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Abstract: In this article, a detailed study of the physical phenomena in the base of a silicon heterojunction solar cell (HIT) is 

elaborated. To carry out this work we have established a mathematical model which is in the form of a system of two continuity 

equations. The latter are subjected to physical conditions of nature to define our field of study. This system of continuity 

equations is solved using a computational program in a digital programming language. Numerical analysis is used in this study 

because the mathematical system describing the transport phenomena of load carriers (electrons and excitons) in a silicon 

heterojunction photovoltaic cell is very complex. Thus, to facilitate numerical resolution, the dimensional parameters of the 

physical system are rendered dimensionless. The resulting dimensionless equations are discretized by the finite volume method. 

They are then implemented in a calculation program by an iterative line-by-line relaxation method of the Gauss-Siedel type. In 

addition, with a low density coupling coefficient b=10
-16

cm
3
s

-1
 that depends on the material’s properties, the influence of 

temperature on the diffusion lengths, on the carrier and photocurrent densities, and on the internal quantum yield is studied. This 

study is carried out using polychromatic illumination with ultraviolet, visible and infrared wavelengths. 

Keywords: Heterojunction (HIT), Temperature, Excitons, Spectral Response, Quantum Performance 

 

1. Introduction 

The study of the effect of temperature on the solar cell has 

always aroused interest of some authors. Several researchers 

have conducted research in this area, including: 

M. Faye, M. Niane, S. Ndiaye, O. Ngom, C. Mbow, B. Ba 

[1] have shown by considering a non-linear problem and 

voluminal coupling coefficient b  which depends on the 

temperature, the reduction of the effects of the high values 

wavelength on the total density of the photocurrent by those of 

the heat factor and the Fourier number. 

M. Burgelman Minnaer et B. [2] which consider that the 

base is the sector that produces the majority of the 

photocurrent density. 

Zh. Karazhanov [3], carried out his study in the space load 

area neglecting the electric field. He noticed that excitons have 

a diffusion length about 3 to 6 times smaller than electrons. 

Therefore, taking into account the excitons, the author found a 

significant increase in the current under dark and a decrease in 

the short-circuit current, the open-circuit voltage, the form 

factor and the efficiency. 

As for M. Faye, C. Mbow, B. Ba [4-5], they also made a 

numerical study on the influence of the heating factor, the 

conversion rate and the density coupling coefficient of 

excitons on the photocurrent density in the base, including the 

space load area of a silicon homojunction cell. They used 
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monochromatic light. They took into account the presence of a 

temperature-dependent electric field. 

In the continuity of all this work, we studied the influence 

of temperature on the density of photocourant, on the internal 

quantum efficiency of a solar cell with silicon heterojunction 

(HIT) in the presence of excitons, under polychromatic 

illumination. 

To do this, the following plan is drawn up: 

First, we have developed a mathematical and numerical 

model with which we have highlighted a calculation program. 

The latter leads to the results that will be commented on. 

2. Mathematical Modelling 

2.1. Position of the Problem 

The study of a physical problem enabled us to establish a 

mathematical model, equations. These are governed by the 

phenomena of generation, recombination, diffusion and 

dissociation in a silicon heterojunction photovoltaic cell. We 

consider a silicon heterojunction cell of type (n
+
p), L length, 

illuminated by a mono (poly) chromatic light in the presence 

of excitons. 

Our photocell consists of three parts 

a) The transmitter: area highly doped in donor atoms (1, 

5.10
19

cm
-3

); 

b) Space Load Area (SLA): located between the transmitter 

and the base of an electric field. This allows the 

separation and acceleration of electron-hole pairs that 

arrive at the junction; 

c) The base: almost neutral zone, doped in accepting atoms 

(10
17

cm
-3

). 

 

Figure 1. Structure of a silicon heterojonction solar cell (a-Si: H/c-Si) of type 

(n+p). 

The mechanisms of generation-recombination, diffusion 

and dissociation govern the equations of continuity. 

