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Abstract: Data Envelopment Analysis (DEA), as a non-parametric technique for evaluating the relative efficiencies of a set of 

homogenous decision-making units (DMUs) with multi-inputs and multi-outputs, is widely used in the performance evaluation field. 

This paper develops a new DEA cross-efficiency method based on consensus (CEC-DEA), which can be more reasonably and 

effectively in evaluating and ranking decision-making units (DMUs). In our proposed method, we firstly attempt to obtain the 

unique set of weights for each DMU through a second-objective model which can minimize the total variance between the 

self-evaluated efficiencies and the peer-evaluated efficiencies. Then, based on the acquired weights, the cross-efficiency scores 

of all DMUs are calculated. Before the cross-efficiency aggregation, we choose a DMU as the Common Reference Point (CRP) 

based on which all the cross-efficiency scores are rescaled to be comparable for the aggregation. In the aggregation stage, we 

define the Evaluation Consensus Degrees (ECDs) of all DMUs, which are used as the weights to aggregate the cross-efficiency 

scores through the weighted geometric mean method. Comprehensively, the proposed CEC-DEA method is developed to 

increase the rationality and acceptability of the evaluations for all DMUs. Finally, the a numerical example is illustrated to 

prove the effectiveness of the proposed method. 
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1. Introduction 

Data Envelopment Analysis (DEA), developed by Charnes et 

al., is a non-parametric technique for evaluating the relative 

efficiencies of a set of homogenous decision-making units 

(DMUs) with multi-inputs and multi-outputs [1]. Because of its 

effectiveness in identifying the best-practice frontier and ranking 

DMUs, DEA has been widely applied in the performance 

evaluation in various fields [2-6]. However, the traditional DEA 

model acquires the efficiency results in a self-evaluation mode, 

which allows each DMU to measure its efficiency using its 

favorable weights. However, this self-interested characteristic 

decreases the fairness and equality of the efficiency evaluation 

among DMUs [7] and cannot differentiate the efficient DMUs 

[8]. Furthermore, the traditional DEA model is also criticized for 

its inability to ensure the uniqueness of the optimal weights for 

each DMU [9, 10]. 

To address the drawbacks caused by the self-evaluation 

mode of the traditional DEA model, Sexton et al. proposed the 

cross-efficiency evaluation method [11]. Incorporating 

self-evaluation and peer-evaluation, the cross-efficiency 

evaluation method reflects the feature of group evaluation. Its 

advantages of the cross-efficiency evaluation are obvious. For 

example, the cross-efficiency evaluation method can 

effectively distinguish good and poor performers and produce 

a full ranking of DMUs [12]. In addition, it can also avoid the 

issue of unrealistic weight schemes without incorporating 

weight restrictions [13, 14]. 

Despite its advantages, the cross-efficiency evaluation 

method still fails to ensure the uniqueness of the optimal 

weights generated for each DMU [15]. To resolve this 

problem, many researchers have proposed modified 

cross-efficiency models by introducing a second-objective 

function. For example, Doyle and Green proposed the 

aggressive and benevolent models (the ACE method and the 

NCE method) to acquire the optimal set of weights for 

cross-efficiency evaluations [15]. Liang et al. suggested three 

second-objective formulations based on variations from the 

expected values [16]. Wang and Chin developed a neutral 

cross-efficiency model (NCE) with a secondary goal that a 
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DMU searches for a set of input and output weights to 

maximize its efficiency as a whole and at the same time to 

make its each output being as efficient as possible to produce 

sufficient efficiency as an individual [17]. Meanwhile, [17] 

also gives another cross-weight evaluation (CWE) way for 

assessing and ranking DMUs. By introducing a virtual ideal 

DMU (IDMU) and a virtual anti-ideal DMU (ADMU), Wang 

et al. determined the weights based on ideal and anti-ideal 

decision making units without the need to be aggressive or 

benevolent toward any DMUs [18]. Jahanshahloo et al. 

proposed the symmetric weight assignment technique (SWAT) 

to perform a symmetric selection of weights [19]. Contreras 

introduced the cross-efficiency model with a second goal of 

minimizing the ranking orders of the front DMUs [20]. 

Considering both the desirable and undesirable 

cross-efficiency targets of all DMUs, Wu et al. developed 

several secondary-goal models to obtain unique weights [21]. 

