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Abstract: This paper proposes a systematic fuzzy model (SFM) to control of general system. SFM model is parted to 

multiple parts such as: a single parameter in formulation of reasoning; a linear relationship between input and output as a 

result; the use of evolutionary programming for the selection of the appropriate system parameters and a fuzzy clustering 

algorithm. Unlike traditional methods of inference mechanism to select a priori reasoning mechanism; SFM model can adjust 

its parameters using evolutionary programming. To vary the degrees of linear functions of the fuzzy rules, a set of equations 

describes the system’s input and output locally. Thus, this model can take advantage of the properties of linear systems. Fuzzy 

rules, the fuzzy c- means clustering algorithm and proper selection of the cluster centers by using evolutionary algorithm have 

been investigated. Finally, this system has been tested and validated on both controlled robot arm joint. 
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1. Introduction 

Fuzzy models describe system by establishing relations 

between the relevant variables in the form of IF-THEN rules. 

Traditionally, a fuzzy model is built by using expert 

knowledge in the form of linguistic rules. Recently, there is 

an increasing interest in obtaining fuzzy models from 

measured data. Different approaches have been proposed for 

this purpose, such as fuzzy relational modeling [1], neural-

network training techniques [2] and product-space clustering 

[3-4]. In this paper an improved fuzzy modeling system is 

developed. The focus of this work is on the process of system 

identification for fuzzy modeling. The problem of system 

identification can be divided into two parts: Structure 

identification and parameter identification. In the structure 

identification stage, input-output relations in terms of 

IFTHEN rules are specified. In this paper, fuzzy clustering is 

considered as an approach of rule generation in fuzzy 

modeling. In this direction, fuzzy c-mean clustering is used 

and the objective of this technique is improved by proper 

choosing of the number and the level of fuzziness of clusters. 

A method for assignment of initial cluster center locations is 

also introduced. The parameter identification consists of 

derivation of the optimum inference parameters and 

adjustment of membership functions. We use an evolutionary 

algorithm for choosing optimum inference parameters. 

Another aspect of the proposed method is combination of 

nonlinear consequent and linear antecedent based on Takagi- 

Sugeno-Kang (TSK) approach to fuzzy modeling. In this 

approach, the consequents of fuzzy rules are linear functions 

of the antecedent variables, describing the system with a set 

of local linear input-output relations. Thus, the model can 

take advantages of linear system properties in the 

consequent. The rest of the paper is organized as follows: 

section 2 presents rule generation with fuzzy clustering 

methods. Fuzzy inference parameter optimization is 

presented in section 3. Section 4 discusses about fuzzy 

inference output parameter optimization. In section 5, a case 

study is presented for testing and verifying the proposed 

approach. Finally, the discussions and conclusions are 

appeared in section 6. 

2. Rule Generation Using Fuzzy 

Clustering Methods 

A clustering algorithm partitions a given data set into 

subsets, called clusters, with the aim of minimizing the 

difference of the objects in the same cluster and maximizing 
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the difference between the objects in different clusters. For 

fuzzy clustering from the available data sequence identify X 

and y: where, X is input matrix and y is output vector.  

Fuzzy clustering in Cartesian product-space X...Y is 

applied to partition the training data into characteristic 

regions. Combining X and y form the data set Z to be 

clustered:  

Z =[X y]                                (1) 

Given the training data Z and the number of the clusters c, 

the fuzzy c-means clustering algorithm is applied, which 

computes the fuzzy partition matrix U. The fuzzy sets in the 

antecedent of the rules are obtained from the partition matrix 

U, where 0,1.. ik u is the membership degree of the data 

object zk in cluster ci. The ith row of U contains a point wise 

definition of a multidimensional fuzzy set. One dimensional 

(1-D) fuzzy set Aij are obtained from the multidimensional 

fuzzy sets by projections onto the space of the input variables 

xj. 

In this paper, we use fuzzy c-means (FCM) algorithm for 

data clustering. For proper choosing of number of clusters (c) 

and weighting exponent (m), several methods have been 

investigated.  