2.1.1. Transport of Electrons in the Base 

In the doped type base (p), the minority carriers are charged 

electrons (-q). These electrons come from free electron-hole 

pairs and excitons. The density of electrons obeys the law of 

storage of charges whose system of equations is given by: 
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( ) ( )
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We describe the photo generation transport of the minority 

electrons in the base (ne) and electrons from the linked 

electron hole pairs: excitons (nx), by the system of differential 

equations (1) closed by initial conditions and boundaries. 

2.1.2. Boundary Conditions 

The evolution of a physical system depends on these 

boundary conditions. In the theoretical field of physics, we 

very often use mathematical models to solve physical 

phenomena. But mathematical equations applied to physics 

are often difficult or impossible to solve analytically or 

digitally without resorting to the physical conditions of nature 

often called boundary conditions. 

a) For electrons from free electron-hole pairs: 
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b) For electrons from excitons: 
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Excitons being more present in organic semiconductors 

[6-8] where efficiency of organic photovoltaic cells rarely 

exceeds 5% [9]. The highest occupied molecular orbital 

(energy) can be compared to the top of the valence band in 

inorganic semiconductors. The lowest unoccupied molecular 

orbital (energy) can be compared to the bottom of the 

conduction band in inorganic semiconductors. 

In contrast, in inorganic semiconductors where we have 

bands with direct or indirect gap, the free electron-hole pairs 

are more numerous than excitons which are often neglected. 

Here the electron-hole pairs are weakly bound (excitons of 

Wanier Mott) [10] and can be easily separated. 

Since silicon is an inorganic compound, therefore by 

hypothesis, the flux of photon generating electron-hole pairs 

linked can be expressed as a function of the flux of photon 

generating free electron-hole pairs by the following 

relationship: ( )
8

e
x

ϕϕ λ =  [2]. 

And ( ) ( ) ( )e xϕ λ ϕ λ ϕ λ= + , resulting in the following 

expressions: 
8

( ) ( )
9

eϕ λ ϕ λ=  and 
1

( ) ( )
9

xϕ λ ϕ λ= . With 

( )ϕ λ  being the photon flow that generates minority carriers 

in the base. 
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2.1.3. Diffusion Equations and Boundary Conditions 

Without Dimensions 

To facilitate the numerical resolution of these equations, it 

is often necessary to render them dimensionless in order to 

have homogeneous solutions. 

By asking 
*

z z L= , 
*w w L= , 

*
e e rn n N= , 

*
x x rn n N=  

and by replacing z , w , en  and xn  by their values in the 

system of equations (1), we obtain the following 

dimensionless diffusion equations. 

a) The electron transport equations and the adimensional 

boundary conditions of the base: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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In the same way we obtain the initial conditions and the 

following dimensionless limits. 

b) For electrons from free electron-hole pairs: 
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c) For electrons from excitons: 
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With: e
de Le

e

D
A A

S L
= = ; x

dx Lx
x

D
A A

S L
= = . 

Some parameters such as electron scatter coefficients and 

excitons of these equations depend on temperature. Since the 

equations are non-linear, the result is that the calculation must 

be self-consistent and not present an analytical solution. 

Therefore, a numerical resolution of these equations is 

required. 

2.2. Digital Modelling 

To obtain a numerical solution to our problem, we must 

transform the differential equations of the mathematical model 

into a system of algebraic equations obtained after 

discretization. We have chosen the law of power as the method 

of discretization. This method involves integrating equations 

into a discrete set called control volume. 

Then we will rewrite the system in the following 

conservative form: 

( ) ( , , )k k k ln z n n
z
ψ∂ = ℑ

∂
 

0( ) k
k k k k k

n
n n F

z
ψ ν ∂

= −
∂

 

The indices k and l are relative to electrons and excitons and 

are such that: 

If k e=  then l x=  and if k x=  then l e= . 

Table 1 below represents the different values of variables 

kν , 0kF  and ( , , )k lz n nℑ  for each diffusion equation. 

To lighten the expressions in the table, we decided to 

rewrite the dimensionless quantities without stars. 

Table 1. Expressions of quantities in the conservative equation (4). 