The cross-efficiency aggregation method is a critical 

component of the cross-efficiency evaluation method, and it 

has also drawn the attention of several researchers [22]. For 

example, Wu et al. applied Shannon entropy to the 

cross-efficiency aggregation method [22, 23]. Wang et al. 

adopted the ordered weighted averaging (OWA) operator for 

cross-efficiency aggregation [24]. Yang et al. proposed the 

evidential-reasoning (ER) approach for aggregating 

cross-efficiencies [25]. Wang et al. developed approaches to 

determine the relative importance weights for aggregating the 

cross-efficiency scores [26]. 

The cross-efficiency method incorporates self-evaluation 

and peer-evaluation; thus, it can be considered as a group 

evaluation method. As noted in [27], group evaluation 

methods should favor decision-making techniques designed to 

garner wide consensus among all evaluators. Classically, 

consensus is defined as the full and unanimous agreement of 

all decision makers regarding all the possible alternatives [28, 

29]. To achieve more acceptable and reasonable evaluation 

results, it is a possible way to introduce the concept of 

"consensus" into the cross-efficiency method [30]. 

In this paper, we propose a DEA cross-efficiency method 

based on consensus (CEC-DEA). Specifically, we define the 

Evaluation Consensus Degree (ECD) of each DMU and 

aggregate the cross-efficiency scores using the weighted 

geometric mean method, with the ECDs used as the weights. 

To the best of our knowledge, the use of ECDs as the weights 

in the cross-efficiency aggregation has not been applied in 

previous research. Moreover, we apply the geometric mean 

method because the efficiency scores are ratio figures and the 

geometric mean method performs better than the arithmetic 

mean method when calculating the mean values of ratio 

figures [32, 33]. 

As another important component of our CEC-DEA method, 

a second-objective model is constructed to ensure the 

uniqueness of the weights generated for each DMU. In 

particular, we also base our second-objective model on the 

concept of consensus, which minimizes the total variance 

between the peer-evaluated efficiencies and the self-evaluated 

efficiencies. 

Furthermore, because the cross-efficiency scores of each 

DMU are calculated under the peer -evaluation of different 

DMUs (i.e., they are obtained with different sets of weights), 

these scores essentially cannot be compared; therefore, they are 

unsuitable for direct aggregation [7-9, 19]. To ensure that the 

cross-efficiency scores are comparable, we choose a DMU as 

the Common Reference Point (CRP) and rescale all 

cross-efficiency scores based on this DMU before aggregation. 

The remainder of the paper is organized as follows. In section 

2, we present the previous DEA models, including the traditional 

CCR-DEA model and the cross-efficiency models. In section 3, 

we propose our CEC-DEA method. In section 4, the proposed 

CEC-DEA method is illustrated through a numerical example. 

Finally, in section 5, we present our conclusions. 

2. Traditional CCR-DEA Model and 

Cross-Efficiency Evaluation Methods 

2.1. Traditional CCR-DEA Model 

Assume that there are n  comparable DMUs to be 

evaluated and that each ( )DMU 1,2, ,k k n= ⋯  has m  

input(s) and t  output(s), which are denoted as 

( )1,2, ,ikx i m= ⋯  and ( )1,2, ,rky r t= ⋯ , respectively. For

( )DMU 1,2, ,k k n= ⋯ , consider that ikv  and rku  are the 

weights of the �th input and the �th output, respectively. The 

traditional CCR-DEA model proposed by Charnes et al. [1] is 

shown in model (1). 
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Through linear transformation, model (1) can be converted 

to the following linear programming model (2): 
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In models (1) and (2), kθ  denotes the efficiency of 

( )DMU 1,2, ,k k n= ⋯  based on self-evaluations. Based on 

model (2), we can obtain the optimal weights 

( )1,2, ,ikv i m= ⋯  and ( )1,2, ,rku r t= ⋯  for

( )DMU 1,2, ,k k n= ⋯ . 

2.2. Cross-Efficiency Evaluation Methods 

According to the cross-efficiency method proposed by 

Sexton et al. (1986), the cross-efficiency value 

( )1, 2, , ; 1,2, ,jk j n k nθ = =⋯ ⋯ 	 of DMU j  under the 

evaluation of ( )DMU 1,2, ,k k n= ⋯  is calculated as follows: 

1
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According to (3), the cross-efficiency scores of all DMUs 

are obtained. Then, based on (4), the final efficiency jA  of 

DMU j  is obtained. 
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n
r
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          (4) 

However, the cross-efficiency method still fails to ensure 

the uniqueness of weights, which are obtained from model (2). 

