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Abstract: We have developed many types of transport boxes by origami-operation and space filling operation. But it has not 

been solved that the fruits, vegetables, strawberries, cells, blood and a bottle of liquor are damaged, broken during transportation. 

It is the greatest factor in this situation that there is a danger vibration frequency band where these are easy to scratch and are 

prone to death. If there are eigen frequencies within this danger frequency band, it needs that those eigen frequencies within this 

danger frequency band are moved out of the band. But it is difficult to apply the existing topology optimization methods using 

homogenization method or density method to control plural eigen frequencies for two reasons. One reason is that even if 

homogenization method or density method is used, finally after convergence, holes are made on finite elements of which the size 

of the homogenizing element or the thickness is smaller than the threshold by keeping the rest the original size. In such 

processing, there is a possibility that the converged solution again deviates from the convergence value. Another reason is that it 

is difficult to control plural eigen frequencies simultaneously because some eigen frequencies go up and some ones go down no 

matter where it is reinforced although displacement at any point goes down in static problem. Although in such way, it is very 

difficult to control plural eigen frequencies, here we propose a new high precision and high efficiency method for controlling 

plural eigen frequencies simultaneously using the kinetic energy density and the strain energy density. 

Keywords: Origami Engineering, Transportation Box, Topology Optimization, Density Method,  

Index of Generalized Eigen Frequency, Kinetic Energy Density, Strain Energy Density, Danger Frequency Band 

 

1. Introduction 

Fruits and vegetables, blood, induced pluripotent stem (iPS) 

cells, bottles of liquor, wine have frequency bands that are 

susceptible to damage. By designing a box such that the box 

system with the items does not have the eigen frequencies 

within these frequency bands, the items can be safely 

transported. When the car is running, if the vibration between 

5 Hz and 10 Hz is large, passengers are likely to get car 

sickness. Therefore, automobile companies design seats such 

that the eigen frequencies of the floor structure system do not 

lie in this danger frequency band. Therefore, it is necessary in 

product development and manufacturing to control the eigen 

frequencies. The frequency band in question is called here 

the danger frequency band, and if the eigen frequency of the 

vibration system is in the danger frequency band, it is 

redesigned to move those eigen frequencies out of the band. 

In this study, we will conduct a basic study on the problem of 

moving the eigen frequencies out of the band to solve the 

above-mentioned problems. To expel the eigen frequencies 

from the danger frequency band, for example, it is redesigned 

that some eigen frequencies to be higher and some eigen 

frequencies to be lower. 

In general, it is difficult even with a slight movement of 

the eigen frequency by dimensional optimization and the 

birth of topology optimization method was expected. But 

topology optimization method was not easy to realize. 

Finally, in 1988, topology optimization method using 
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homogenization method was developed [1]. Since then, a 

great deal of researches has been done up to the present day 

[2]. By making the mesh infinitely fine, mathematically the 

convergence of the solution is guaranteed [3]. This caused 

that the mesh was considerably finely tuned for a while after 

its birth in 1988 and it was difficult to use mathematical 

optimization methods on computers at that time. And the use 

of the optimality criterion method which requires less 

computer resources became mainstream. For this reason, the 

application to dynamic topology optimization was initially 

difficult, but the reason of this difficulty has also been 

indicated [4]. For the homogenization topology optimization 

method, it is actually difficult to make the elements infinitely 

small, and elements of finite size are used. And the size of the 

homogenizing elements within each element is normalized 

between 0 and 1, and after the optimization routine, for 

example, holes are made on the part below the threshold size. 

Therefore, one of the authors, Hagiwara, thought that if such 

a use that deviated from the original theory was allowed, it 

would be permissible to apply mathematical optimization 

methods to a dynamic problem with elements of a size large 

enough in the computers of the time. When this was actually 

applied, results comparable to the ones by optimality criterion 

method with much more precise meshes were obtained [5]. 