Base 

Coefficients For electrons For excitons 

kν  ( )eK w z− −  ( )xK w z− −  

0kF  0eF  0xF  

( , , )k lz n nℑ  ( ) ( ) ( )0 0 0e x x e e e e e eA n n B n n n n G− − − − − +  ( ) ( ) ( )0 0 0e x x e e e x x xA n n B n n n n G− − + − − − +  
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2.2.1. Meshing and Discretization of the Domain 

The adimensionalization allowed us to transform our field 

of study between 0z =  and pz L=  into a continuous 

segment of dimension 1 that we will approach in a series of 

mI  points (nodes) of abscissa rated iz . 

Distributions of electrons and excitons are very sensitive to 

the surface phenomenon, a fine mesh in the vicinity of 0z = , 

pz z=  and pz L=  is adopted. 

 

Figure 2. Area of study meshing. 

We will therefore use a trigonometric type mesh in the 

different fields: the space loading zone consists essentially of 

crystalline silicon of thickness pz w=  and the base consists 

of crystalline silicon of thickness p pz L w= − . Positions are 

marked by depth iz . 

In these relationships, index 1i =  denotes the interface 

between a-Si: H (n) and c-Si (p) ( 0)z = , pI  is the index that 

locates the position of the interface between the space load 

zone and the base ( )pz w=  and mI  the position of the rear 

face where ( )pz L= . 

 

Figure 3. Discretization by the finite volume method. 

The discretization steps are then given by: 

1i i idz z z+= −                   (7) 

The segment centred around the iz  node called the 

“control volume” and delimited by the nodes (w) and (r) is 

defined by idυ : 

1

1
( )

2
i i id z zυ −= −                 (8) 

If we consider iz  abscissa knot, we note: 

1( )r i iz z zδ += −                   (9) 

and 

1( )w i iz z zδ −= −                  (10) 

2.2.2. Discretizations of the Equations 

To discreet the equations of the mathematical model that 

describes our physical system, we will use the finite volume 

method. 

The finite volume method is based on a control volume 

approach and the formulation of an equation that often 

includes the following terms: 

a) Unsteady term 

b) Convective term 

c) Diffusif term 

d) Source term 

In the case of this section, the unstable term will not be 

considered. In addition, some time-dependent optoelectric 

phenomena will be studied with time parameters fixed to 

appropriate values that correspond to our field of study 

(around sµ  and ns ). Let us now integrate the system into 

the control volume idυ  it comes: 

( ) ( ) . ( , , )k k k k i k lr w
n n d z n nψ ψ υ   − = ℑ           (11) 

With ( , , )k lz n nℑ  the mean value of ( , , )k lz n nℑ  defined 

by: 

1
( , , ) ( , , )

r

k l k l
wi

z n n z n n dz
dυ

ℑ = ℑ∫          (12) 

To evaluate the gradients of the kn  densities delimiting the 

control volume, we choose an interpolation between 

neighbouring nodes. 
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−∂  = ∂ 

         (13) 
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F F

z zδ
−∂  = ∂ 

        (14) 

We can rewrite Equation (11)  by taking into account the 

expressions (13)  and (14) . Then we get: 

, , , ,
, 0 , 0( ) ( ) ( ) ( ) . ( , , )

( ) ( )

k R k M k M k W
k r k r k r k w k w k w i k l

r w

n n n n
n F n F d z n n

z z
ν ν υ

δ δ
− −

− − + = ℑ                (15) 

There are different schematics to approximate the values of the kn  functions: centred differences, upwind, hybrid, power 



 International Journal of Materials Science and Applications 2019; 8(4): 56-67 60 

 

law, 2nd order upwind, QUICK etc. 

In our work, we chose the law of power because of its 

stability and precision. 

By posing the expressions of new coefficients represented 

in the following Table 2. 

Table 2. Expressions of quantities in discrete equations. 