To solve this problem, Doyle and Green [14] developed the 

benevolent and aggressive models, which are shown as 

models (5) and (6), respectively. 
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In models (5) and (6), kθ  is the CCR efficiency of DMUk  

obtained from model (2). As shown in these models, the 

benevolent model (5) aims to maximize the cross-efficiencies 

of the other DMUs, whereas the aggressive model (6) seeks to 

minimize the cross-efficiencies of the other DMUs. 

3. Proposed CEC-DEA Method 

In our CEC-DEA method, we first attempt to obtain the 

unique set of weights for each DMU through a second-objective 

model that minimizes the total variance between the 

self-evaluated efficiencies and the peer-evaluated efficiencies. 

Then, based on the acquired weights, the cross-efficiency 

scores of all DMUs are calculated. Before the cross-efficiency 

aggregation, we choose a DMU as the CRP and rescale all the 

cross-efficiency scores so that they are comparable for the 

aggregation. In the aggregation stage, we define the ECD of 

each DMU and aggregate the cross-efficiency scores through 

the weighted geometric mean method, with the ECDs used as 

the weights. Comprehensively, the proposed CEC-DEA 

method is developed to increase the reasonability and 

acceptability of the evaluations for all DMUs. 

3.1. Second-Objective Model 

In the first stage of the CEC-DEA method, we construct the 

second-objective model to obtain the unique set of weights for 

each DMU. The second-objective model is constructed based 

on the concept of consensus, which is shown in model (7). 

Specifically, under the peer-evaluation of each DMUk , the 

total variance between the cross-efficiency scores 

( )1,2, ,= ⋯jk j nθ  and the self-evaluated efficiencies 

( )c 1, 2, ,= ⋯j j nθ  of all DMUs calculated from the traditional 

CCR model is minimized. 
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In model (7), 
c
jθ  and 

c
kθ  are the self-evaluated efficiencies 

of DMU j and DMUk , respectively, which were calculated 

from the traditional CCR model; and jkθ  is denoted as the 

cross-efficiency score of DMU j  under the peer-evaluation of

DMUk , which is calculated according to (3). 

Because the self-evaluated efficiency 
c
jθ  of 

( )DMU 1,2, ,= ⋯j j n  is a fixed value obtained from the 

CCR model, the objective function in model (7) is equivalent 

to maximizing the sum of the cross-efficiency of DMU j , i.e., 
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By solving models (2) and (9), a unique set of weights 

( )1,2, ,ikv i m= ⋯  and ( )1,2, ,rku r t= ⋯  can be calculated 

for each ( )DMU 1, 2, ,k k n= ⋯ . 

3.2. Rescale the Cross-Efficiency Scores 

As mentioned in the Introduction, the cross-efficiency 

scores cannot be directly aggregated because they are obtained 

with using different sets of weights [7-9]. To ensure that the 

cross-efficiency scores are comparable for aggregation, we 

attempt to choose a DMU as the CRP and rescale all the 

cross-efficiency scores based on this DMU. Specifically, if 

DMUr  is chosen as the CRP, then the cross-efficiency score 

( )1,2, , ; 1,2, ,jk j n k nθ = =⋯ ⋯  of ( )DMU 1,2, ,j j n= ⋯  

under the peer-evaluation of ( )DMU 1, 2, ,k k n= ⋯  can be 

rescaled as
r
jkθ , which is shown as follows: 

, 1, 2, , ; 1, 2, , .
jkr
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rk
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θ

θ
θ

= = =⋯ ⋯      (10) 

In (10), ( )1,2, ,rk k nθ = ⋯  denotes the cross-efficiency 

score of DMUr  under the peer-evaluation of

( )DMU 1, 2, ,k k n= ⋯ . After rescaling, the new 

cross-efficiency scores ( )1,2, , ; 1,2, ,r
jk j n k nθ = =⋯ ⋯  are 

comparable and thus suitable for aggregation. To ensure that 

the new cross-efficiency scores 

( )1,2, , ; 1,2, ,r
jk j n k nθ = =⋯ ⋯  are less than or equal to 1.0 

as much as possible, the selected DMU as the CRP had better 

be the one with the cross-efficiency scores of 1.0 for most 

cases. 