Moreover comparison of using plate thickness as a design 

variable and using homogenization indicated that there was 

no big difference [6]. Given this result and for simplicity, 

nowadays, the so-called density method is used for the 

topology optimization where plate thickness and density are 

selected as design variables. Since the paper [1], one of the 

authors, Hagiwara himself, has published several topology 

optimization papers related to vibration and noise [7-13]. As 

far as the problem "Simultaneously handle multiple eigen 

frequencies, including lowering some eigen frequencies and 

increasing other eigen frequencies", it is highly doubtful 

whether the series of methods that have been developed is 

applicable. One is that although it does not converge even 

after specified number of iterations of optimization, it is not 

sure if there is a solution to the problem. Furthermore, for 

example, when element thicknesses are used as design 

variables, even if the desired eigen frequencies are obtained 

by optimization, In the conventional method, a certain 

threshold value is determined, holes are made in the parts 

below it, and the rest is applied to the current plate thickness, 

and if this is executed, it will deviate from the goal value. 

This way it is still not easy to bring it up to a concrete design. 

In the eigenvalue problem involving stiffness and mass, if the 

plate thickness of an arbitrary part is increased, some eigen 

frequencies increase and some decrease, and it is difficult to 

blindly apply the topology optimization method. 

Therefore, we try to develop a new method of controlling 

the eigen frequencies by returning to the origin of the vibration 

theory, in which the eigen frequency is determined by the 

equivalent stiffness and the equivalent mass. In chapter 2, it is 

handled two cases: convergent and not convergent for 

controlling plural eigen frequencies non- including in the 

danger frequency band using conventional density topology 

optimization techniques. In chapter 3, the proposed method is 

applied to the same two cases as in chapter 2 and it is indicated 

that solutions can be obtained very easily for the converged 

problem in chapter 2, and it is clarified why it cannot be 

converged for the non-convergent problem in chapter 2. In 

chapter 4, it is summarized the results. 

 

Figure 1. FEM model for test piece: 120 elements using vertical and 

horizontal symmetry. Eigen frequencies from 7th to 10th under free-free 

condition: 8.14Hz, 9.38Hz, 19.14Hz, 19.34Hz. 

 

Figure 2. Relationship between objective function and number of iterations to 

keep all eigen frequencies out of danger frequency band (from 7Hz to 17Hz). 

As a result, the goal was achieved. 

 

Figure 3. Left: Shape obtained by optimization simulation. Navy blue: 1.0mm, 

White: 0.1mm, eigen frequencies (7th, 8th, 9th, 10th) = (5.67Hz, 6.91Hz, 

17.23Hz, 17.34Hz). Right: Making holes less than 0.3mm, Eigen frequencies 

(7th, 8th, 9th, 10th) = (7.33Hz, 7.53Hz, 18.00Hz, 18.14Hz). 
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Figure 4. Relationship between objective function and number of iterations to keep all eigen frequencies out of danger frequency band (from 8Hz to 20Hz) As a 

result, the goal was not achieved. 

 

Figure 5. Shape with plate thickness distribution obtained by optimization 

simulation. to avoid 8-20Hz. As a result, eigen frequencies (7th, 8th, 9th, 10th) 
=(7.46Hz, 7.79Hz, 17.99Hz, 18.80Hz). 

2. Application of Topology Optimization 

Method Using Conventional Density 

Method 

The goal of this research is the design of transport boxes 

that safely carry fruits and vegetables such as strawberries, 

cells, and blood. But here the object is to certify the proposed 

method and so the model is a rectangular flat plate with the 

size of 420 mm × 300 mm, thickness of 1 mm as indicated in 

Figure 1. The material of the plate is cardboard, which has a 

density of 256.9 kg/m
3
, Young’s modulus of 0.664 GPa, and 

Poisson’s ratio of 0.34. As indicated in the same figure, the flat 

plate that divided into 120 (30 mm long and 35 mm wide per 

piece). By modal analysis under unconstrained conditions, 

first to sixth orders are rigid body modes and the seventh to 

twelfth orders are 8.14 Hz, 9.38 Hz, 19.14 Hz, 19.34 Hz, 23.85 

Hz, and 28.20 Hz. 