Coefficients ,w kD  ,r kD  ,w kF  ,r kF  ,w kP  ,r kP  

Expressions 
0( )

( )

k w

w

F

zδ
 0( )

( )

k r

r

F

zδ
 ( )k wV  ( )k rV  

0

( ) .( )

( )

k w w

k w

V z

F

δ
 

0

( ) .( )

( )

k r r

k r

V z

F

δ
 

 

Finally, a discrete equation is obtained for the variable kn  

of the carrier density in the general form of equation (16) : 

, , 1 , , , , 1 ,. . .w k k i M k k i r k k i m ka n a n a n S− +− + − =
       (16) 

The source term is uniform and linear: , , ,m k M k k iS S S n= −  

in the control volume. We can therefore express it by equation 

(17) : 

, , , , , ,. ( , , ) .( . ) .i i k l i m k M k k i m k M k k id z n n d n S S nυ υℑ = ℑ − ℑ = −  (17) 

Table 3. Expressions of the quantities appearing in the source terms of the equations of continuities of electrons and excitons. 

 , ( , , )M k i k lz n nℑ  , ( , , )m k i k lz n nℑ  

k e=  et l x=  1 eB+  0 0(1 ) ( )e e e x x en B A n n G+ + − +  

k x=  et l e=  1 xA+  0 0(1 ) ( )x x x e e xn A B n n G+ + − +  

 

2.2.3. Discretization of Initial and Boundary Conditions 

 

Figure 4. Power law diagram mesh. 

In the same way as in the previous resolution of the 

diffusion equations of electrons and excitons, we will rewrite 

the conditions at the initial and final limits respectively in the 

form of two conservative equations; then he comes: 

( )
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0
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k
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k
Lk k P k
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       (18) 

To solve the first and last terms of these equations, we need 

a Taylor serial development of the kn  derivative as a function 

of z  in the first order. 

Let us consider the point of abscissa iz  as the point of 

origin of discrete space then: 

2
1

( )
( ) ( ) 0( )k i

k i k i

n z
n z n z z z

z
δ δ+

∂
= + +

∂
      (19) 

2
1

( )
( ) ( ) 0( )k i

k i k i

n z
n z n z z z

z
δ δ−

∂
= − +

∂
      (20) 

We deduce from this the approximate expressions of the 

partial derivatives of kn  as a function of the thickness 

, 1 ,

( ) 1
( )k i

k i k i

n z
n n

z zδ +
∂

= −
∂

           (21) 

, , 1

( ) 1
( )k i

k i k i

n z
n n

z zδ −
∂

= −
∂

          (22) 

By making the difference between relations (21)  and 

(22) , we have equation (23) which is obtained by a centered 

diagram of order 2. 

, 1 , 1

( ) 1
( )

2

k i
k i k i

n z
n n

z zδ + −
∂

= −
∂

        (23) 

This expression, applied to our boundary conditions, allows 

us to create a fictitious node in 0i I= . By taking into account 

relationships (21) , (22)  and (23) , we get the boundary 

conditions represented in the equation system (24) . 

Finally, we will establish the complete matrix system that 

approaches our problem. 

2.2.4. Numerical (Algebraic) Model of Continuity Equations 

in the Base 

0 01, , 1, , 1 1, 0

, , 1 , , , , 1 , 0

, 1 , , ,

1

m m

k k I k k I k

w k k i M k k i r k k i m k m

k I m k k I m k m

b n C n d i I

a n a n a n S I i I

n b n d i I

−

− −

−

 − = =
− + − = ≤ ≤ −
− + = =

 (24) 

With here; 
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1, 1, 1,2. .k M k dk w kb a C a= − ; 1, 1, 1,k r k w kc a a= − ; 

1, 1, 1, 02. . .k k dk w k kd S C a n= −  

, 1m ka = ; , 1m k Lkb C= + ; , 0.m k Lk kd C n=  

The ,w ka , ,M ka  and ,r ka  coefficients are evaluated at the 

control volume interfaces using the power law schema. They 

represent the combined conduction-diffusion flows. 

Expressions of these coefficients are given in the studies [11, 

12]. 

2.3. The Photocurrent Density of the Carriers 

The photocurrent density consists of the diffusion current 

due to the diffusion of the carriers via the photons and the 

conduction current due to the effect of the electric field of the 

space load zone. 