3.3. Cross-Efficiency Scores Aggregation 

To achieve more acceptable and reasonable evaluation 

results, the aggregation stage of our CEC-DEA method 

considers the consensus among all DMUs. Classically, 

consensus is defined as the full and unanimous agreement of 

all decision makers regarding all possible alternatives [29, 31]. 

Here, we define the ECD as follows: 

2

1

1
, 1,2, , .

1 ( )

k
n

r
jk j

j

c k n

θ θ
=

= =

+ −∑

⋯

   (11) 

In (11), ( )1, 2, ,kc k n= ⋯  is denoted as the ECD of 

( )DMU 1, 2, ,k k n= ⋯  and ( )1,2, ,j j nθ = ⋯  is the 

geometric mean value of the rescaled cross-efficiency score 

( )1,2, , ; 1,2, ,r
jk j n k nθ = =⋯ ⋯  of ( )DMU 1,2, ,j j n= ⋯ , 

which is calculated as follows: 
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Furthermore, ( )2

1

( ) 1, 2, ,

n
r
jk j

j

k nθ θ
=

− =∑ ⋯  in (11) 

expresses the Euclidean distance between the vector 
r
jkθ

( )1,2, ,j n= ⋯  and the vector jθ ( )1,2, ,j n= ⋯ . From (11), 

the ECD of DMUk , which is denoted as kc , is shown to be 

inversely related to the calculated Euclidean distance

2
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j

θ θ
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−∑ . Because the minimum value of the 

Euclidean distance is zero, the ECDs belong to the variation 

range (0,1] . For example, when the Euclidean distance is zero, 

1kc =  is obtained as the largest value. 

Finally, we aggregate the cross-efficiency scores via the 

weighted geometric mean method, with the ECDs used as the 

weights. This geometric mean method is applied because the 

efficiency scores are ratio figures and the geometric mean 

method performs better than the arithmetic mean method 

when calculating the mean values of ratio figures [29, 30]. 

Therefore, the final efficiency score
*
jA  of DMU j  is 

calculated as follows (13): 
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To conclude, the steps of the proposed CEC-DEA method 

are outlined as follows: 

Step 1: Calculate the weights for each DMU based on 

models (2) and (9); 

Step 2: According to (3), calculate the cross-efficiency 

scores of all DMUs using the obtained weights; 

Step 3: According to (10), rescale the cross-efficiency 

scores based on the selected CRP; 

Step 4: According to (11), calculate the ECD of each DMU; 

Step 5: According to (13), aggregate the rescaled 

cross-efficiency scores using the weighted geometric mean 

method with the ECDs as the weights; 

Step 6: Rank all DMUs according to their final efficiency 

scores ( )* 1,2, ,jA j n= ⋯ . 

4. Numerical Example 

For the convenience of comparison, the proposed 

CEC-DEA method is illustrated using a previous numerical 

example from the literature [10]. As shown in Table 1, the 

numerical example includes fourteen DMUs, each of which 

has three inputs (i.e., Input1 = aircraft capacity in ton 

kilometers; Input2 = operating cost; and Input3 = non-flight 

assets and two outputs) and two outputs (i.e., Output1 = 

passenger kilometers; and Output2 = non-passenger revenue). 

Table 1. Example data. 

DMUs Input1 Input2 Input3 Output1 Output2 

DMU1 5723 3239 2003 26677 697 
DMU2 5895 4225 4557 3081 539 
DMU3 24099 9560 6267 124055 1266 
DMU4 13565 7499 3213 64734 1563 
DMU5 5183 1880 783 23604 513 
DMU6 19080 8032 3272 95011 572 
DMU7 4603 3457 2360 22112 969 
DMU8 12097 6779 6474 52,363 2001 
DMU9 6587 3341 3581 26504 1297 
DMU10 5654 1878 1916 19277 972 
DMU11 12559 8098 3310 41925 3398 
DMU12 5728 2481 2254 27754 982 
DMU13 4715 1792 2485 31332 543 
DMU14 22793 9874 4145 122528 1404 

4.1. Calculating the Efficiencies Based on the Proposed 

CEC-DEA Method 

Based on model (2) and our second-objective model (9), the 

unique set of weights for each DMU is obtained. According to 

(3), we can obtain the cross-efficiencies ( ), [1,14]jk j kθ ∈  of 

all DMUs, which are shown in Table 2. 

Table 2. Cross-efficiency matrix. 