2.1. Application of Density Topology Optimization Method 

to the Problem with Two Eigen Frequencies in the 

Danger Frequency Band 

Here, by using the density topology optimization method, 

we deal with the problem where the band between 7.0 Hz and 

17.0 Hz is considered to be a danger frequency band with the 

above-described model. Because the seventh and eighth 

eigen frequencies are in this danger frequency band, we 

consider to decrease both of these eigen frequencies to 7.0 

Hz or less while the other eigen frequencies are kept at their 

current values. The objective function of the optimization is 

the generalized eigenvalue index [4] indicated in Eq. (1), 
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fi (i = 1~4) are the target values 6.0Hz, 6.5Hz, 21.5Hz, and 

22.0Hz of the seventh to tenth eigen frequencies, f0*=0 Hz, n 

= 2, and m is the number of eigen frequencies to consider, 

here m = 4. Wi(i=1~4) are weights. The density topology 

optimization is performed as follows. (1) The design 

variables are the plate thickness of each element except the 

plate thicknesses of the elements in surrounding part so that 

the outer shape does not change by optimization calculation. 

(2) As indicated in Figure 1, the elements are divided into 

right and left, up and down symmetry, and is also set so that 

symmetry is maintained. The thickness of each element shall 

be 0 mm in the lower limit and 1.0 mm in the upper limit. (3) 

The convergent condition is the value of Eq.(1) is 0.1 or less. 

(4) Modal analysis using the finite element method and 

optimization by linear approximation method [14] are both 

with COMSOL Multiphysics [15]. (5) Weight reduction is 

given as a constraint function. Here, the total weight of the 

cardboard in the shape of Figure 1 is 32.4 g, and the weight 

corresponding to 40 elements of the surrounding part is 10.8 

g so that the lower limit is 11 g, and the upper limit is 90% of 

current weight, 29.16 g. 

Here it is set the target values of seventh to tenth eigen 

frequencies. The seventh and eighth eigen frequencies within 

the danger frequency band, shall be changed to 6.6 Hz and 

6.8 Hz. Although the ninth and tenth orders are higher than 

17 Hz, that is, these eigen frequencies are out of danger 

frequency band in the current state, these eigen frequencies 

may be lower than 17Hz during the optimization process so 

that it is also set the target eigen frequencies of the nineth and 

tenth eigen frequencies to 19.14 Hz, 19.34 Hz, or more 

respectively. Since the eleventh eigen frequency is 23.85 Hz, 

that is, away from 17 Hz, it starts by not considering the 

eleventh or higher eigen frequencies. The above optimization 

has been performed. With W= [1,1,1,1], the repeat number 

180 or later, the seventh to tenth eigen frequencies converge 

to 7.21 Hz, 7.51 Hz, 17.81 Hz, and 18.44 Hz respectively, 

that is, it does not converge to the target frequencies. 
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Although ninth and tenth orders reach the target ones, 

seventh and eighth orders do not reach. On reconsideration 

with W= [2,2,1,1], the repeat number 160 or later, the 

seventh to tenth eigen frequencies converge to 6.56 Hz, 6.93 

Hz, 16.97 Hz, and 17.46 Hz respectively. That is seventh, 

eighth and tenth orders reach the target values but ninth order 

reaches lower than 17 Hz in the danger frequency band. 