2.3.1. Current of Conduction 

In a material, the charged electrons collide with the atoms 

of the crystalline network. Each shock corresponds to a loss of 

energy. Between two shocks, the electrons are accelerated 

uniformly in the opposite direction of the electric field ( )E z  

of the SLA with a speed ( ) . ( )z E zϑ µ= ± . The photocurrent 

density is then written: 

a) For electrons: 

, . . . ( )c e e eJ q n E zµ=                (25) 

b) For excitons: 

, . . . ( )c x x xJ q n E zµ=              (26) 

The speeds ( )e zϑ  and ( )x zϑ  are proportional to the 

electric field. The sign of the mobility coefficients of holders 

( )e zµ  et ( )x zµ  depends on their loads ( )q− . 

2.3.2. Diffusion Current 

Fick’s law, which is an experimental law established in 

1856  by Adolphe Fick, states that: the number of particles 

per unit of time and volume ( )φ , is defined by the equation: 

n
D

z
φ ∂= −

∂
. 

From this expression we can deduce the photocurrent 

densities of electrons and excitons. 

a) For electrons: 

, . . e
d e e

dn
J q D

dz
=              (27) 

b) For excitons: 

, . . x
d x x

dn
J q D

dz
=              (28) 

The photocurrent densities of electrons and excitons are the 

sum of the two contributions: the diffusion currents and the 

conduction currents. 

c) For electrons: 

. . . ( ) . . e
e e e e

dn
J q n E z q D

dz
µ= +         (29) 

d) For excitons: 

. . . ( ) . . x
x x x x

dn
J q n E z q D

dz
µ= +        (30) 

The result of the photocurrent densities of electrons and excitons 

is the total photocurrent density of the carriers in the base: 

e xJ J J= +                  (31) 

2.4. Spectral Response and Quantum Performance 

The spectral response is similarly the ratio of the intensity 

( )I λ  generated by the cell to the incident power ( )iP λ , for 

each wavelength. It is therefore a question of illuminating the 

cell and measuring the current it delivers 

( )( ) ( )

( ) ( ) ( )

I
S

i i i

I J
SR

P

λλ λ
λ ϕ λ ϕ λ

= = =          (32) 

Where 0( ) ( )iϕ λ ϕ λ=  is the incident photon flow and S is 

the cell surface. To calculate the flux of absorbed photon 

( )aϕ λ , the difference is made between the flux of photon at 

the input of the material (the illuminated face) and the flux of 

photon transmitted to a depth in the base. 

It is generally this quantity that is measured and which 

makes it possible to calculate the quantum yield. 

0

( )
( )

. . ( )

J

q
EQE

λλ
λ ϕ λ

=               (33) 

One distinguishes external quantum yield, from internal 

quantum yield in which the flux of photon absorbed by the 

active layer of the cell is taken into account. 

The expression presented here takes into account optical 

losses such as reflection or transmission through the cell: this 

is the external quantum yield. 

Optical losses can be corrected to give the internal quantum 

yield that takes into account the characteristics specific to the 

cell (diffusion, surface and volume recombinations and/or 

absorption of the material under consideration). 

By definition, A is the ratio of the number of photon 

photons generated to the number of photon absorbed. It can 

also be defined as the ratio between the external quantum yield 

and the absorption coefficient of the thickness layer z. 

( )

( )
I

E E
QE

Q

A

λ
λ

=                 (34) 

With here: ( )A λ  being the absorption coefficient of the 

thickness layer z . 
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3. Results and Discussions: The Influence 

of Temperature on the Optoelectric 

Parameters of Doped Crystalline 

Silicon, Type (p) 

Temperature is a very important parameter and its 

behaviour cannot be neglected in solar cells. The performance 

of a silicon solar cell is highly temperature sensitive. The latter 

acts on the molecular structure (the crystalline network) of 

silicon by exciting electrons and reducing the energy of the 

absorption gap. 

