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Abstract: Edge-carboxylated graphite (ECG) was produced by grinding pristine graphite in a planetary ball-mill 

machine. Transmission electron microscope was used to confirm the layers of graphene in ECG. The elemental analyses 

showed that the oxygen contents are different between ECG samples. The vibrational analysis of single- and five-layered 

graphene was conducted using finite element method within ANSYS. The vibrational behaviors of cantilevered and fixed 

graphene with one or five layers were modeled using three-dimensional elastic beams of carbon bonds and point 

masses. The dynamic analysis was conducted using nonlinear elastic elements within LS-DYNA. The natural frequencies, 

strain and kinetic energy of the beam elements were calculated considering the van der Waals forces between the carbon 

atoms in the hexagonal lattice. The natural frequencies, strain and kinetic energy of the graphene sheets were estimated 

based on the geometrical type and the layered sheets with boundary conditions. In the dynamic analysis, the change in 

displacement over time appears larger along the x- and y-axes than along the z-axis, and the value of the displacement 

vector sum appears larger in the five-layer graphene than in the single-layer graphene. 
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1. Introduction 

Researchers worldwide have tried to estimate the 

mechanical properties of graphene in many ways including 

experimental, molecular dynamics (MD), and elastic 

continuum modeling approaches. Graphene is the basic 

structural unit of some carbon allotropes including graphite, 

carbon nanotubes and fullerenes [1]. It is believed to be 

composed of benzene rings stripped of their hydrogen 

atoms. The rolling-up of graphene along a given direction 

can produce a carbon nanotube. A zero-dimensional 

fullerene can also be obtained by wrapping-up graphene [2]. 

In 1940, it was theoretically established that graphene is the 

building block of graphite. In 2004, Geim et al. at 

Manchester University successfully identified single layers 

of graphene and other 2-D crystals [1, 4] in a simple 

tabletop experiment. These were previously considered to 

be thermodynamically unstable and unable to exist under 

ambient conditions [5]. 

Graphene can be prepared by four different methods [6]. 

The first is chemical vapor deposition (CVD) and epitaxial 

growth, such as the decomposition of ethylene on nickel 

surfaces [3, 7]. The second is the micromechanical 

exfoliation of graphite, which is also known as the peel-off 

method by scotch tape [8]. The third method is epitaxial 

growth on electrically insulating surfaces, such as SiC, and 

the fourth is the solution-based reduction of graphene oxide 

[9]. 

Unlike the aforementioned methods, we suggest here a 

method for the simple but effective and eco-friendly 

edge-selective functionalization of graphite without basal 

plane oxidation by ball milling in the presence of dry ice as 

a solid phase of carbon dioxide. The high yield of 

edge-carboxylated graphite (ECG) was produced and the 

resultant ECG is highly dispersible in various polar 

solvents to self-exfoliate into graphene nanosheets (GNs) 

useful for solution processing. Unlike GO, the 

edge-selective functionalization of pristine graphite can 

preserve the high crystalline graphitic structure on its basal 

plane. The carbon-carbon bond (sp
2
) length in graphene is 

approximately 0.142 nm. Graphene layer thicknesses have 

been found to range from 0.35 nm to 1 nm, relative to the 
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SiO2 substrate [10-12]. 

Giannopoulos et al. [27] developed a finite element 

formulation that is appropriate for the computation of the 

Young’s and shear moduli of single-walled carbon 

nanotubes (SWCNTs). Zhang et al. [28] reviewed some 

basics in the use of continuum mechanics and molecular 

dynamics to characterize the deformation of single-walled 

carbon nanotubes (SWCNTs). Recently, several studies 

[29-33] formulated the equations for an analytical solution 

using nonlocal elasticity theories. Ali Hemmasizadeh et al. 

[34] developed an equivalent continuum model for a 

single-layered graphene sheet. This method integrates a 

molecular dynamics method as an exact numerical solution 

with theory of shells as an analytical method. 

R. Ansari et al. [35] developed the vibrational 

characteristics of multi-layered graphene sheets with 

different boundary conditions embedded in an elastic 

medium for a nonlocal plate model that accounts for the 

small scale effects. Ragnar Larsson et al. [36] addressed the 

modeling of thin, monolayer graphene membranes, which 

have significant electrical and physical properties used for 

nano- or micro-devices, such as resonators and 

nanotransistors. The membrane is considered as a 

homogenized graphene monolayer on the macroscopic 

scale, and a continuum atomistic multiscale approach is 

exploited. Jia-Lin Tsai et al. [37] investigated the fracture 

behavior of a graphene sheet, containing a center crack, and 

characterized it based on atomistic simulation and 

continuum mechanics. Two failure modes, opening mode 

and sliding mode, were considered by applying remote 

tensile and shear loading, respectively, on the graphene 

sheet. S.K. Georgantzinos et al. [38] investigated the 

computation of the elastic mechanical properties of 

graphene sheets, nanoribbons and graphite flakes using 

spring-based finite element models. Interatomic bonded 

interactions as well as van der Waals forces between 

carbon atoms are simulated via the use of appropriate 

spring elements expressing corresponding potential 

energies provided by molecular theory. 