After repeated trial and error, the repeat number 185 or 

later, the seventh to tenth orders converge to 5.67 Hz, 6.91 Hz, 

17.23 Hz, and 17.34 Hz respectively with W= [1,10,10,1] 

where the target eigen frequencies of seventh to tenth orders 

are 5.5 Hz, 6.74, 17.50 Hz and 17.70 Hz. This means that 

although the convergence condition is not satisfied, all of the 

eigen frequencies are out of the danger frequency band. Figure 

2 is a graph of the transition of the generalized eigenvalue 

index until the end, where the vertical axis is the value of 

Eq.(1) and the horizontal axis is repeating counts. The weight 

is reduced to 85% of current weight, 27.6g. Although the 

calculation time is 40 minutes, it has finally arrived after more 

than 10 trials and errors, and so this gives us the impression 

that the application of the conventional method to practical 

design is very difficult. The shape after optimization is 

indicated on the left side of Figure 3, and the dark blue color is 

the thickest, 1 mm, and the thinnest white part is 0.1mm. 

Many papers end here. However, it is not realistic for our 

ultimate goal to use the structure for actual safe shipping box 

design because the plate thickness is not uniform. Based on 

the result on the left of Figure 3, for example, conventional 

methods recommend to make holes on the plate where the 

plate thickness is 0.3 mm or less. This result is on the right of 

Figure 3. This structure gives 7.33 Hz, 7.53 Hz, 18.00 Hz and 

18.14 Hz of seventh to tenth eigen frequencies under the same 

unconstrained conditions. This deviates from the goal again. 

And so even if the goal can be achieved by optimization, it is 

not easy to bring it to a concrete design.
 

2.2. Application of Density Topology Optimization Method 

to the Problem with Four Eigen Frequencies in the 

Danger Frequency Band 

When the danger frequency band is set from 8.0 Hz to 20.0 

Hz, in addition to 8.14 Hz of the seventh order and 9.38 Hz of 

the eighth order, 19.14 Hz of the ninth order and 19.34 Hz of 

the tenth order are also issues within the danger frequency 

band. As in the previous section, first, the objective function 

uses Eq.(1), the target frequencies of the seventh to tenth 

orders are 5.6 Hz, 6.8 Hz, 20.5 Hz, and 20.7 Hz, respectively 

with W = [1, 1, 1, 1], and the thicknesses of all elements 

except the surrounding part are the design variables, with 

lower limit of 0 mm and upper limit of 1 mm under the same 

end condition as in the previous section. It converges at 

iteration number 190. Figure 4 indicates the transition of Eq.(1) 

up to this point. The shape at that time is indicated in Figure 5. 

Eigen frequencies from the seventh to the tenth orders are 7.46 

Hz, 7.89 Hz, 17.99 Hz, and 18.80 Hz. That is, it can not reach 

the goal where no eigen frequencies are from 8 Hz to 20 Hz. 

Below, we conducted the same trial and error as in the 

previous section, but the result did not reach the goal. 

As described above, in the conventional density topology 

optimization method, when convergence is difficult, it is 

unclear why, and even if convergence is possible, it is difficult 

to incorporate it into a practical design with the thickness 

distribution. And to brake this, if you make holes on the plate 

where the plate thickness is below the threshold, it deviates 

from the goal. In this way, obtaining actual design 

specifications is extremely difficult with the conventional 

methods. In the next chapter, we propose a new method to 

solve these problems. 

3. Proposition of Topology Optimization 

Method Using Energy Density 

The newly proposed topology optimization method using 

energy density is as follows. First, the energy density 

distribution of each eigen frequency mode to be moved is 

investigated, and the position of the spring part with large 

strain energy density distribution and the mass part having 

large kinetic energy density are grasped for each eigenmode. 

If you want to lower the eigen frequency, holes are provided 

on the spring part or reinforcements are provided on the mass 

part. If you want to increase it, holes are provided on the mass 

part or reinforcements are provided on the spring part. The 

eigen frequency is controlled by providing holes or 

reinforcements, but from the viewpoints of weight reduction 

and work efficiency, the work of providing holes is first made. 