Let X={x1,…,xN} be the set of input data, c number of 

clusters, and m weighting exponent that demonstrates degree 

of fuzziness. An efficient method of choosing c is the 

parameter of cluster validity index (Scs). The Scs is defined 

as following [5]:  

��� = ∑ ∑ ���	
� �‖�	 − ��‖� − ��� − �̅����	������      (2) 

In the above expression, i v is the cluster center of ci and v 

is the total mean vector. For obtaining proper c, one should 

minimize parameter of Scs with respect to c. However, this 

requires that we know the proper value of m. For choosing m 

[6] and [7] introduce new parameters called total scatter 

matrix (ST) and K.  

�� = ∑ �∑ ���	
�
��	 − �̅
�����	�� ��	 − �̅
�      (3) 

K=trace�∑ ���� − �
�∑ �	�	�� � ��� − �

�∑ �	�	�� 
������ �   (4) 

Therefore, for clustering a data set, a suitable value of m 

may be found in the mid-domain of K, i.e., K/2 [7]. For this 

purpose, a variation of ST is plotted as a function of m with 

the different values of c. However, this methodology gives a 

reliable domain for selecting m instead of a single value. For 

proper selection of number of clusters c, we use the 

subtractive clustering method [8]. 

The subtractive clustering method assumes each data point 

is a potential cluster center and calculates a measure of the 

likelihood that each data point would define the cluster 

center, based on the density of surrounding data points. Steps 

of the algorithm are as follows:  

� Selects the data point with the highest potential to be 

the first cluster center,  

� Removes all data points in the vicinity of the first 

cluster center (as determined by radii), in order to 

determine the next data cluster and its center location,  

� Iterate on this process until all of the data is within radii 

of a cluster center, the subtractive clustering method is 

an extension of the mountain clustering method 

proposed by Yager [9]. For the convenience of our 

description, let us rewrite subtractive clustering method 

as follows:  

Each datais in a set of data points as a candidate cluster 

center. Defining a measure as 

�� = ∑ �� �!"�!#�$%&��  for each data point, where, ' =(
)*

$+,-,./	 is a positive constant; Pidenotes the function of the 

distance xi to any other data point in a data set. Each value of 

Pi is calculated and then xi with the maximum distance value 

Pi is taken as a first cluster center ��∗. The next cluster center 

is calculated and determined by �� = �� − ��∗��2�!"�!3∗�$  

where, 4 = (
)5$ ,.6 = 1.5./ . The nearer a data point to ��∗ . 

Results in the smaller related Pi. Thus, the data point will 

have less possibility to be taken as the next cluster center. 

Then, the third data point is taken and calculated as above. 

This process is continued until �	∗ < 0.15��∗ where �� = �� −�	∗��2�!"�!<∗�$ .	  After selecting the proper value of c by 

means of subtractive clustering, we can find the proper value 

of m. For this purpose, the trace of total scatter matrix (ST) is 

plotted. A suitable value of m is that which gives a value of 

ST equal to K/2 [6] and [7]. 

Another problem in FCM algorithm arises from the fact 

that this algorithm may produce only local minimum or 

partial optimal points. Therefore, different initial guesses for 

cluster centers may lead to different optimum results. In 

order to efficiently obtain a preference for initial location of 

cluster prototypes, the subtractive clustering method is used, 

too. 

Next, the values of parameters for parameter identification 

should be computed. In a fuzzy model, the parameters are 

those concerned with membership functions. So, after the 

clustering process and obtaining the membership functions, the 

trapezoidal membership functions are approximated. For this 

purpose we first obtain the trapezoidal fuzzy set parameters [at 

btctdt] by cutting the membership membership functions by a- 

cut of level a= 0.1 and 1-a. The points of intersections of a- cut 

are used as an initial guess for parameters [at btctdt]. Then, 

these parameters are optimized to minimize the difference 

between the initial fuzzy sets and trapezoidal membership 

functions. Here, SIMPLEX optimization scheme is 

implemented, which gives the global minimum point. 