The natural frequencies and mode shapes of the graphene 

layers in the edge-carboxylated graphite(ECG) under 

cantilevered and fixed boundary conditions was calculated 

in this study by applying a mass finite element model. An 

FEM modeling approach using ANSYS was implemented 

to achieve this result and to describe the graphene. 

Furthermore, FEM modeling for explicit dynamic analysis 

was approached using LS-DYNA. 

2. Experimental Methods 

Graphite power was purchased from Alfa Aesar (natural, 

100 mesh, 99.9995 % metals basis, Lot#14735) and used as 

received. Dry ice was purchased from Fine Dryice Co., 

LTD, Korea. All other solvents were supplied by 

TaeMyong Scientific Co., LTD, Korea and used without 

further purification, unless otherwise specified. In a typical 

experiment, ball milling was carried out in a planetary 

ball-mill machine (Pulverisette 6, Fritsch; Fig. 1d) in the 

presence of graphite (5.0 g, Fig. 1a), dry ice (100 g, Fig. 1b) 

and stainless steel balls (Fig. 1c). 

Edge-carboxylation of graphite was prepared by ball 

milling of the pristine graphite in a planetary ball-mill 

machine in the presence of dry ice at 500 rpm. In a typical 

experiment, 5 g of the pristine graphite and 100 g of dry ice 

were placed into a stainless steel capsule containing 

stainless steel balls(300 ~ 320 g) of 5-mm diameter. 

The capsule was then sealed and fixed in the planetary 

ball-mill machine, and agitated at 500 rpm for 48 h. The 

resultant product was further Soxhlet extracted with 1M 

aqueous HCl solution to completely acidify the 

carboxylates and to remove metallic impurities (Fig. 1g). 

Final product was freeze-dried by a freeze dryer(Fig. 1h) at 

−45°C under a reduced pressure for 48 h to yield 6.4 g of 

dark black powder(Fig. 1i) that the pristine graphite 

captured 1.4 g of CO2 during mechano-chemical 

cracking[13]. 

 

Fig 1. (a) Pristine graphite, (b) Dry ice, (c) Stainless steel capsule and 

balls, (d) Ball-mill machine, (e) Graphite prepared by ball milling with 

aqueous HCl solution, (f) Vacuum pump, (g) Vacuum filtering apparatus, 

(h) Freeze dryer, and (i) Final product ,Edge-carboxylated graphite 

(ECG). 

The following explains the detail procedure for making 

ECG shown in Fig. 1. 

1) Put graphite (5g) + dry ice (100g) + balls (300 ~ 320g) 

in the vessel and mix. Put graphite first and then the balls 

so that the graphite is not blown away. 

2) Using a vacuum pump, remove the air inside the steel 

vessel. Good control is required when removing the air 

rapidly. 

3) Run the ball-mill machine 48 times at 500 rpm, each 

time with 50 minutes of ball-milling and 10 minutes of rest. 

After ball-milling, carefully open the vessel lowering the 

pressure inside the vessel. Unless the inner pressure is 

eliminated, it is not easy to open. 
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4) Open the vessel and filter the mixture of graphite and 

balls. Be mindful of the graphite powder blowing. 

5) Put the resultant graphite mixture in 1 mol of HCl and 

leave for 48 hours. When mixing the graphite mixture with 

HCl, put 50mL of water, 25 mL of HCl and 200 mL of 

water successively. The concentration of HCl is around 

38 %. 

6) After 48 hours, filter the mixture with a vacuum filter. 

When filtering, divide the mixture's amount by around ten 

for divided filtering. Put distilled water into the divided 

mixtures and check the pH repeatedly until it becomes 

neutral. The filtering must not be done at once; if graphite 

is full on the filtering paper, it will take a great amount of 

time. 

7) After filtering, freeze the mixture in a freezer, and 

then leave it in a freezing dryer for about one day. 