Each eigen angular frequency is given by Eq. (2). 

n

n

n

k

m
ω =                    (2) 

Where ωn, kn, and mn of Eq.(2), are nth order eigen angular 

frequency, equivalent stiffness, and equivalent mass. If the 

equivalent stiffness becomes smaller by providing holes on 

the spring part, or if the equivalent mass is increased by 

providing reinforcements on the mass part, the eigen angular 

frequency decreases. Conversely, when it is necessary to 

increase the eigen angular frequency, holes are provided on 

the mass part and/or reinforcements are provided on the 

spring part. This is the basic idea of this newly proposed 

method. 

3.1. Application to the Problem That Can Be Solved by 

Conventional Density Topology Optimization Method 

As indicated in the previous chapter, the solution is not easily 

obtained by using the conventional density topology 

optimization method. In this section, referring to the energy 

density, it is delt with the problem that the danger frequency 

band is between 7 Hz and 17 Hz, which is the same as that 

obtained the goal value after trial and error in section 2.1. When 

the modal value analysis of the flat plate of Figure 1 is 

performed under unconstrained conditions, the eigen 

frequencies from seventh to twelfth orders are 8.14 Hz, 9.38 Hz, 

19.14 Hz, 19.34 Hz, 23.85 Hz, and 28.20 Hz as described above. 

The seventh and eighth eigen frequencies are within the danger 
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frequency band between 7 Hz and 17 Hz, and we first aim to 

lower the seventh and eighth orders. To lower the seventh and 

eighth orders, it is considered at first that the eleventh order 

does not move into the danger frequency band but there is also a 

concern that the ninth and tenth orders may enter the danger 

frequency band. The left of Figure 6 indicates the strain energy 

and kinetic energy density distributions from the seventh to the 

tenth orders. The red part is the part with high energy density 

and the dark blue is low. The area of the seventh order spring 

part encompasses the eighth order spring part. Therefore, as 

indicated on the left of Figure 6, first, it is considered to provide 

a hole in the area indicated by the circle on the eighth spring 

distribution figure. Here, the concern is whether the ninth and 

tenth eigen frequencies do not transition to 17 Hz or less. When 

viewed from the ninth order energy distributions, since the 

spring is superior to the mass on this hole, it is predicted that the 

ninth eigen frequency will decrease due to the providing this 

hole. And although in the case of the tenth order, it is not so 

clear as in the case of the ninth order, it is predicted that the 

tenth eigen frequency will also decrease because the spring is 

superior to the mass on this hole part. The right model of Figure 

6 with a hole in the area indicated by the circle gives the eigen 

frequencies of the seventh to ninth orders are 5.49 Hz, 7.17 Hz, 

16.26 Hz, and 18.01 Hz under unconstrained conditions, that is, 

seventh order meets the goal but eighth order still does not meet 

the condition. The ninth and tenth orders decrease as expected, 

especially the ninth order decreases down to the danger 

frequency band lower than 17 Hz or less. Due to the above, it is 

necessary to lower the eighth order and increase the ninth order. 

The energy densities of Figure 6 are indicated on the left of 

Figure 7. By focusing on the ninth order kinetic energy density 

distribution, a hole is provided in the part indicated by a circle 

on the ninth kinetic distribution. The center coordinate of the 

hole is (210, 150) and the radius is 90 mm. Considering the 

influences of this hole on other modes, it is predicted that the 

seventh eigen frequency will increase slightly because the mass 

is superior to the spring on this hole part and the eighth eigen 

frequency will decrease because the spring is superior to the 

mass on the hole part. Furthermore, the tenth order is predicted 

to decrease because the spring is superior to the mass on the 

hole part. The eigen frequencies with the hole on the right side 

of Figure 7 under unconstrained conditions are 6.09 Hz, 6.40 

Hz, 17.26 Hz, and 17.37 Hz, that is, all are changed in the 

predicted direction and the results reach the goal. The weight of 

the model on the right side of Figure 7 obtained here is 76% of 

the initial weight. Thus, according to the proposed method, 

compared to the conventional topology optimization method it 

is indicated that the target result can be obtained interactively 

and overwhelmingly in a short time and more accurately, while 

predicting the direction of each eigen frequency change. By 

combining this with the surface response optimization method 

[16], for example, it is possible to set more strictly the goal 

frequency such as 6.5 Hz compared to 7.0Hz or less this time 

after adding the minimum weight condition but this will be 

discussed in the following report. 