In this article, we set out to study the effect of temperature 

in the base of a silicon heterojunction solar cell (HIT), often 

referred to as a high-efficiency solar cell. The basis of the HIT 

cell is the c-Si (p) with a thickness 0, 025 L cm=  and a 

doping rate 
17 31,14.10AN cm−= . The emitter consists of a-Si: 

H (n) very strongly doped into donor atoms: 
19 31,5.10DN cm−= , recombinant velocities of electrons and 

excitons: 
6 16.10 .e xS S cm s−= = . Taking into account the 

actual mass of electrons 
312,85689.10em Kg−= , we were 

able to assess the intrinsic parameters on which the mass 

depends. Indeed, excitons in inorganic semiconductors being 

pseudo particles whose electron-hole pairs are weakly bound; 

therefore, we can choose a very low-density coupling 

coefficient 
16 3 1( 10 . )vb cm s− −=  in the c-Si (p). In addition to 

the physical parameters related to the study and the intrinsic 

parameters, we can give the values of the physical constants 

involved in this work: 

23 1 8 1 34 1 12
01,380662.10 . ; 2,997924562.10 . ; 6,626176.10 . ; 8,842.10bk J K c m s h J s ε− − − − − −= = = =  

3.1. Length of Diffusion of Load Bearers 

Figures 1 and 2 shows the diffusion lengths of electrons and 

excitons as a function of temperature. 

The maximum diffusion length of electrons is about six 

times greater than that of excitons (Figure 6). At temperatures 

below 173 K, excitons diffuse more than electrons. While at 

temperatures ranging from 173 K to 500 K, electrons are more 

diffusible than excitons (Figure 5). In addition, we noted in 

Figure 5b that the temperature has an antagonistic effect on the 

diffusion lengths of the two types of load carriers: electrons 

and excitons. That is, the increase of one leads to a decrease of 

the other and vice versa. 

 

Figure 5. Electron and exciton diffusion lengths as a function of temperature. 

Since excitons are in an excited state and are weakly related: 

Wannier-Mott excitons. As a result, the lower the temperature, 

the more stable the excitons are and can easily spread. On the 

other hand, the higher the temperature, the more unstable the 

molecules in the cell, especially excitons that are already on 

excited levels. 

In addition, at low temperatures, only those electrons that 

have enough energy to be allowed to rise above the forbidden 

band are scattered. But as the temperature increases, the 

electrons propagate deep in the cell, because in addition to the 

energy of sufficiently charged electrons, the temperature 

causes a reduction of the gap energy thus favoring the 

movement of the carriers free charge (electrons). 

 

Figure 6. Electron and exciton diffusion lengths as a function of temperature. 

The evolution of the diffusion lengths of electrons and 

excitons as a function of temperature allowed us to understand 

the movements of the carriers in depth in the cell, but does not 

edify us on the real effect of temperature on the photovoltaic 

cell. To better understand the influence of temperature, we will 

evaluate it on the density of the load carriers. 

3.2. The Density of the Carriers of Charge 

Figures 7 and 8 respectively represent the density of 

electrons and the density of excitons as a function of the depth 

of crystalline silicon for different temperature values. 

The densities are evaluated according to the thickness in the 

base and in part of the space load zone made up of the P-type 

doped crystalline silicon. We see an increase in the density of 

the carriers (electrons and excitons) up to a thickness value in 

the base equal to 0.025 cm and a gradual decrease. 

Nevertheless, for different values of the temperature, we 

noticed that an increase of the temperature causes a decrease 

of the density of the electrons (Figure 7) and an increase of the 
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density of the excitons (Figure 8). 

As with diffusion length, variations in electron and exciton 

densities are closely related. Since the load carriers are 

subjected to the action of the electric field in the space charge 

zone, the electron-hole pairs are separated and propelled into 

the base (generation). In fact, in the presence of the electric 

field, the density of the carriers increases to a certain depth in 

the base at densities of electrons and excitons that reach 

respectively maximum values of 
18 37.10 cm−

 and 
18 310 cm−

 

at a thickness of 0, 0125 cm . Then, some carriers are 

subjected to phenomena of recombination and dissociation 

(excitons cases), so we obtain minimum values of densities at 

the level of the back side of the base. 

 

Figure 7. The density of electrons as a function of the depth of crystalline 

silicon with different temperature values. 

 

Figure 8. The density of excitons as a function of the depth of crystalline 

silicon with different temperature values. 

In addition, at low temperatures (200 K), molecules in the 

cell are less subject to external influences such as thermal 

excitation. As the temperature rises, the molecules in the cell 

become more and more agitated. This agitation of thermal 

origin causes some electrons to be in excited positions. As a 

result, the density of excitons increases to the detriment of that 

of electrons. 