Table 1. Elemental analysis of ECG samples after the ball milling for 48 

hours 

Sample C (%) H (%) N (%) O (%) S (%) C/O 

Graphite[13] 99.64 BDL BDL 0.130 BDL 1021 

ECG[13] 72.04 1.01 BDL 26.46 BDL 3.63 

GO[13] 48.92 2.13 NA 45.45 NA 1.43 

Jh-1 ECG 86.89 0.96 BDL 15.26 0.96 5.69 

Jh-2 ECG 67.41 2.02 1.10 19.67 2.05 3.43 

Jh-3 ECG 72.09 0.96 0 18.39 0 3.92 

BDL = Below detection limit or not available. 

NA = Not applicable. 

Table 1 shows the elemental analysis of ECG samples 

(Jh-1, Jh-2, Jh-3) after the ball milling for 48 hours. The 

detailed mechanism of carboxylation via 

mechano-chemical process by ball milling is presented 

elsewhere [13] and confirmed by various spectroscopic 

measurements. 

Elemental analyses showed that the oxygen content has 

some differences between ECG samples after the ball 

milling for 48 hours. As shown in Table 1, the oxygen 

content of ECG samples(Jh-1, Jh-2, Jh-3) increased from 

0.13 % to 15.6 %, 19.67 %, 18.39 % and 26.46 % [13]. In 

contrast, the carbon content of ECG samples decreased 

from 99.64 % to 86.89 %, 67.41 %, 72.09 % and 72.04 % 

[13]. The greater the oxygen content, the greater the 

graphene content is in the ECG samples. Elemental 

analyses showed that the oxygen content of ECG increased 

with an increase in the ball-milling times. The increase in 

the ball-milling time also caused a continuous decrease in 

the sample grain size until 48 h, when a steady state was 

reached, as seen in the high-resolution transmission 

electron microscope (HRTEM, JEOL JEM-2010) images in 

Fig. 2. Figs. 2a and b give typical HRTEM images of ECG 

made from the pristine graphite flake, showing nano-scale 

irregular particle grains with smooth surfaces. As proposed 

in Figs. 2c, d and e more homogenous but much smaller 

ECG grains formed after ball milling for 48 h. The arrow 

shows layers of the graphene. 

Figs. 1 and 2 show the HRTEM image of a typical 

multilayer graphene sheet on the lacey carbon-coated grid. 

Several folds can be seen in the MLG (Multi-layer 

graphene) sheets, which is typical in thin sheets of graphite. 

The MLG sheets had diameters generally between 500 and 

2000 nm and were 1-10 graphene layers thick [14]. The 

weak contrast of the thin MLG sheet is apparent next to the 

strong contrast of the lacey carbon grid. The maximum 

number of layers is approximately 5, indicated by arrows. 

The corresponding HRTEM images are given in Fig. 3. 

Figs. 2c, d, e and Figs. 3c and d clearly show the presence 

of GNs. The ECG self-exfoliated into nanosheets in the 

dispersion used for the HRTEM sample preparation with 

wrinkle characteristics of flexible GNs. 

 

Fig 2. HRTEM images obtained from randomly selected sample 1 ECGs 

at different magnifications: (a) 200 nm, (b) 100 nm, (c) 20 nm, (d) 10 nm, 

and (e) 5 nm. Maximum number of layers indicated by arrows is 

approximately 5. 

 

Fig 3. HRTEM images obtained from randomly selected sample 2 ECGs 

at different magnifications: (a) 0.5 µm , (b) 0.2 µm , (c) 10 nm, and (d) 5 nm. 

Maximum number of layers indicated by arrows is approximately 5. 

Due to the strong van der Waals interactions associated 

with the defect-free basal planes and hydrogen bonding of 

the edge-carboxylic acids, GNs in the dip-coated ECG 
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dispersion onto an HRTEM grid have a strong tendency to 

restack into overlapped aggregates[13]. Under higher 

magnification, the thin self-assembled ECG layer showed 

some edge distortion, as indicated by the arrow in Figs. 2c, 

d, e and Figs. 3c and d. As observed in HRTEM (Fig. 2, 3), 

most of the GN layers were typically less than five 

graphitic layers. These results clearly indicate that the 

pristine graphite flakes could have been directly exfoliated 

into few-layer GNs by ball milling in the presence of dry 

ice, followed by dispersion in polar solvents. From EA data 

(i.e., an oxygen content of 15.26 %, 19.67 %, 18.39 % and 

C/O = 5.69, 3.43, 3.92, Table 1) for ECG ball milled for 

48h, it can be estimated that an average of one carboxylic 

acid group has been introduced onto every 11.38, 6.86 and 

7.84 carbons along the distorted ECG edge if there is 

negligible carboxylation on the basal plane [13]. 

