantities. Hence, the stiffness is calculated as the ratio 

between the infinitesimal changes of (w) and ( rh ). Because 

the radial thickness varies depending on its position as a 

function of (θ) the stiffness ( rλ ) also will be local depending 

on the ( rh ) position. The mean value of these local stiffness 

points is the mean stiffness. 

The thickness ( rh ) is analyzed in the axial ( ah ) and 

transverse ( th ) directions where the stiffness is based on the 

infinitesimal changes in these directions to be ( aλ ) and ( tλ ) 

equation (25-27). 

8.6.2. The Theoretical Solution 

A simple mathematical method is used to calculate the 

stiffness mathematically. The integration of the load capacity 

is differentiated relatively to the thickness to avoid the 

complications in the integration process and then the 

complications of re-differentiating the integrated load 

equation. It is seen from equation (28) that the stiffness is 

directly proportional to the pressure (times cosθ) which 

means that this stiffness has the same pressure feature as an 

internal entity and will be created and never be zero 

whenever a bearing process. As the pressure changes with (θ) 

and multiplied by (cosθ), the stiffness is also local in the (θ) 

direction. 

The mean value of these local stiffness points is the mean 

stiffness. From the aforementioned clarification the author 

prefers to call this stiffness as the internal stiffness ( θλ ) and 

believes that this internal stiffness is responsible for the 

bearing resistance to the angular displacement and the self 

alignment property of this type of bearings. 

8.6.3. The Stiffness of the Designed Bearing 

Figures (odd 1-7 b & d) show the pressure and the 

infinitesimal changes in the eccentricity and the load. 

Figures (even 2-8) show the stiffness in the different 

directions, as illustrated before, of the four designed bearing 

configurations. Table 1 compares between these different 

configurations to select the best one meets the design 

application demands. 

Figures (6, 8) show the invalidity of the hemispherical 

configuration with and without recess where the stiffness in 

the different directions are practically zero except the internal 

one which can never be zero as mentioned before. 

8.6.4. Selection of the Designed Bearing Configuration 

From figures (1-8) and Table 1 it is clear that the recessed 

partial hemispherical configuration is the only one succeeded 

to meet the design requirements. 

The un-recessed partial hemispherical configuration failed 

to carry the required load while the other configurations 

failed because of their zero stiffness and their extremely high 

temperature rise. 

8.7. The Checking Results of the Selected Configuration 

Figures (9-10) and table 2 show the effect of the seat arc 

length (η), the surface roughness (ξ), the recess arc length (y) 

and the viscosity variability ( vK ) on the design referring to 

the selected bearing configuration. 

It could be seen that the increase in (η) leads to increase 

the load and decrease the stiffness while the increase in (ξ) 

leads to slight decrease and increase in the load and the 

stiffness respectively. Treating the lubricant as a constant 

viscosity fluid ( 0vK = ) shows increase in the load and 

decrease in the stiffness. The only parameter which shows 

increase in both of the load and stiffness is (y) i.e. the 

increase in the recess angle ( rθ ) leads to improve, to some 

extent, the bearing design depending on the design 

requirements. 
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Table 2. Comparison between different parameters effects on the bearing 

design. 

Bearing 

parameters 

Ref. 

bearing 

η 

0.85 

ξ 

1.0 

y 

0.4 

Kv 

0.0 

ϕi (deg) 0.8 0.8 0.8 0.8 0.8 

ϕr ≈ 21.9 23 21.9 21.9 21.9 

ϕe ≈ 72.9 76.5 72.9 72.9 72.9 

∆ (mm) 5 5 5 5 5 

dio ≈ 1.4 1.4 1.4 1.4 1.4 

θi (degree) 0.8 0.8 0.8 0.8 0.8 

θr ≈ 21.8 22.9 21.8 29 21.8 

θe ≈ 72.7 76.29 72.7 72.7 72.7 

β (dim-less) 2/3 2/3 2/3 2/3 2/3 

Ps (MN / m2) 2.41 2.41 2.41 2.41 2.41 

e (mm) 0.1682 0.1873 0.164 0.136 0.174 

he ( µm) 50 44.4 48 48.5 51.6 

Ke (dim-less) 1/300 1/267 1/303 1/306 1/287 

S ≈ 1 1 1 1 1 

w (KN) 20.718 24.788 20.38 22.9 22.2 

fs = (w/L) 1.0359 1.24 1.019 1.14 1.1 

Q (dim-less) 0.6725 0.4852 0.707 0.73 0.394 

q (m / hr) 0.1429 0.1429 0.143 0.143 0.143 

Pp (N. m/s) 95.77 95.43 94.7 94.6 61.8 

λA (N /µm) 188.4 129.2 213.5 255 104 

λR ≈ 110 66.2 124 148 61 

λT ≈ 347 195 393 469 192 

λθ ≈ 132 127 134 147 134 

∆Tn (deg. c) 2.86 2.92 2.9 2.8 2.87 

∆Tth (deg. c) 1.48 1.48 1.46 1.46 1 

9. Conclusion 

Based on an unconventional design technique a new 

characteristic equation is derived to give the designer the 

ability and flexibility to easily design conventional or 

unconventional bearings. 