 

Figure 6. Top row: Eigen frequencies of the plate model in Figure 1. 

Upper left: Spring part extraction from strain energy density distribution of the plate model in Figure 1, 

Lower left: Mass part extraction from kinematic energy density distribution of the plate model in Figure 1, 

Right: The plate model generated by making a hole on the blue 〇 part of the eighth strain energy distribution of the plate in Figure 1. 

 

Figure 7. Top row: Eigen frequencies of the plate model in Figure 6 right. 

Upper left: Spring part extraction from strain energy density distribution of the plate model in Figure 6 right, 

Lower left: Mass part extraction from kinematic energy density distribution of the plate model in Figure 6 right, 

Right: The plate model generated by making a hole on the yellow 〇 part of the ninth dynamic energy distribution of the plate in Figure 6 right. 
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Figure 8. Top row: Eigen frequencies of the plate model in Figure 1. 

Upper left: Spring part extraction from strain energy density distribution of the plate model in Figure 1, 

Lower left: Mass part extraction from kinematic energy density distribution of the plate model in Figure 1, 

Right: The plate model generated by making a hole on the 〇 part of the 8th strain energy distribution in Figure 1. 

 

Figure 9. Top row: Eigen frequencies of the plate model in Figure 8 right. 

Upper: Spring part extraction from strain energy density distribution of the plate model in Figure 8 right, 

Lower: Mass part extraction from kinematic energy density distribution of the plate model in Figure 8 right. 

 

Figure 10. Top row: Eigen frequencies of the plate model in Figure 8 right. 

Upper left: Spring part extraction from strain energy density distribution of the plate model in Figure 8 right, 

Lower left: Mass part extraction from kinetic energy density distribution of the plate model in Figure 8 right, 

Right: The plate model generated by reinforcing (doubling the plate thickness) on the 〇 parts of 9th and 10th strain energy density distributions. 

 

Figure 11. Top row: eigen frequencies of the plate model in Figure 10 right. 

Upper left: Spring part extraction from strain energy density distribution of the plate model in Figure 10 right, 

Lower left: Mass part extraction from kinematic energy density distribution of the plate model in Figure 10 right, 

Right:: The plate model generated by reinforcing (doubling the plate thickness) on the 〇 parts of 9th and 10th kinematic energy density distributions of the plate 

model in Figure 10 right. 
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3.2. Application to the Problem That Cannot Be Solved by 

Conventional Density Topology Optimization Method 

In this section, we try to apply this proposed method to the 

problem with the frequency band between 8 Hz and 20 Hz as a 

danger frequency band which can not be coped with by the 

conventional method. Here again, the seventh to tenth eigen 

frequencies obtained under unconstrained conditions with the 

flat plate model of Figure 1 are 8.14 Hz, 9.38 Hz, 19.14 Hz, 

and 19.34 Hz. Because these eigen frequencies exist in the 

danger frequency band, it is necessary to move these four 

eigen frequencies so that the seventh and the eighth eigen 

frequencies are below 8 Hz, on the other hand, the ninth and 

tenth order eigen frequencies are moved into 20 Hz or more. 

We first try to achieve the goal by changing topology by 

installing holes, as per basic premise. The left side of Figure 8 

is the kinetic and strain energy density distributions of the 

seventh to tenth orders of Figure 1 flat plate. As indicated in 

section 3.1, both of the seventh and eighth orders have 

prominent spring parts, and since the seventh order spring part 

includes the eighth order spring part, it is considered that a 

hole is installed with reference to the eighth order spring part. 

However, both of the ninth and the tenth orders have more 

superior spring part to the mass part on the hole area and so it 

is expected that both of the ninth and tenth orders will go 

down, further away from the goal. Although we want to 

increase the ninth and tenth eigen frequencies by installing 

holes, it is not possible because there are mass parts only on 

the surrounding part that cannot be added to design variables. 