Therefore, the ball milling method, which requires 

neither hazardous chemicals nor tedious procedures, 

outperforms current methods for mass production of 

high-quality GNs at low cost. 

3. Simulation of Molecular Bonds by 

VDW 

GNs were treated as a frame structure in which their 

bonds were beam members and carbon atoms were joints. 

To establish the linkage between the force constants in 

molecular mechanics and the beam element stiffness in 

structural mechanics, the energy equivalence concept 

proposed by Li et al.[18] was employed. 

In general, the total steric potential energy of the force 

field in MD can be expressed as the sum of the energies of 

bonded and nonbonded interactions [19] as: 

total r vdwU U U U U Uθ ϕ ω=Σ +Σ +Σ +Σ +Σ        (1) 

where Ur, Uθ, Uφ, Uω, and Uvdw are the energies for bond 

stretching, bond angle bending, dihedral angle torsion, 

out-of-plane torsion, and nonbonded van der Waals 

interactions, respectively.  

The van der Waals force is an intermolecular force that 

arises from a fluctuating electromagnetic field resulting in 

instantaneous electrical and magnetic polarizations between 

atoms and molecules. The van der Waals force has been 

studied extensively [16, 20]. Yang et al. [22] have 

developed a non-uniform rational B-spline (NURBS) 

surface approach for van der Waals force computation. In a 

system of two carbon atom spherical particles 1 and 2 of 

radii r1 and r2[23] with a separation of d, the non-retarded 

van der Waals force between two spheres is provided by 

Chen et al. [15]: 

( )
( ) ( )

1 2

2

1 2 1 2 1 2 1 2 1 2 1 2 1
2

21/ 4

/3

1/ 2 1  // 4 8 S

F A d r r

d r r rr r r rr r rr rrd r+

 = − + + 

 − + + + +
+ 

  (2) 

From (2), three geometric parameters, the separation 

distance d and sphere radii r1 and r2, are required to 

calculate the van der Waals forces for sphere–sphere 

interaction. In this case, we adopt the same separation 

distance d =2.442 nm and fix the sphere radii as r1 = r2 = 

0.07 nm and Hamaker constant A = 0.284e-19. 

Chen et al. [15] also obtained closed-form solutions for 

sphere-half and sphere-sphere systems. Consider a system 

of two spheres 1 and 2 of radii r1 and r2, respectively, 

placed at a center-to-center separation distance of h. Here, 

d is the closest separation between the spheres. The van der 

Waals attractive force F(h) is given by: 

( ) ( ) ( )0 1F h A F h F h = +                   (3) 

Where 

( ) 2 2 2 2
0 1 3 2 4 1 2 1 3 1 2 2 4/3 1/ 1/ 2 / 2 /F h h dd d d rr d d rr d d = − + + +    (4) 

   (5) 

From (5),  

1 1 2 2 1 2 3 1 2 4 1 2 ,  , ,d h r r d h r r d h r r d h r r= − − = + − = + + = − +  and  

( 1) 4 3
 1 2, ( 1) [4 5( )] 20 ,i

i i i i i ie d c b e e h c r r e+= + = − − + −  

( ) ( )1 3 2 2
1 2( 1) 4 5 4 20 20 (3 )i

i i i i i ig e e h c e h h c rr e h e+  = − − + + + + −  . 

Israelachvili [17] reported that for interatomic van der 

Waals forces, (6) is the force for two atoms or small 

molecules, and (7) is the force for two spheres or 

macromolecules. C is the coefficient in the atom-atom pair 

potential : 

76 /F C r= −                   (6) 

( )[ ]2
2 11 26 ( )F A d r r r r+= −            (7) 

Kalamkarov et al. [22] stated that the non-covalent 

interactions such as van der Waals forces, can be 

adequately described using the Lennard–Jones potential. 

The corresponding energy can be expressed by: 

( ) ( )12 6
4 12 / /LJV r rε σ σ = − +  

         (8) 

Here, the terms σ (nm) and ε (kJ/mol) are defined as 

the Lennard–Jones parameters. They are material-specific 

and determine the nature and strength of the interaction. 

The term r corresponds to the distance between the 

interacting particles. The Lennard–Jones force between 

C–C atoms can also be computed using the following 

expression: 
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( ) ( )12 6
/ 4 / 12 / /LJ LJF dV dr r r rε σ σ = = − +  

      (9) 

where σ = 0.34 nm and ε = 0.0556 Kcal/mol.  