3. Fuzzy Inference Parameter 

Optimization 

This research uses the following linguistic fuzzy model, 

which consist of a set of fuzzy rules, each describing a local 

input-output relation in a linear form [10]. 
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=� ∶ ?@	�� 	AB	C�� 		CDE…CDE		�%		AB	C�%	GHID		JKL = M�� +O�A = 1,2, …                   (5) 

Where, i R is the ith rule, X=[ x1 ,..., x n] is the vector of 

input variables, Ai1 ,..., A in are fuzzy sets defined in the 

antecedent space J^� is the rule output, c denotes the number 

of rules in the rule base, and isr means “is related to”. The 

aggregated output of the model J^  is calculated by Basic 

Defuzzification Distribution (BADD) method [11]: 

JS = ∑ T"U�!
VWXY"Z-∑ T"U�!
Y"Z-                               (6) 

Obviously, BAAD is essentially a family of parameterized 

defuzzification methods. By continuously varying in the real 

interval, it is possible to have more appropriate mapping 

from fuzzy set to a crisp value, depending on the system 

behavior. In the above formula [���
 is degree of firing of 

the ith rule:  

[���
 = G\]�C��, … , C�%
                          (7) 

Here, parametric method of Dubios&Prade [12] is used, 

for calculating degree of firing of rules in the formula (7):  

G\]�M, O
= /6
^_`	�/,6,a
                               (8) 

In the above formula a and b are two fuzzy sets and b is 

the parameter between zero and one.  

For proper choosing of a and b , an evolutionary 

programming (EP) [13] is implemented, since it does not 

demand a rich knowledge of the system behavior. Suppose 

that the consequent parameters i a and i b are determined by 

the process of determination of them explained in section 4. 

We apply the following EP procedure (EPI) for obtaining 

proper parameters:  

1) Generate an initial population of individuals randomly 

and set k=1. Each individual is a pair of real-valued vectors �c� , d�
, ∀A ∈ g1, … , μi where c�  are system parameters, i.e., 

a, b, and d�� are variance vectors for Gaussian mutations (also 

known as strategy parameters in self-adaptive EA’s). Each 

individual corresponds to a fuzzy model.  

2) Each individual �c� , d�
, A ∈ g1, … , μi  creates a single 

offspring �c�j, d�j
: 
d�j�k
 = d��k
exp	�ojD�0,1
 + oD&�0,1

           (9) 

c�j�k
 = c��k
 + d�j�k
D&�0,1
					pq.		k = 1,… , r       (10) 

Where, c��k
, c�j�k
, d� and d�j denote the jth component of 

the vectors c� , c�j, d� and d�j, D�0,1
 is a normally distributed 

one-dimensional random number with mean zero and 

variance equal to one D&�0,1
  indicates that a random 

number isgenerated anew for each value of j, and parameters 

o	 and ojare commonly set to Mrs	 �t2√r��� and v√2rw�� 

respectively. 

3) Determine the fitness of every individual, including all 

parents and offsprings, based on the training error. Here, 

different error functions may be used. We use the 

performance index (PI) as a training error:  

�? = ∑ vV"�VS"w$x"Z- �                             (11) 

4) Conduct pairwise comparison over the union of parents �c� , d�
  and offsprings �c�j, d�j
 , ∀A ∈ g1, … , μi . For each 

individual, q opponents are chosen uniformly random from 

all parents and offsprings. For each comparison, if 

individual’s fitness is not smaller than opponent’s, it receives 

a “win”. Select yindividuals individuals out of �c� , d�
 and �c�j, d�j
 , 	, ∀A ∈ g1, … , μi , that have most wins to form the 

next generation.  

5) Stop if the halting criterion is satisfied (o.k.), otherwise 

put k=k+1 and go to step 2. 