DMUj 
DMUk 

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 DMU11 DMU12 DMU13 DMU14 

DMU1 0.86836 0.45013 0.62251 0.86836 0.84920 0.47261 0.81076 0.78813 0.70308 0.75116 0.86836 0.77130 0.84920 0.84920 

DMU2 0.17189 0.33794 0.04718 0.17189 0.17351 0.02471 0.24789 0.27242 0.28083 0.20577 0.17189 0.20249 0.17351 0.17351 

DMU3 0.88259 0.19416 0.94752 0.88259 0.88442 0.68979 0.72320 0.68331 0.62254 0.78461 0.88259 0.80717 0.88442 0.88442 

DMU4 0.95809 0.42586 0.70342 0.95809 0.94131 0.69730 0.82280 0.78498 0.69914 0.81125 0.95809 0.83407 0.94131 0.94131 

DMU5 0.96528 0.36582 1.00000 0.96528 1.00000 1.00000 0.77038 0.73590 0.77775 1.00000 0.96528 1.00000 1.00000 1.00000 

DMU6 0.88179 0.11080 0.95628 0.88179 0.87799 0.97658 0.66152 0.60837 0.50992 0.71759 0.88179 0.74779 0.87799 0.87799 

DMU7 0.92108 0.77806 0.47727 0.92108 0.87951 0.33816 1.00000 1.00000 0.83947 0.78077 0.92108 0.80117 0.87951 0.87951 

DMU8 0.78131 0.61137 0.51623 0.78131 0.77025 0.29237 0.84576 0.85876 0.82083 0.75318 0.78131 0.76308 0.77025 0.77025 

DMU9 0.78545 0.72775 0.50755 0.78545 0.78885 0.26768 0.87824 0.90719 0.94774 0.83745 0.78545 0.83692 0.78885 0.78885 

DMU10 0.78214 0.63539 0.65200 0.78214 0.82498 0.35640 0.77799 0.79436 1.00000 1.00000 0.78214 0.97192 0.82498 0.82498 

DMU11 1.00000 1.00000 0.42868 1.00000 1.00000 0.44179 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

DMU12 0.94619 0.63364 0.75002 0.94619 0.96020 0.43951 0.93618 0.93951 0.99984 1.00000 0.94619 1.00000 0.96020 0.96020 

DMU13 1.00000 0.42565 1.00000 1.00000 1.00000 0.45551 1.00000 1.00000 1.00000 0.98429 1.00000 1.00000 1.00000 1.00000 

DMU14 1.00000 0.22767 1.00000 1.00000 1.00000 1.00000 0.77950 0.72754 0.64784 0.85685 1.00000 0.88375 1.00000 1.00000 

 

Table 2 shows that compared with the other DMUs, DMU11 

is efficient and presents a cross-efficiency score of 1 for most 

cases. Therefore, we choose DMU11 as the selected CRP and 

then rescale the cross-efficiencies of all DMUs according to 
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(10). The newly obtained cross-efficiency scores 

( )11 , [1,14]jk j kθ ∈  of all DMUs are given in Table 3. From 

Table 3, we can observe that the new cross-efficiency scores 
11
jkθ  of DMU11 are all equal to 1. 

According to (11), the ECDs of all DMUs,

( )1, 2, ,kc k n= ⋯ , are calculated and outlined in the last row 

of Table 3. Moreover, the geometric mean values 

( )1,2, ,j j nθ = ⋯  of the rescaled cross-efficiency scores 

( )1,2, , ; 1,2, ,r
jk j n k nθ = =⋯ ⋯  of ( )DMU 1,2, ,j j n= ⋯  

are calculated according to (12), which are shown in the last 

column of Table 3. 

Table 3. The rescaled cross-efficiency matrix. 