Each van der Waals force in (3), (6), (7) and (9) is 

calculated as an equivalent value to the variable applied to 

the mode analysis of nanocones represented in (2). We 

adopt the same separation distance of h=2.582 nm. The van 

der Waals force calculated in (2) is equal to 812.993 N, and 

that calculated in (3) was -2.882e-08 N; (6) yielded 

-0.045e-75 N and (7) yielded -0.278e-24 N, and (9) yielded 

4.49e-06 N. The values in (3), (6), (7) and (9) are ignored 

since they are too small, and the value in (2) is used.  

4. Implementation of the Finite Element 

Model 

Based on the modeling concept described, the finite 

element model for single and five-layer graphene was 

implemented using commercial ANSYS software. First, we 

will briefly summarize the simulating element type used in 

ANSYS for the problem considered. The C–C bonds were 

simulated as BEAM188 beam elements, and the carbon 

atoms were simulated as MASS21 mass elements. 

 

 

Fig 4. Finite element model of single and five-layer graphene. 

Concentrated masses were used to model carbon atoms 

as point elements with up to six degrees of freedom, and 

translations in the nodal x, y, and z directions and rotations 

about the nodal x, y, and z axes. A different mass and 

rotary inertia could be assigned to each coordinate direction. 

The mass element was defined as a single node, 

concentrated mass components in the element coordinate 

directions, or rotary inertias about the element coordinate 

axes. The element coordinate system was initially parallel 

to the global Cartesian coordinate system or to the nodal 

coordinate system and rotated with the nodal coordinate 

rotations during the large deflection analysis. If the element 

required only one mass input, it was assumed to act in all 

appropriate coordinate directions. The mass element had no 

effect on the static analysis solution unless acceleration or 

rotation was present [23]. Five-layer graphene was modeled 

with 0.35nm spacing from single-layer graphene along the 

z-direction. As an example, the established finite element 

models of single-layer graphene and five-layer graphene 

was shown in Fig. 4, respectively. 

Before we input the data of the BEAM188 and MASS21 

element properties, the dimensions of the parameters stated 

above were further adjusted to avoid possible flow errors 

during the ANSYS computation. Thus, the dimensions 

were adjusted as shown in Table 2 [24]. After adjustment, 

the numerical parts of the input data were prepared for the 

BEAM188 and MASS21 elements, as shown in Table 

3[24]. 

Table 2. Adjusted dimensions for ANSYS. 

Division Units 
Original 

dimensions 
ANSYS dimensions 

Length m L 1010L 

Force N F 1020F 

Mass kg M 1026M 

Young’s modulus Pa E E 

Shear modulus Pa G G 

Natural frequency 

Energy 

Hz 

J 

f 

J 

109f 

1030J 

Table 3. The input data prepared for the BEAM188 and MASS21 elements. 

Division Units ANSYS dimensions Values 

C-C bond diameter m D 0.1466 

Poisson's ratio  ν  0.3 

Density kg/m3 ρ  2.3e3 

Young’s modulus Pa E 5.448e12 

Shear modulus Pa G 0.8701e12 

Mass of carbon atom kg Mc 2.0 

After ANSYS mode analysis, we found the node with the 

maximum strain and kinetic energies from modes 5, 10, 15 

and 20 of each graphene sheet. Then, in order to determine 

the accurate displacement about the x-, y- and z- axes of the 

node, we conducted explicit dynamic analysis in 

LS-DYNA after the second FEM modeling. 

5. Vibrational and Dynamic Analysis 

5.1. Vibrational Analysis Using ANSYS 

For the most basic problem involving a linear elastic 

material that obeys Hooke's Law, the matrix equations were 

designed in the form of a dynamic three-dimensional spring 
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mass system. The generalized equation of motion is given 

as follows [23]:  

[ ]{ } [ ]{ } [ ]{ } [ ]M u C u K u F+ + =ɺɺ ɺ          (10) 

where [M] is the mass matrix, { }uɺɺ
 

is the second time 

derivative of the displacement { }u  (i.e., the acceleration), 

{ }uɺ
 

is the velocity, [C] is a damping matrix, [K] is the 

stiffness matrix, and [F] is the force vector. 

Vibrational analysis was used for natural frequency and 

mode shape determination. For vibrational analysis, 

damping was generally ignored. The equation of motion for 

an undamped system, expressed in matrix notation, is given 

in (11): 

[ ]{ } [ ]{ } { }0M u K u+ =ɺɺ            (11) 

Note that [ ]K , the structure stiffness matrix, may 

include pre-stress effects. For a linear system, free 

vibrations will be harmonic with the following form:  

{ } { } cos ii
u tϕ ω=                 (12) 

where {φ}i , ωi , and t are the vectors representing the mode 

shape of the i
th

 natural frequency, the i
th

 natural circular 

frequency (radians per unit time), and time, respectively. 