The equation proved its validity through offering an 

unconventional bearing, self restriction bearing, as a design 

example. 

The bearing's inlet orifice diameter, the radius and the 

lubricant properties (viscosity and density) play the major 

role in determining the supply pressure in this new design 

technique. 

The use of the maximum possible inertia effect enables the 

designer to minimize the supply pressure needed to lift the 

required load. 

This design technique proved the inadequacy of the 

hemispherical bearing configuration with or without recess to 

meet the high inertia design requirement and the impotence 

to be a self restriction bearing due to the highly temperature 

rise and zero stiffness; Also the un-recessed partial 

hemispherical configuration failed to be a self restriction 

bearing due to its inability to lift the required load. 

The only configuration that could be a self restriction 

bearing is the recessed partial hemispherical one. Its recess 

arc length plays the major role in improving its stiffness and 

increasing its ability to lift the loads. 

The seat arc length (η), the surface roughness (ξ) and the 

viscosity variability (Kv) do not have the ability to improve 

the bearing design i.e. while increasing the load capacity the 

stiffness decreases and vice versa. 

Appendix 

 

Figure A1. Bearing Configuration. 

Mathematical Expressions 

All mathematical equations related to this type of bearings 

could be found in Yacout [1-4] and the necessary ones which 

serve this design are listed. 
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Dimensionless load carrying capacity (W) 
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rA Aα=  

Dimensionless frictional torque (M) 
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Pump power 
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Temperature rise and distribution 

The temperature rise could be determined theoretically as: 

P
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Or numerically as: 
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The stiffness numerical solution 
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Through an infinitesimal change in the eccentricity (e), an 

infinitesimal change in the load, in ( θ ) and in the film 

thickness (h) will dependably occur. So, the numerical 

solution could be as: 
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From equations (24-26), the localized stiffness ( )lλ  could 

be calculated in turn the mean stiffness as: 
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=
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Internal bearing stiffness ( θλ ) 

Theoretically, the bearing stiffness could be calculated as: 
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Nomenclature 

A =
3(6 )iq e pµ π−  

pwaA = Projected wet area 

a =Bearing projected area (
2Rπ ). 

C = (6 )i qµ π− . 

vc = Lubricant specific heat 1880 (J / Kg. c) 

E (f) =Expected value of. 

e = Eccentricity & re e= ∆ +  

f = Dimensionless friction factor. 

F = Friction factor. 

H = Dimensionless film thickness. 

h = Film thickness ( cose θ ). 

fh = Power facto. 

fJ = Geometry factor (1/W). 

vK  = Constant of viscosity variation 

eK = ( e R ) & rK = ( re R ). 

L = Load required to be lifted. 

m = Frictional torque. 

M = Dimensionless frictional torque 
4( 2 )me RπµΩ  

cm = Capillary tube diameter ratio. 

om = Orifice diameter ratio. 

N = Shaft speed (r. p. s). 

P = Dimensionless pressure ( ip p ) 

p= pressure along the fluid film 

ip = Inlet pressure. 

sp =Supply pressure. 

Q = Dimensionless volume flow rate ( Q A= − ). 

q = Volume flow rate. 

R  = Bearing radius. 

eR = Reynolds number. 

S = Speed parameter (
2 23 40 iR pρ Ω ). 

T = Temperature 

W = Dimensionless load carrying capacity
2( )iw R pπ  

w = Load carrying capacity. 

r

e

y
φ
φ

=  

( )b rz e e=  & 
3( )bzα =  

β = ( i sp p ). 

θ = Angle co-ordinate. 

eϕ = Seat outer rim angle. 

rϕ =Recess angle
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iθ =Inlet flow angle. 

eθ = Outlet flow angle. 

∆= Recess depth 

T∆ = Temperature rise 

ρ = Lubricant density. 

σ = Dimensionless surface roughness parameter. 
2
oσ = Variance of the film thickness. 

λ = Bearing stiffness. 

aλ = Axial stiffness 

tλ = Transversal stiffness 

rλ = Radial stiffness 

θλ = Internal stiffness 

µ =Lubricant viscosity. 

Ω =Rotational speed 

Suffix 

c capillary 

o orifice 

e exit 

i inlet 

th theoretical 

n numerical 
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