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Abstract: An adaptive finite element interactive program has been developed for fatigue crack propagation simulation 

under constant amplitude loading condition. The purpose of this model is on the determination of 2D crack paths and surfaces 

as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. As part of a linear elastic 

fracture mechanics analysis, the determination of the stress intensity factor distribution is a crucial point. The fatigue crack 

direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the 

J-integral technique. The propagation is modeled by successive linear extensions, which are determined by the stress intensity 

factors under linear elastic fracture mechanics assumption. The stress intensity factors range history has to be recorded along 

the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation 

life of the examined specimen is predicted. Verification of the predicted fatigue life is validated with relevant experimental 

data and numerical results obtained by other researchers. The comparisons show that this model is capable of demonstrating 

the fatigue life prediction results as well as the fatigue crack path satisfactorily. 
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1. Introduction 

Fatigue is a localized damage process of a component 

produced by cyclic loading. It is the result of the cumulative 

process consisting of crack initiation, propagation, and final 

fracture of a component. During cyclic loading, localized 

plastic deformation may occur at the highest stress site. This 

plastic deformation induces permanent damage to the 

component and a crack develops. As the component 

experiences an increasing number of loading cycles, the 

length of the crack (damage) increases. After a certain 

number of cycles, the crack will cause the component to fail 

(separate) [1]. 

The fatigue life can be obtained from baseline fatigue data 

generated from constant-amplitude loading tests. There are 

three commonly used methods, the stress-life (S-N) method, 

the strain-life (ɛ-N) method, and the linear elastic fracture 

mechanics (LEFM) to characterize the baseline fatigue data. 

The LEFM method has been used in the present study. 

An accurate evaluation of fracture parameters such as 

stress intensity factors (SIFs) becomes quite essential for the 

simulation based life cycle design analysis. To simulate 

cracked structures, a number of methods such as boundary 

element method [2, 3], meshfree methods [4,5,6], finite 

element method (FEM) [7], and finite difference method 

(FDM) are available. FEM has been in the forefront of 

numerical methods used for the simulation of fatigue 

fracture problems. A number of approaches have been 

developed in FEM over the years, which makes it as a most 

suited method for analyzing the asymptotic stress fields at 

the crack tip. However, FEM requires that the crack surface 

should coincide with the edge of the finite elements, i.e. a 

conformal mesh is needed besides special elements to 

handle crack tip asymptotic stresses. 

This work proposes a self-adaptive user friendly model 

for simulating automatic fatigue crack propagation in two 

dimensional structural components. Moreover, the 

developed program has a much more flexible and portable 

graphical interface. The adaptive procedure provides a 

regular mesh refinement for the free-boundary curves 

(including cracks) and is based on a posteriori error 

estimation. An h-refinement strategy is utilized in this 

process.  

1.2. Simulation Procedure 

The automatic fatigue crack propagation is characterized 
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by successive propagation steps performed without user 

interaction. Each step consists of:  

1. Mesh generation 

2. FE analysis of the fatigue crack propagation and 

storing the nodal stresses. 

3. Introduction of initial crack in the model. 

4. Update of geometrical model. 

5. Mesh generation; refining around the crack-tip. 

6. FE analysis. 

7. Compute the stiffness matrix and solve the system of 

equations  

8. Calculate the stresses components, error estimators 

and the stress intensity factor 

9. Unstable fracture occurs or crack reaches boundary? 

If yes, stop. 

10. Crack arrests? If yes, stop. 

11. Calculation of crack propagation rate da/dN. 

12. Calculation of crack propagation direction. 

13. Final number of cycles reached? If yes, stop. 

14. Return to Step 4. 

The computational scheme of the fatigue crack 

propagation program and the mesh generation processes are 

illustrated in details by [10]. 

1.3. Equivalent Domain Integral Method 

The J-integral was introduced by [9] to study non-linear 

material behavior under small scale yielding. It is a path 

independent contour integral defined as: 
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where W is strain-energy density; ��� are stresses; 
iu  are the 

displacements corresponding to local i-axis; s is the arc 

length of the contour; jn  is the unit outward normal to the 

contour C, which is any path of vanishing radius 

surrounding the crack tip (Figure 1a).  

 

Figure 1. (a) Arbitrary contour surrounding the crack tip; (b) Area to be 

employed to calculate the J-integral 

The Equivalent Domain Integral Method replaces the 

integration along the contour with one over a finite size 

domain by the divergence theorem. This domain integration 

is more convenient for finite element analyses. For 

two-dimensional problems, the contour integral is replaced 

an area integral (Figure 2b). Then, equation (1) is rewritten 

as: 
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In the linear elastic analysis, the J-integral definition 

considers a balance of mechanical energy for a translation in 

front of the crack along the x-axis. In the case of either pure 

Mode I or pure Mode II, equation (2) allows calculation of 

the stress intensity factors 
IK or 

IIK  Nevertheless, in the 

mixed mode condition this equation alone does not allow 

IK  and 
IIK  to be calculated separately. In this case, 

invariant integrals are used. Usually, the integrals defined by 

[10] are employed: 
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where k is an index for local crack tip axis (x, y). These 

integrals were introduced initially for small deformation11 

and were extended by [11] for finite deformation. 