Thus, (11) can be rewritten as:  

[ ] [ ] { } { }2( ) 0i i
M Kω ϕ− + =           (13) 

This equality is satisfied if either {φ}i = {0} or if the 

determinant of ([K] - ω
2
 [M]) is zero. The first option is 

trivial and is therefore not of interest. The second gives the 

following solution:  

[ ] [ ]2 0K Mω− =               (14) 

This is an eigenvalue problem that can be solved for up 

to n values of ω2 and n eigenvectors {φ}i which satisfy 

(19), where n is the number of DOFs. The eigenvalue and 

eigenvector extraction techniques are used in the Block 

Lanczos method. Rather than outputting the natural circular 

frequencies {ω}, the natural frequencies (f) are output as 

/ 2i if ω π=                  (15) 

where fi, is the ith natural frequency (cycles per unit time). 

Normalization of each eigenvector {φ}i to the mass matrix 

is performed according to 

{ } [ ]{ } 0
T

i i
Mϕ ϕ =               (16) 

In the normalization, {φ}i is normalized such that its 

largest component is 1.0 (unity). 

The natural frequency of a structure is related to its 

geometry, mass, and boundary conditions. For the graphene 

sheets considered here, the mass was assumed to be that of 

each carbon atom, 2.0×10-26 kg, and the rotational degrees 

of freedom of the atoms were neglected due to their 

extremely small diameter. In terms of the boundary 

conditions, one end of the graphene sheets was fixed, and 

the other was free as a cantilever type. These conditions 

were also true for the second explicit dynamic analysis. 

5.2. Dynamic Analysis Using LS-DYNA 

Consider the single degree of freedom damped system 

with forces acting on mass m for time integration. The 

equilibrium equations are obtained from d'Alembert’s 

principle as [23, 25]: 

( )I D Sf f f p t+ + =                (17) 

 

where c is the damping coefficient, and k is the linear 

stiffness. For critical damping crc c= , the equations of 

motion for linear behavior lead to a linear ordinary 

differential equation: 

   ( )mu cu ku p t+ + =ɺɺ ɺ ,              (18) 

But, for the nonlinear case, the internal force varies as a 

nonlinear function of the displacement, leading to a 

nonlinear ordinary differential equation: 

   ( ) ( )Smu cu f u p t+ + =ɺɺ ɺ              (19) 

Analytical solutions of linear ordinary differential 

equations are available, so we instead consider the dynamic 

response of a linear system subjected to a harmonic loading. 

It is convenient to define some commonly used terms: 

Harmonic loading: ( ) 0 sinp t p tω= , Circular frequency: 

 /k mω =  for a single degree of freedom, Natural 

frequency: 2 1/ ,f T T periodω π= = = , Damping 

ratio: / / 2crc c c mξ ω= = , Damped vibration 

frequency: 21Dω ω ξ= − , Applied load 

frequency: /β ω ω= .  

The dynamic response of a linear undamped system due 

to harmonic loading is: 

      (20) 

for the initial conditions: 0u  = initial displacement, 0uɺ  = 

initial velocity, 0 /p k = static displacement, and 

21/ (1 )β−  = dynamic magnification factor. For nonlinear 

problems, only numerical solutions are possible. LS-DYNA 
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uses the explicit central difference time integration method 

[26] to integrate the equations of motion.  

6. Numerical Results 

6.1. Vibrational Analysis Results 

The single and five-layer graphene with cantilevered and 

fixed type boundary conditions were modeled using 3-D 

beam and mass elements. The graphene sheets were 

produced by ball milling pristine graphite in the presence of 

dry ice. The numerical results of the graphene sheets are 

given in Tables 4 and 5 and in Figs. 5 and 6. 

The deformed shapes of modes 5, 10, 15, and 20 for the 

single and five-layer graphene with the boundary 

conditions are illustrated in Tables 4 and 5. The variations 

in frequency versus the mode of vibration for the single and 

five-layer graphene was compared in Figs. 5 and 6. As 

shown, the frequency increased when the single-layer 

graphene, without respect to the boundary conditions. 

As can be seen, the frequency did not significantly differ 

for the modes of five-layer graphene as for the boundary 

conditions; however, a regular pattern of variation was 

observed at higher vibrations such that the curves of 

variation for the graphene sheets with a cantilever increased 

at all points. 

The results illustrated in Fig. 5 for the single-layer 

graphene display the same trend as that observed for the 

five-layer graphene in Fig. 6. It can be deduced from the 

figure that the natural frequency increases with the mode 

number, and the increase in the natural frequency of the 

single-layer graphene is approximately five times that of 

the five-layer graphene. The modes of deformation 

illustrated in the tables show that the five-layer graphene 

undergo bending as does the single-layer graphene with a 

different trend pattern. 