4. Fuzzy Consequent Parameter 

Optimization 

Least squares method identifies the consequent parameters 

from given data, on the assumption that the input partition is 

given. The normalized activation degree of the rth rule for the 

kth input pattern by:  

∅)�{
 = T|U�	
∑ T|U�	
Y|Z-                                   (12) 

and combining these into matrix }: 

∅ = ~∅��1
 ⋯ ∅��1
⋮ ⋱ ⋮∅��D
 ⋯ ∅��1
�                        (13) 

The output of fuzzy model computed over all input 

patterns (k=1…N) can be equivalent to:  

J = ∅�                          (14) 

where, 

� = ����, … . , ����� , ��� = �M� , O���                (15) 

and 

J = �J�1
, … , J�D
��                        (16) 

For the given y (the vectors of output reference values), 

the output parameters can be estimated by:  

� = �∅�∅���∅�J                       (17) 

It should be noted that for each step of evolutionary 

programming, the candidate values for parameters �  and b 

and their related values and the calculated value of . J	^ are 

chosen.  

Finally, the performance index (PI) of the model is 

evaluated. If PI satisfies the evolutionary programming 

criteria, the values of � and b are selected and the algorithm 

is ended; otherwise the above procedure is repeated. 

5. Application Example 

In this section, the proposed FSM is implemented to model 
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the inversekinematics of the two-joint planar robot arm 

shown in Figure 1 [14]. This problem involves learning to 

map from an end point Cartesian position (x, y) to joint 

angles ���, ��
  The forward kinematics equations from ���, ��
.to (x, y) are straightforward: 

�� � �� cos���
 N �� cos��� N ��
J � �� sin���
 N ��sin	��� N ��
                (18) 

Where, l1 and l2 are arm lengths, and �� and �� are their 

respective angles (see Figure 1). However, the inverse 

mappings from (x, y) to ���, ��
 are not clear:  

 

Figure 1. Two-joint planar robot. 

���
�� �� � �qB�� �!$�V$��-$��$$��-�$ �
�� � �Mr�� �V!� � �Mr�� � �$��%�$�-��$����$�

              (19) 

Figure 2 demonstrates the forward mapping from���, ��
to 

(x,y) (the first row) and the inverse mapping from (x,y) to ���, ��
(the second row). Here, it is assumed that l1=10,l2=7 

and the value of ��are restricted to�0, �� 
Even though it is possible to find the inverse mapping 

algebraically, the solutions are not generally available for 

multi-joint robot arm in 3-D space. Instead of using the  

Equation (19) directly, we use two fuzzy modeling system to 

learn these inverse mappings.  

 

 

Figure 2. Forward and inverse Kinematics of a Two-joint Planar for ���, ��
 to (x,y) and vice versa. 

From the first quadrature, 229 training data pairs of form ��, J, ��
  and ��, J, ��
 are collected, to train two fuzzy 

systems, respectively (this data can be find in traininv m-file 

in MATLAB). The parameters of two fuzzy models �M�& , O� , ��& , s� , �, b
 are available in tables 1 and 2. In Figures 

4, 5 membership functions of input variables vC�& , ��&w are 

shown. Numbers of rules of fuzzy systems are 7. The 

generated fuzzy rules are as bellow:  

=���1:			?@		�	AB	C��		CDE		J	AB	C��		GHID			��� �M��M�����			J��		 N O� 

=���2:			?@		�	AB	C��		CDE		J	AB	C��		GHID			��� �M��M�����			J��		 N O� 

=���3:			?@		�	AB	C��		CDE		J	AB	C��		GHID			��� �M��M�����			J��		 N O� 
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=���4:			?@		�	AB	C(�		CDE		J	AB	C(�		GHID			�� ��M(�M(����			J��		 N O(                                   (20) 

=���5:			?@		�	AB	C��		CDE		J	AB	C��		GHID			��� �M��M�����			J��		 N O� 

=���6:			?@		�	AB	C¡�		CDE		J	AB	C¡�		GHID			��� �M¡�M¡����			J��		 N O¡ 

=���7:			?@		�	AB	C£�		CDE		J	AB	C£�		GHID			��� �M£�M£����			J��		 N O£ 

=���1:			?@		�	AB	���		CDE		J	AB	���		GHID			��� ����������			J��		 N s� 

=���2:			?@		�	AB	���		CDE		J	AB	���		GHID			��� ����������			J��		 N s� 

=���3:			?@		�	AB	���		CDE		J	AB	���		GHID			��� ����������			J��		 N s� 

=���4:			?@		�	AB	�(�		CDE		J	AB	�(�		GHID			�� ���(��(����			J��		 N s(                                   (21) 