In summary, we were able to assess the amount of carriers 

in a part of the cell made up of c-Si (P). But it is not enough to 

have a very large number of carriers in the cell to predict its 

ability to produce energy because in addition to the diffusion 

and the number of carriers in the cell, the movement of free 

and bound electrons must be ordered, hence the importance of 

studying the photocurrent density of electrons and excitons. 

3.3. Photocurrent Density of Charge Carriers 

Figures 9-20 provide information on the photocurrent 

density of electrons, that of excitons and on the total density as 

a function of the depth of crystalline silicon for different 

temperature values. 

 

Figure 9. Electron photocurrent density as a function of wavelength ( )λ  at 

0 20T K= . 

 

Figure 10. Electron photocurrent density as a function of wavelength ( )λ  at 

0 30T K= . 

 

Figure 11. Electron photocurrent density as a function of wavelength ( )λ  at 

0 40T K= . 
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In this part, the cell is illuminated by a polychromatic light 

with wavelengths between 0,5 mµ  and 2,5 mµ . When we 

evaluate the photocurrent density as a function of the 

wavelength, we observe a gradual decrease in the 

photocurrent density to a value of 1,6 mλ µ= . Beyond this 

value, the photocurrent density of the electrons, that of the 

excitons and the total density remain practically constant. 

 

Figure 12. Electron photocurrent density as a function of wavelength ( )λ  

for different temperature values. 

We have also noticed that crystalline silicon only responds 

to wavelengths between 0,6 mµ  and 1,6 mµ . Outside of 

this wavelength range, the photocurrent density is virtually 

unchanged (see Figures 9-20). 

 

Figure 13. Exciton photocurrent density as a function of wavelength ( )λ  at 

0 20T K= . 

Contrary to what is often explained in the literature, 

crystalline silicon has a range of wavelengths encompassing 

its gap energy 
.

g
g

h c
E

λ
= . (0,6 1,6 )gm mµ λ µp p , in which 

it absorbs photons. But photons of energies greater than the 

energy of the gap ( )gλ λp  generate more load carriers 

because they have enough energy to transfer electrons from 

the valence band to the conduction band. Whereas photons of 

energies less than the energy of the gap ( )gλ λf  do not have 

enough energy, but since they have an energy close to the 

energy of the gap, there are excited levels between the bands 

of conduction and valence. They are able to attract electrons 

that have less energy than the gap. In addition to the 

phenomena that make it possible for the carriers to pass from 

one level of energy to the other, the charged electrons interact 

with each other during their transitions, for example they repel 

each other, exchange energies among themselves. There are 

forces like the electric field that deflects them from their 

trajectories. 

 

Figure 14. Exciton photocurrent density as a function of wavelength ( )λ  at 

0 30T K= . 

 

Figure 15. Exciton photocurrent density as a function of wavelength ( )λ  at 

0 40T K= . 

For the movement of the load carriers to be orderly, it is 

necessary that electrons that are in stable positions or that have 

sufficient energy to reach permissible or intermediate energy 

levels (excitonic levels) have no influence. In addition, a 

thermal excitation creates disorder in crystalline silicon by 

bringing stable electrons out of the valence band of their orbits: 

that is to say, they are in interstitial positions and this only 

occurs at very high temperatures. This disorder creates 

recombinant sites that attract excitons and trap them. On the 

other hand, an increase in temperature also results in a 

decrease in the absorption gap, facilitating the orderly 

movement of free electrons. 
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Figure 16. Exciton photocurrent density as a function of wavelength ( )λ  for 

different temperature values. 

 

Figure 17. The total photocurrent density as a function of wavelength ( )λ  at 

0 20T K= . 

 

Figure 18. The total photocurrent density as a function of wavelength ( )λ  at 

0 30T K= . 

On the other hand, at temperature values ranging from 

100 K  à 500 K , there is an increase in the photocurrent 

density of the electrons and a decrease in that of the excitons 

(Figures 12 and 16). The total photocurrent density (electrons 

and excitons) varies in the same way as that of electrons, but 

with a difference of 2
2, 22 .mA cm

−  (Figure 20). 