From the comparison of the vibrational modes illustrated 

in Figs. 5 and 6 for the graphene sheets of different 

boundary conditions, it can be concluded that the modes are 

mainly the sum of the translation and rotation modes. These 

two modes are enlarged in the figures with greater mode 

number. 

As indicated by Tables 4 and 5, the severity of 

deformation varied among the graphene sheets with 

different boundary conditions. It is also evident that the 

natural frequency of the single-layer graphene with 

cantilevered boundary condition shown in Fig. 5 was lower 

than those with fixed boundary condition. The natural 

frequency of the five-layer graphene with cantilevered 

boundary condition shown in Fig. 6 was lower than those 

with fixed boundary condition. 

In the fifth mode in Tables 4 and 5, the deformed and 

initial graphene sheets overlap considerably so that the 

deformed sheet lies inside the initial sheet, whereas the 

deformed and initial graphene sheets for the tenth, fifteenth 

and twentieth modes of deformation shown in Tables 4 and 

5 overlap with some interference only at the free end of the 

graphene sheets. The other modes of deformation can be 

explained in a similar manner. Therefore, as in Figs. 5 and 

6, the numerical results indicate that the graphene sheets 

underwent slight deformation and vibration as the number 

of graphene layers increased. 

 

Fig 5. Variation in the natural frequency of the single-layer graphene with 

cantilevered and fixed boundary conditions. 

 

 

Fig 6. Variation in the natural frequency of the five-layer graphene with 

cantilevered and fixed boundary conditions.  
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Table 4. Mode shapes of the single-layer graphene. 

  BC 

Mode 
Fixed Cantilevered 

Mode 5 

 

Mode 10 

 

 

Mode 15 

 

Mode 20 

  

Table 5. Mode shapes of the five-layer graphene. 

    BC 

Mode 
Fixed Cantilevered 

Mode 5 

 

Mode 10 

 

 

Mode 15 

  

Mode 20 

  

The potential energy including the strain energy of 

elements is:  

1/ 2po
eE = { } ( ){ } 

 
T

e e e eU K S U +        
     (21) 

and the kinetic energy computed only for modal analyses 

is:  

1/ 2ki
eE = { } { } 

 
T

e e eU M U
 

    
ɺ ɺ

         (22) 

where eK    is the element stiffness matrix, eS    is the 

element stress stiffness matrix, { }eU  is the element DOF 

 
Fig 7. Strain energies for the single-layer grapheme ith cantilevered 

boundary condition. 

vector, { }eUɺ  is the time derivative of the element DOF 

vector, and eM   is the element mass matrix[23]. 

Table 6 shows a comparison of the single-layer graphene 

with cantilevered boundary condition for maximum strain 

energies of modes 5, 10, 15, and 20. Table 7 shows a 

comparison of the single-layer graphene with fixed 

boundary condition for maximum strain energies. As can be 

observed in Table 6, for the cantilevered single-layer 

graphene, the maximum value of the strain energies was in 

element no. 299 at mode 20 (671.33 J, see Fig. 7), and the 

maximum value of the kinetic energies was in element no. 

96 at mode 20 (929.20 J, see Fig. 8). As can be observed in 

Table 7, for the fixed single-layer graphene, the maximum 

value of the strain energies was in element no. 13 at mode 

20 (1032.69 J, see Fig. 9), and the maximum value of the 

kinetic energies was in element no. 4 at mode 20 (2084.30 J, 

see Fig. 10). 

For the cantilevered five-layer graphene, the maximum 

value of the strain energies was in the third layer at mode 

20  (5.95 J, see Table 8), and for the fixed five-layer 

graphene, the maximum value of the strain energies was in 

the second layer at mode 20 (25.01 J, see Table 9). 

A significant difference was observed between the two 

models of the graphene sheets. These differences can be 

attributed to the geometric differences between the two 

models. It is also evident that the strain energies of the 

cantilevered single-layer graphene shown in Table 6 were 

higher than those of the cantilevered five-layer graphene in 

Table 8, and the strain energies of the fixed single-layer 

graphene in Table 7 were higher than those of the fixed 

five-layer graphene in Table 9. The kinetic energies of the 

cantilevered single-layer graphene shown in Fig. 8 were 

lower than those of the fixed single-layer graphene in Fig. 

10, and the kinetic energies of the five-layer graphene 

sheets were lower than those of the single-layer graphene. 
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Table 6. Maximum strain energies for the single-layer grapheme with 

cantilevered boundary condition. 