=���5:			?@		�	AB	���		CDE		J	AB	���		GHID			��� ����������			J��		 N s� 

=���6:			?@		�	AB	�¡�		CDE		J	AB	�¡�		GHID			��� ��¡��¡����			J��		 N s¡ 

The antecedent spaces of the above models, which are two 

dimensional space of the inputs x and y, are partitioned into 

seven fuzzy subspaces. The above model can be regarded as 

a quasi-linear system (i.e., a linear system with input 

dependent parameters). To see this, we combine equations (5) 

and (6) and calculate the output of the model, JS 
JS � ∑ T"U�!
¤�/"!�6"
Y"Z- ∑ T"U�!
Y"Z- � {�� N {�                    (22) 

{� � ∑ T"U�!
¤/"!Y"Z-∑ T"UY"Z- , {� � ∑ T"U�!
¤6"Y"Z-∑ T"UY"Z-                 (23) 

Figure 3 demonstrates�� output from both fuzzy modeling 

system and equation (19). Obviously, fuzzy system properly 

approximates (with PI=.0018) the equation (19), so we can 

use the FMS in the case that it is not possible the inverse 

mapping algebraically. 

 

Figure 3. Algebric output(----), Proposed fuzzy system output (- - - - -), ANFIS system output (-,-,-,-,). 

Figure 3, also, demonstrates the result of comparing 

proposed FMS with ANFIS (adaptive neuro fuzzy inference 

system). The ANFIS has 9 rules consist of trapezoidal 

membership functions. The performance index (PI) for 

ANFIS is .0018for ��. So, our proposed system approximates 

the inverse kinematics with smaller number of rules and with 

the same performance index. Table 1 and 2 show the 

parameter of system for obtaining of �� and �� and figure 4 

and 5 show the membership and equation of �� and ��. 

6. Conclusions 

In this paper a FSM was introduced in which the inference 

mechanism, number of rules and order of fuzziness of model 

are identified from data. For this purpose, a parameterized 

formulation was applied by the suitable inference mechanism 

that is adjusted for the system based on evolutionary 

programming. Moreover, to take advantages of linear system 

properties, linear functions of the antecedent variables were 

implemented in the consequence of the model, thus, we could 

describe the system with a set of local with linear input-

output relations and take advantages of linear systems 

properties. The modeling methodology described in this 

article has been successfully applied to inverse kinematics 

control of two-joint planar robot arm. The results show that 

the since system is self tuning, so we don’t need to tune the 

system parameters again. The bright future works for this 

research is that the proposed method can be generalized so 

that all system structure and parameters can be obtained by 

the optimization methods such as genetic algorithms.  
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Table 1. Parameters of FSM for ��. 

¥¦§  ¥¦¨  ©¦  α ϒ PI 

-0.3256 -0.2192 1.8794 

0.8609 0.5118 0.0018 

-0.0473 0.0271 0.9012 

0.0041 0.4338 -0.5187 

-0.2966 0.7833 -2.6069 

0.0622 0.4518 -6.8508 

0.0517 0.0259 -0.2489 

0.0438 0.0785 -1.0941 

Table 2. Parameters of FSM for ��. 
ª¦§  ª¦¨  «¦  α ϒ PI 

1.2232 0.4456 -2.3191 

0.3139 0.1564 0.0080 

-1.4525 -1.6835 26.4234 

1.2160 0.3862 -16.5236 

-0.0865 -1.0860 10.8796 

-0.7162 -1.5388 16.3696 

-1.0411 0.4972 3.8106 

0.9470 1.9124 -12.0559 

 

Figure 4. Membership function and equation of FSM for ��. 

 

Figure 5. Membership function and equation of FSM for ��. 
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