The stress intensity factors can be obtained by two 

possible ways. The first approach is through relationships 

between the J-integral and the stress intensity factors. These 

relations are: 
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Then the relations between the stress intensity factors and 

1 2,J J  are: 
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2. Fatigue Crack Propagation Analysis 

In order to simulate fatigue crack propagation under linear 

elastic condition, the crack path direction must be 

determined. There are several methods use to predict the 

direction of crack trajectory such as the maximum 

circumferential stress theory,  the maximum energy release 

rate theory and the minimum strain energy density theory. 

Bittencourt et al. [12] have shown that, if the crack 

orientation is allowed to change in automatic fracture 

simulation, the three criteria provide basically the same 

numerical results, since the maximum circumferential stress 

criterion is the simplest, presenting a closed form solution, it 

is briefly described below. 

The maximum circumferential stress theory [13] asserts 

that, for isotropic materials under mixed-mode loading, the 

crack will propagate in a direction normal to maximum 

tangential tensile stress. In polar coordinates, the tangential 

stress is given by 
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The direction normal to the maximum tangential stress 

can be obtained by solving 0/d dθσ θ =  for θ . The nontrivial 

solution is given by:  

( )sin 3cos 1 0I IIK Kθ θ+ − =                                 (7) 

which can be solved as:  
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Since fatigue is a cyclic dissipation of energy, in the form 

of hysteretic loops, which are related to a cumulative 

damage process, the elapsed time for damage is expressed in 

terms of the number of fatigue cycles (N). The control 

parameter that is used to evaluate this process is the rate of 

crack growth per cycle (da/dN). Hence, da/dN depends on 

the applied stress intensity factor range and N is the 

well-known fatigue life term. For crack initiation, the 

threshold stress intensity factor and threshold stress range 

are associated as: 

th th
K f a∆ ∆σ π=                                              (9) 

where f is a function of geometry and loading and 
th

∆σ  is 

analogous to fatigue limit. This equation indicated that if 

th
∆σ ∆σ< crack growth does not occur.  Practically, during 

the implementation we use the equivalent 
eq th

K K∆ ∆≥ as the 

condition for crack to propagate.  

According to this criterion, the equivalent mode I stress 

intensity factor is obtained as: 

3 22 3 2 2Ieq I IIK K cos ( / ) K cos ( / ) sin( / )θ θ θ= −          (10) 

To model the stable crack propagation, we use the 

generalized Paris’ law: 

m

Ieq
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dN
∆=                                           (11) 

where C and m are the material properties, a is the crack 

length, N is the number of loading cycles and IeqK∆ is 

obtained by equation (10) by substituting 
IK∆  and 

IIK∆  to 

IK  and 
IIK . Then, the number of cycles ifN  for crack 

propagation from the initial crack length ia
 to the final 

crack length aif  can be integrated as: 
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The developed program has safety features to 

automatically stop the calculation if, during any loading 

event, it detects that: (i) Ieq ,max IcK K= ; (ii) the crack has 

reached its maximum specified size; (iii) one of the borders 

of the piece is reached by the crack front. 

3. Numerical Results and Analysis 

3.1. Center Cracked Tension (CCT) Specimen with Two 

Holes 

A rectangular nickel plate (320 mm length, 70 mm width, 

and 5 mm thickness) with a small two holes as shown in 

Figure (2a) is subjected to a cyclic loading with 

displacement amplitude 0.5 mm per 0.05 s and the mean 

displacement is 1 mm. The material properties are E = 177 

GPa, ν = 0.3, m = 4.127 and C = 102.635 10−× . The final 

adaptive mesh for the first step before crack growth is shown 

in Figure (2b) as well as the enlargements of the holes area is 

shown in Figure (3) including the stress distribution. 

 

Figure 2. (a) Center cracked tension (CCT) specimen with two holes, (b) 

Final adaptive mesh for the first step 

 

Figure 3. Enlargements of the holes area 

The fatigue crack growth paths for this geometry are 

presented in Figure 4a and the maximum principal stress 

distribution is also presented in Figure 3b. It can be 

concluded that, the effect of holes at the crack propagation 

direction is that the hole sucks crack even though crack 

propagation direction is changed. 
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Figure 4. (a) Fatigue crack growth path  (b) maximum principal stress 

distribution 

The present study has been compared to the experimental 

and numerical study presented by Cho et al.[14] which is 

shown in Figures 5a and 5b. The comparison shows an 

excellent agreement in both numerical and experimental 

results. 

 

Figure 5. (a) Experimental results obtained by Cho et al. [14] 

 

Figure 5. (b) numerical results obtained by Cho et al. [14] 

Figure 6 shows the comparison stress intensity factor 

between the finite element solution in the present study and 

experimental calculation and numerical simulation obtained 

by Cho et al. [14]. These results show that the present study 

was closer to the experimental results compared to the finite 

element results obtained by [14]. 

 

Figure 6. Stress intensity factor ranges versus number of cycle for the 

nickel CCT specimen with 2 holes. 

4. Conclusion 

In the present paper, a comprehensive adaptive Finite 

Element model for fatigue crack propagation analysis was 

developed using the developed source code written in 

FORTRAN language. The fatigue crack propagation is 

modeled by successive linear extensions, which are 

determined by the stress intensity factors obtained after a 

linear elastic analysis. The fatigue crack path, fatigue life 

and stress intensity factors along the crack length were 

predicted. The results of the developed program have been 

successfully validated through direct comparisons with the 

experimental and numerical results obtained by other 

researchers. 
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