 

Figure 19. The total photocurrent density as a function of wavelength ( )λ  at 

0 40T K= . 

 

Figure 20. The total photocurrent density as a function of wavelength ( )λ  

for different temperature values. 

Thus, we can say that as long as we do not reach 

temperatures that exceed the critical value for the material 

used, the temperature can be considered favourable to the 

photocurrent density. 

But here too, we cannot say with certainty that the temperature 

is favourable to the efficiency of our photovoltaic cell. 

To do this, we will use the calculation of internal quantum 

efficiency to measure the efficiency of the photovoltaic cell 

illuminated by a polychromatic light with wavelengths 

between 0,6 mµ  et 2,5 mµ . 

In this section, we were able to define a very precise 

wavelength range between 0,6 mµ  et 1,6 mµ , in which we 

have variations in photocurrent density. 

3.4. The Internal Quantum Efficiency of the Photovoltaic 

Cell 

In the case of quantum solar cell yields, transparent and 

conductive oxides (TCO), considered as window layers, are 

highlighted. Indium oxide (ITO) is used in our solar cell as 

transparent electrodes. It has a high optical transmission due to 

its high gap, good electrical conductivity which allows it to 

obtain the least transport losses of photogenerated charges and 

low reflection. This allows it to efficiently transport the 
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photons to the active layer. The photocurrent density study 

allowed us to define a wavelength range between 0,6 mµ  et 

1,6 mµ  in which the c-Si (p) is more active. Photons passing 

through the active layer by photogeneration undergo 

recombination and dissociation phenomena that are at the 

origin of losses in the base. 

In Figures 21-23 we reproduce the internal quantum yield 

of electrons, that of excitons and the total internal quantum 

yield as a function of the wavelength for different temperature 

values. 

The curves in Figures 21-23 show, for wavelengths between 

0,6 mµ  and 2,5 mµ , an increase in efficiency up to a value 

of the wavelength 1,5 mλ µ=  then a progressive decrease. 

 

Figure 21. The internal quantum yield of electrons as a function of 

wavelength for different temperature values. 

 

Figure 22. The internal quantum yield of excitons as a function of wavelength 

for different temperature values. 

In other words, an increase in temperature leads to an 

increase in the internal quantum yield of electrons and a 

decrease in the yield of excitons (Figures 21 and 22). 

Silicon absorbs photons with wavelengths between 

0,6 mµ  et 1,6 mµ . Beyond this wavelength range, the 

photocurrent density, with a minimum value, remains virtually 

invariant. It absorbs and transmits photons of wavelengths 

close to the energy of the absorption gap 

(0,6 1,6 )gm mµ λ µp p  by photogeneration. These photons 

generating carriers can suffer losses by recombination. These 

recombinations are: volumic in the photovoltaic cell and 

surfacing at the interface between a-Si: H (n)/c-Si (p) and the 

front and rear sides. 

 

Figure 23. Total internal quantum yield as a function of wavelength for 

different temperature values. 

At a wavelength 1,5 mλ µ=  value that corresponds to the 

plasma wavelength, most photons have low energy that does 

not allow them to pass through the transparent indium oxide 

(ITO) window layer. 

Two very interesting effects of temperature lead to antagonistic 

results on the internal quantum performance of electrons and 

excitons. The increase in temperature leads to a decrease in the 

energy of the gap which is favourable to the internal quantum 

efficiency of electrons while a thermal excitation is unfavourable 

to the internal quantum efficiency of excitons. 

The curves in Figure 23 show an increase in the total 

internal quantum efficiency of the photovoltaic cell of 10% for 

the different temperature values. This increase is due to the 

intake of excitons. 

4. Conclusion 

Our study shows that excitons are more stable and 

diffusible than electrons at very low temperatures. This is 

confirmed by researchers in this field [13-15]. In addition, a 

disorderly increase in carrier density was observed. Thus, the 

results obtained on the densities of, photocurrent allowed us to 

define a wavelength range between 600 nm  and 1600 nm  

in which the c-Si (p) is more active to generate the load 

carriers. Finally, we obtained quantum yields of around 80% 

with a 10% participation of excitons for the different 

temperature values. 
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