Therefore, at this stage, we abandoning to increase the ninth 

and the tenth eigen frequencies and a hole is installed in the 

circled part to lower the seventh and eighth eigen frequencies. 

The right side model of Figure 8 gives 7.35 Hz, 7.39 Hz, 17.99 

Hz and 19.01 Hz of the 7
th

 to 10
th

 eigen frequencies, that is, 

seventh and eighth orders reach the goal, but both of the ninth 

and tenth orders decrease as expected. As indicated in Figure 9, 

since there is no mass part that can be made holes from the 

kinetic energy density distribution in this state, it is difficult to 

deal with further. It can be seen that it is difficult to achieve the 

task by raising the eigen frequencies of the ninth and tenth 

orders any further with only the method of making holes. 

From the above, since the goal for eigen frequencies is set not 

to be achieved even with this proposed method, it was not 

possible to apply the conventional density method as indicated 

in section 2.2. It is possible to use this new method for a 

judgment whether the problem is set appropriately by the 

conventional method. Even if the goal cannot be achieved by 

installing holes alone, there is a possibility that the goal can be 

achieved by placing reinforcement, so in the next section, we 

will consider the control of the eigen frequencies by including 

reinforcement. 

3.3. Control of the Eigen Frequencies by Including Holes 

and Reinforcements 

Here, again, the seventh to tenth order eigen frequencies 

obtained under unconstrained conditions of the flat plate 

model in Figure 1, are 8.14 Hz, 9.38 Hz, 19.14 Hz, and 19.34 

Hz. In addition to holes, reinforcements are also attempted to 

move the seventh and eighth orders to 8 Hz or less, and the 

ninth and tenth orders to 20 Hz or more. As discussed in 

section 3.2, with the hole on the spring part of eighth order, the 

eigen frequencies of the seventh to tenth orders are 7.35 Hz, 

7.39 Hz, 17.99 Hz, and 19.01 Hz. It was mentioned in the 

previous section that it was not possible to increase the eigen 

frequencies of the ninth and tenth orders any further by 

installing holes. We start from the examination of 

reinforcements of the spring parts of the ninth and tenth orders. 