DMUj 
DMUk 

��j 
DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 DMU11 DMU12 DMU13 DMU14 

DMU1 0.86836 0.45013 1.45215 0.86836 0.8492 1.06976 0.81076 0.78813 0.70308 0.75116 0.86836 0.7713 0.8492 0.8492 0.82947 

DMU2 0.17189 0.33794 0.11007 0.17189 0.17351 0.05593 0.24789 0.27242 0.28083 0.20577 0.17189 0.20249 0.17351 0.17351 0.18196 

DMU3 0.88259 0.19416 2.21032 0.88259 0.88442 1.56137 0.7232 0.68331 0.62254 0.78461 0.88259 0.80717 0.88442 0.88442 0.81995 

DMU4 0.95809 0.42586 1.6409 0.95809 0.94131 1.57836 0.8228 0.78498 0.69914 0.81125 0.95809 0.83407 0.94131 0.94131 0.90499 

DMU5 0.96528 0.36582 2.33274 0.96528 1.00000 2.26353 0.77038 0.7359 0.77775 1.00000 0.96528 1.00000 1.00000 1.00000 0.98114 

DMU6 0.88179 0.1108 2.23075 0.88179 0.87799 2.21051 0.66152 0.60837 0.50992 0.71759 0.88179 0.74779 0.87799 0.87799 0.77445 

DMU7 0.92108 0.77806 1.11335 0.92108 0.87951 0.76543 1.00000 1.00000 0.83947 0.78077 0.92108 0.80117 0.87951 0.87951 0.88649 

DMU8 0.78131 0.61137 1.20423 0.78131 0.77025 0.66178 0.84576 0.85876 0.82083 0.75318 0.78131 0.76308 0.77025 0.77025 0.78924 

DMU9 0.78545 0.72775 1.18398 0.78545 0.78885 0.60591 0.87824 0.90719 0.94774 0.83745 0.78545 0.83692 0.78885 0.78885 0.82329 

DMU10 0.78214 0.63539 1.52096 0.78214 0.82498 0.80672 0.77799 0.79436 1.00000 1.00000 0.78214 0.97192 0.82498 0.82498 0.86237 

DMU11 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

DMU12 0.94619 0.63364 1.7496 0.94619 0.96020 0.99484 0.93618 0.93951 0.99984 1.00000 0.94619 1.00000 0.9602 0.9602 0.97752 

DMU13 1.00000 0.42565 2.33274 1.00000 1.00000 1.03107 1.00000 1.00000 1.00000 0.98429 1.00000 1.00000 1.00000 1.00000 1.00055 

DMU14 1.00000 0.22767 2.33274 1.00000 1.00000 2.26353 0.77950 0.72754 0.64784 0.85685 1.00000 0.88375 1.00000 1.00000 0.92475 

kc  0.8407 0.3807 0.2243 0.8407 0.8612 0.2793 0.7372 0.6908 0.6340 0.8068 0.8407 0.8475 0.8612 0.8612 0.8407 

 

Using (13), the final efficiencies ( )* 1, ,jA j n= ⋯  and the 

ranking orders are obtained as shown in Table 4. For the 

convenience of comparison, the ranking results based on 

the traditional CCR model as well as the ACE method, the 

BCE method, the NCE method, the CWE method are also 

outlined in Table 4. Obviously, the CCR model cannot 

discriminate the ranking orders of efficient DMUs, such as 

DMU5, DMU7, DMU10, DMU11, DMU12, DMU13 and 

DMU14. However, the other methods can fully rank the 

DMUs. 

Table 4. Efficiency scores and rankings of all DMUs with different methods. 

DMU 
CCR ACE method BCE method NCE method CWE method CEC-DEA method 

Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank 

1 0.8684 12 0.5990 12 0.7516 12 0.7049 11 0.7021 11 0.8161 10 

2 0.3379 14 0.1652 14 0.1897 14 0.1912 14 0.1698 14 0.1916 14 

3 0.9475 11 0.6226 11 0.7681 9 0.7154 10 0.7117 9 0.8027 11 

4 0.9581 9 0.6734 7 0.8198 6 0.7733 7 0.771 6 0.8827 7 

5 1.0000 1 0.7983 1 0.8961 3 0.8764 2 0.8518 2 0.9384 4 

6 0.9766 8 0.6385 9 0.7549 11 0.7024 12 0.6849 12 0.7589 13 

7 1.0000 1 0.6478 8 0.8155 7 0.7711 8 0.7424 8 0.8852 6 

8 0.8588 13 0.5855 13 0.7226 13 0.6906 13 0.6652 13 0.7834 12 

9 0.9477 10 0.6309 10 0.7595 10 0.7378 9 0.7056 10 0.8192 9 

10 1.0000 1 0.6813 6 0.7864 8 0.7813 6 0.7671 7 0.8460 8 

11 1.0000 1 0.7742 2 0.9193 1 0.9041 1 0.9023 1 1.0000 1 

12 1.0000 1 0.7314 5 0.8870 4 0.8541 4 0.842 3 0.9610 3 

13 1.0000 1 0.7503 3 0.9190 2 0.8723 3 0.8348 4 0.9857 2 

14 1.0000 1 0.7316 4 0.8659 5 0.8140 5 0.8001 5 0.8971 5 

 