Maximum Strain Energy 

Mode 5 Mode 10 

 

 

Mode 15 Mode 20 

 

 

 

Fig 8. Kinetic energies for the single-layer graphene with cantilevered 

boundary condition. 

Table 7. Maximum strain energies for the single-layer graphene ith fixed 

boundary condition. 

Maximum Strain Energy 

Mode 5 Mode 10 

  

Mode 15 Mode 20 

 

 

 
Fig 9. Strain energies for the single-layer graphene with fixed boundary 

condition. 

 

Fig 10. Kinetic energies for the single-layer graphene with fixed boundary 

condition. 

Table 8. Maximum strain energies for the five-layer graphene with 

cantilevered boundary condition. 

Maximum Strain Energy 

Mode 5 Mode 10 

 

 

Mode 15 Mode 20 

  

Table 9. Maximum strain energies for the five-layer graphene with fixed 

boundary condition. 

Maximum Strain Energy 

Mode 5 Mode 10 

 
 

Mode 15 Mode 20 

 

 

6.2. Dynamic analysis results 

The second dynamic analysis results are shown in Figs. 

11 and 12 for the single- layer graphene and Figs. 13 and 

14 for the five-layer graphene. The explicit dynamic 

analysis in LS-DYNA after the second FEM modeling is 

conducted for 20 seconds. 

The nodes 3 and 35 in Figs 11 and 12 are the respective 

locations of the maximum absolute values of displacement 

in the single-layer graphene. Likewise, the nodes 304 and 

380 in Figs. 13 and 14 are the respective locations of the 

maximum absolute values of displacement in the five-layer 

graphene with different boundary condition.  
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The values of displacements and displacement vector 

sums along the x-, y- and z-directions at the chosen nodes 

are shown in each figure. In Figs. 11 and 12, the 

displacements along the x- and y-directions have somewhat 

large variations, but the displacement along the z-direction 

is essentially zero.  

A similar phenomenon also appears in Figs. 13 and 14 

for the five-layer graphene sheets. The single and five-layer 

graphene have larger variations in displacement as time 

passes. It is shown that the displacement variation is 

especially great in the y-direction. Overall, the values of a 

displacement vector sum, which is indicated as DMX in the 

figures, appears smaller in the single-layer graphene than in 

the five-layer graphene. 

The increase along the x- and y-directions was regular at 

fewer displacements, but was irregular with more. The 

increases in the pattern of variation of the displacement for 

the fixed single and five-layer graphene were more regular 

at fewer displacements than that for the cantilevered single 

and five-layer graphene. This is closely related to the 

boundary conditions of the graphene sheets.  

 
Fig 11. Displacements and displacement vector sum in node 3 of the 

single-layer graphene with cantilevered boundary condition. 

 
Fig 12. Displacements and displacement vector sum in node 35 of the 

single-layer graphene with fixed boundary condition. 

 
Fig 13. Displacements and displacement vector sum in node 304 of the 

five-layer graphene with cantilevered boundary condition. 

 
Fig 14. Displacements and displacement vector sum in node 380 of the 

five-layer graphene with fixed boundary condition. 

 

7. Conclusions 

The vibrational and dynamic behavior of the single-layer 

graphene and those of the five-layer graphene with two 

different boundary conditions were studied using a finite 

element method comprised of beam and mass elements in a 

three-dimensional coordinate system. In order to explore 

the vibrational behavior, the influences of layered graphene 

sheets on the natural frequencies of the cantilevered and 

fixed boundary conditions were considered. The dynamic 

behavior was interpreted and analyzed by additional FEM 

modeling regardless of nodes selected in mode analysis. 

Generally speaking, the computational results of the 

graphene sheets do not seem to be in good agreement with 

the existing data in the literature because of the difference 

of analysis methods. 

The decrease in the number of layered sheets for 

graphene resulted in an increase in frequency. The decrease, 

however, was not severe for the first two modes of the 

single-layer graphene and for the first ten modes of the 

five-layer graphene. The modes of deformation illustrated 

in Tables 4 and 5 show that the single-layer graphene 

underwent more deformation with decreased number of 

atoms and bonds than did the five-layer graphene. 

Therefore, the increase in the number of layered sheets for 

graphene can produce more structural equilibrium. 

The results imply that the stable frequency of the 

graphene sheets is dependent on the boundary conditions 

and the number of layered sheets at all modes of vibration. 

In the dynamic analysis, the displacement along the 

y-axis shows the greatest variation, and the value of the 

displacement vector sum appears larger with the five-layer 

graphene than with the single-layer graphene. This is 

thought to be related to mass. 
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