For ease, reinforcement is done by doubling the plate 

thickness of the reinforcement part, that is, 2mm. Central of 

the ninth order in Figure 10 has a remarkable spring part. By 

reinforcing the central part of the plate enclosed in circles, the 

eigen frequency of the ninth order increases. Considering this 

influence on the other orders, since the seventh order has a 

strong spring part on this central part, the seventh eigen 

frequency is predicted to increase by reinforcement on the 

spring part of the ninth order. As for the eighth order, since it is 

clear that the spring part is winning, it is expected to rise 

steadily with the reinforcement of the ninth order. For the 

tenth order, since the spring part is clearly superior, it is 

conceivable that the goal can be obtained only with the 

reinforcement of the ninth order, but 1Hz is left until the target 

frequency. And so again it is tried to install the reinforcement 

on the tenth spring part where the mass part is superior to the 

spring one for the seventh order and so the seventh order is 

expected to decrease in a good direction. For the eighth order, 

the spring part is winning and there is a possibility that it will 

increase. For the ninth order, the mass is stronger, and the 

eigen frequency may decrease. In fact, looking at the eigen 

frequencies after reinforcement of the ninth and tenth orders, 

the eigen frequencies are 8.07 Hz, 8.82 Hz, 18.42 Hz, and 

20.04 Hz, that is, as expected, the eigen frequencies of the 

seventh and eighth orders are higher than 8 Hz. The ninth 

order has not yet reached the goal, and only the tenth order has 

satisfied the goal. The energy density distribution at that time 

is indicated on the left of Figure 11. In the seventh order that 

needs to be lowered first, there are prominent mass parts at the 

four corners, and when these parts are reinforced, the eigen 

frequency of the seventh order decreases, and it is predicted 

that the eighth to tenth orders will also decrease because the 

mass part is superior to the spring part. Looking at the kinetic 

energy density distribution of the eighth order, the circled 

parts at both ends of the flat plate are reinforced. Since there 

are no mass and spring parts of the ninth and tenth orders on 

these reinforcement parts, even if these parts are reinforced, 

there is no influence on the eigen frequencies of the ninth and 

tenth orders. With the above two reinforcements, there is a 

possibility that the target frequencies of the seventh and eighth 

orders can be obtained. Next, looking at the strain energy 

density distribution of the ninth order, a spring part is 

recognized in the yellow circle part. Looking at other eigen 

frequencies, the spring part of the seventh order is superior to 

the mass on this part, and although the eigen frequency of the 
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seventh order may increase with this reinforcement, it is 

considered that there is no problem because it is lowered by 

reinforcement of the eighth order mass part. For the eighth 

order, it is considered that the strength of the mass and the 

spring is almost same and so there is no change due to the 

reinforcement of the yellow circle part of the ninth order 

spring. Looking at the influence on the tenth order, since there 

are no spring and mass parts on this reinforcement, it is 

expected that the tenth eigen frequency will be almost same 

after this reinforcement. In such way, with reinforcements on 

the mass parts of the seventh and eighth orders and on the 

spring circle parts of the ninth order indicated on the right side 

of Figure 11, the eigen frequencies become 6.56 Hz, 7.34 Hz, 

22.02 Hz, and 22.83 Hz, that is, each eigen frequency changes 

in the predicted direction and the target value is obtained. 

Using the proposed method in this way, it is possible to make 

various design specifications. In the future, we plan to conduct 

studies that incorporate optimal design methods such as 

minimum weight. 

4. Conclusion 

In the design and manufacturing field, there is a desire to 

move multiple eigen frequencies simultaneously, 

sometimes significantly. The most useful method that can 

meet this demand is considered to be topology optimization, 

and many studies have already been conducted. In this 

paper, we also attempted density topology optimization 

using generalized eigenvalue indices for the objective 

function to control multiple eigen frequencies 

simultaneously. However, 

there was no way to judge whether the problem converges 

in the first place, and after trial and error, the goal could not be 

achieved in the end. In addition, even if it can be achieved 

once, the plate thickness of the structure obtained by topology 

optimization is distributed, and as an actual design 

specification, holes should be installed at places below the 

threshold on the current structure. This is often done, but it has 

also been indicated that there is a possibility that the 

converged solution again deviates from the convergence value. 

Therefore, we return to the origin of the vibration theory that 

each eigen frequency is determined by the equivalent stiffness 

and the equivalent mass. If the eigen frequency is to be 

lowered, it will be done by making holes on the spring part or 

by reinforcing the mass part and if the eigen frequency is to be 

increased, it will be done by making holes in the mass part or 

by reinforcing the spring part. According to this proposed 

method, it has been indicated that the goal results can be 

obtained more accurately because we can predict the direction 

of change of each eigen frequency after design change, so to 

speak, interactively and overwhelmingly in a short time, 

compared to the conventional density topology optimization. 

Moreover, it was indicated that the new proposed method can 

be used to validate the problem set in the conventional 

topology optimization. 

In this study, we have indicated for the first time that 

eigen frequencies can be controlled interactively and 

extremely efficiently while referring to the strain and the 

kinetic energy density distributions, but as a future 

development of this technique, we are specifically 

considering its application to strawberries and liquor 

shipping boxes. That time, by combining the response 

surface optimization method, we intend to discuss the 

design under the condition of minimum weight while 

maintaining strength and rigidity. In addition to the 

development of vibration-safe transport boxes, which is the 

purpose here, it can be widely applied to issues such as ride 

comfort, maneuvering stability, interior noise of 

automobiles which have a frequency band that governs 

them. We plan to expand on such issues as well. 
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