4.2. Model Validation Test 

Some researchers have applied the multivariate statistics to 

conduct the validation test on DEA methods [34-36]. Using a 

method similar to that in [34], we test the credibility of the 

proposed CEC-DEA method via the multiple linear regression 

method. The final efficiencies are considered as dependent 

variables, and the inputs and outputs are considered as the 

independent variables. The multiple linear regression model 

is established as follows: 

0 1 2 3 4 51 2 3 1 2Efficiency Input β Input β Input β Output β Outputβ β ε= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +          (14) 
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For comparison, we also test the credibility of both the 

CEC-DEA method and the traditional CCR model, the ACE 

method, the BCE method, the NCE method, the CWE 

method. Using SPSS software, we obtain the test results by 

employing the multiple linear regression model, and the 

results are shown in Tables 5 and 6. The results of our 

CEC-DEA model show higher consistency compared with 

the results of the other five methods. For example, the values 

of R, R square and the adjusted R square based on the 

proposed CEC-DEA model are 0.9860, 0.9723 and 0.9549, 

respectively, and all of these values are higher than the values 

obtained by the other five methods. In addition, the Analysis 

of Variance (ANOVA) shows that the CEC-DEA model 

passes the significance test, and its significance F value is 

5.16074E-06, which is lower than that of the other five 

methods. 

Table 5. The summary of multiple linear regression model for methods. 

Method Multiple R R Square Adjusted R Square Std. Error of the Estimate 

CCR model 0.9532 0.9086 0.8515 0.0673 

ACE method 0.9773 0.9553 0.9274 0.04128 

BCE method 0.9832 0.9667 0.9459 0.0422 

NCE method 0.9831 0.9677 0.9475 0.039799 

CWE method 0.9855 0.9713 0.9533 0.03779 

CEC-DEA method 0.9860 0.9723 0.9549 0.0420 

Table 6. The ANOVA of multiple linear regression model for methods. 

Method  DF SS MS F p-value 

CCR model 

Regression 5 0.3600 0.0720 15.9033 0.000562 

Residual 8 0.0362 0.0045   

Total 13 0.3962    

ACE method 

Regression 5 0.291353 0.058271 34.19505 3.41E-05 

Residual 8 0.013633 0.001704   

Total 13 0.304985    

BCE method 

Regression 5 0.4131 0.0826 46.4753 1.06E-05 

Residual 8 0.0142 0.0018   

Total 13 0.4273    

NCE method 

Regression 5 0.37946 0.075892 47.91251 9.46E-06 

Residual 8 0.012672 0.001584   

Total 13 0.392132    

CWE method 

Regression 5 0.386172 0.077234 54.07414 5.94E-06 

Residual 8 0.011426 0.001428   

Total 13 0.397598    

CEC-DEA method 

Regression 5 0.4942 0.0988 56.0941 5.16074E-06 

Residual 8 0.0141 0.0018   

Total 13 0.5083    

 

4.3. Results Discussion 

As shown in Table 4, our proposed CEC-DEA method, the 

ACE method, the BCE method, the NCE method and the 

CWE method can fully rank the DMUs, whereas the CCR 

model cannot differentiate the efficient DMUs. In addition, 

the validation test results in section 4.2 demonstrate the 

credibility and effectiveness of the proposed CEC-DEA 

method. 

A comparison of the ranking results of our CEC-DEA 

method with the results of the benevolent cross-efficiency 

method shows major variations, which are analyzed below. 

With the benevolent cross-efficiency method, the final 

efficiencies of DMU5 and DMU12 are 0.8961 and 0.8870, 

respectively, and their ranking orders are 3 and 4, respectively. 

However, with the CEC-DEA method, we obtain the opposite 

ranking order for DMU5 and DMU12 and their efficiencies are 

0.9384 and 0.9610, respectively. 

With the benevolent cross-efficiency method, the final 

efficiencies of DMU4 and DMU7 are 0.8198 and 0.8155, 

respectively, and their ranking orders are 6 and 7, respectively. 

However, with the CEC-DEA method, we obtain the opposite 

ranking orders for DMU4 and DMU7 and their efficiencies are 

0.8827 and 0.8852, respectively. 

The ranking orders of DMU3 and DMU6 drop from 9 and 11 

in the benevolent cross-efficiency method to 11 and 13 in the 

CEC-DEA method, respectively. 

The main reason for the above changes is that the 

CEC-DEA method considers the ECDs of all DMUs and 

adopts the weighted geometric mean method to aggregate the 

cross-efficiency scores. Specifically, we use DMU5 and 

DMU12 as examples to discuss the mechanism of the 

CEC-DEA method. 

From Table 2 and Table 3, we observe that the 

cross-efficiency scores of DMU5 are higher than those of DMU12 

under the evaluation of DMU1, DMU4, DMU5, DMU11, DMU13 
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and DMU14, which present minor gaps, and DMU3 and DMU6, 

which present relatively larger gaps. However, under the 

evaluation of DMU2, DMU7, DMU8 and DMU9, the 

cross-efficiency scores of DMU5 are lower than those of DMU12. 
In the last row of Table 3, we observe that DMU3 and 

DMU6 have the lowest ECDs, while DMU1, DMU2, DMU4, 

DMU5, DMU7, DMU8, DMU9, DMU11, DMU13 and DMU14 

have relatively high ECDs. 

Because of the ECDs, the peer-evaluations of DMU3 and 

DMU6 play a minor role, whereas the peer-evaluations of 

DMU1, DMU2, DMU4, DMU5, DMU7, DMU8, DMU9, 

DMU11, DMU13 and DMU14 play a relatively major role. 

Therefore, DMU12 acquires a higher final efficiency score 

than DMU5 and ranks before DMU5. 

For clear illustration, we also present the cross-efficiency 

scores of DMU5 and DMU12 as well as the ECDs of all DMUs 

in Figure 1. 

 

Figure 1. The cross-efficiency scores of DMU5 and DMU12 and the ECDs of all DMUs. 

 

Figure 2. The cross-efficiency scores of DMU4 and DMU7 and the ECDs of all DMUs. 

 

Figure 3. The cross-efficiency scores of DMU3 and DMU6 and the ECDs of all DMUs. 
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Similarly, we can explain why DMU4 ranks behind DMU7 

in the CEC-DEA method. For the convenience of analysis, we 

present the cross-efficiency scores of DMU4 and DMU7 as 

well as the ECDs of all DMUs in Figure 2. In addition, Figure 

3 shows the cross-efficiency scores of DMU3 and DMU6 and 

the ECDs of all DMUs according to the proposed CEC-DEA 

method. Obviously, it is observed in Figure 3 that even though 

the self-evaluated efficiency scores of DMU3 and DMU6 are 

the highest, the ECDs of DMU3 and DMU6 are the lowest, 

which will greatly pull their orders backward in the final 

ranking result. 

5. Conclusions 

In the context of DEA, the cross-efficiency method has 

been extended and widely applied for evaluating DMUs in 

various areas. However, previous cross-efficiency methods do 

not consider the evaluation consensus among all DMUs, and 

most of them aggregate the cross-efficiency scores directly 

without considering the incomparability. Therefore, these 

methods cannot ensure the acceptance or recognition of all 

DMUs and cannot ensure a sufficiently reasonable evaluation. 

To resolve these problems, we propose a new DEA 

cross-efficiency method based on consensus (CEC-DEA), 

which consists of the following main parts: 1) a 

second-objective model is introduced to ensure the uniqueness 

of weights, which minimizes the total variance between the 

self-evaluated efficiencies and the peer-evaluated efficiencies 

based on the concept of consensus; 2) a DMU is selected as 

the CRP to ensure that the cross-efficiency scores are 

comparable, and all cross-efficiency scores are rescaled based 

on this DMU before aggregation; and 3) the ECD of each 

DMU is defined based on the concept of consensus, and the 

rescaled cross-efficiency scores are aggregated via the 

weighted geometric mean method, with the ECDs as the 

weights. Finally, a numerical example is presented, and the 

proposed CEC-DEA method is demonstrated to be effective.  

However, our proposed DEA cross-efficiency method is 

based on the traditional radial DEA models, which have a 

problem with overestimating the efficiencies of DMUs when 

there exist some non-zero slacks. In the future, we can reserch 

a Non-radial DEA cross-efficiency method based on the 

slacks-based model (SBM) and DDF to overcome the above 

problem. 
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