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Abstract: Taking the amount of warpage deformation of automotive brake Plug-in as the research object, UG NX10.0 

software was used to design the product model and Moldflow software was used for predictive analysis of the product model. 

The preliminary optimized parameters were obtained by using the response surface method - central composite experiment 

design (CCD) and combined with injection molding CAE technology. The mold temperature was 70°C, the melt temperature 

was 250°C, the holding pressure was 95 MPa, and the holding time was 10s. The warpage was 1.18 mm. Through the analysis 

of variance, the influence of four injection process parameters on product warpage was obtained, namely, holding 

pressure>holding time>melt temperature>mold temperature. Based on the fitted response surface algorithm model, the process 

parameters were optimized using particle swarm optimization (PSO) with the minimum warpage as the constraint condition, 

and the optimal combination of the optimized process parameters was obtained, that was, the mold temperature was 60°C, the 

melt temperature was 280°C, the holding pressure was 95 MPa and the holding time was 8.296 s. The minimum warpage was 

1.057 mm. The optimization results showed that the minimum warpage was reduced by 10.85% compared with the initially 

optimized parameters, and the effectiveness of the proposed method was verified by using this parameter combination for 

actual injection production. 

Keywords: Automotive Brake Plug-in, Response Surface, Injection Molding Process Parameters, Warpage,  

Particle Swarm Optimization 

 

1. Introduction 

Automotive brake Plug-in has an auxiliary role in 

automotive braking devices. Automotive brake Plug-in for 

injection molded product, if its molding quality is poor, such 

as the occurrence of warpage deformation and other defects, 

will produce assembly stress in the assembly process, which 

will lead to its accelerated aging during use, resulting in 

cracking failure. The quality of injection molded products is 

mainly affected by the material, mold, and process. This paper 

discusses how to reduce the warpage of injection molding 

from the perspective of process parameter optimization. The 

injection molding process parameters have many complex 

nonlinear effects on injection molding warpage, and the 

optimization of the injection molding process has become one 

of the main challenges and research hotspots to reduce 

warpage. In process optimization, the more used is the 

orthogonal test method [1-3], which can only intermittently 

take points in the test space to find the optimal parameters and 

can not give a function expression between the test factors and 

response values on the whole area. To obtain an efficient and 

reliable mathematical planning method, which can also meet 

the optimization calculation in the engineering field, some 

scholars have studied the optimization of injection molding 

process parameters [5-7] using the response surface method 

[4], which can well solve the time-consuming and nonlinear 

optimization problems. Although the above-mentioned 

optimization method combined with injection molding CAE 

technology for simulation can help optimize the injection 

molding process parameters, the obtained injection molding 

process parameter combinations are only locally optimal 
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parameters, and it is difficult to achieve global optimization. 

With the development of a new generation of artificial 

intelligence, making its application in various fields showing 

great potential, the development of industrial intelligence has 

also become a trend and focus of research. Currently, some 

scholars have studied the optimization of injection molding 

process parameters using intelligent algorithms and combined 

with CAE technology for numerical simulation, which is 

generally used for the optimization of injection molding 

process parameters such as genetic algorithm [8-15], firefly 

algorithm [16] or its improvement algorithm [17, 18] for 

multiple indexes seeking optimization. Among them, the 

particle swarm optimization (PSO) algorithm has the 

advantages of fast search speed, high efficiency, and simple 

algorithm compared with other algorithms, and the early 

convergence problem is effectively avoided by using the 

improved standard particle swarm optimization algorithm. 

Therefore, the injection molding process parameters can be 

better optimized. 

In this paper, we take the automotive brake Plug-in as the 

research object and conduct a study on the warpage problem 

of injection molding. The mold temperature, melt 

temperature, holding pressure, and holding time were 

selected as the test factors, and the response surface method- 

central composite experiment design (CCD) combined with 

Moldflow software was used for CAE technology simulation 

analysis to establish a second-order response surface model 

[10] and determine the influence regularity of process 

parameters on warpage deformation through the analysis of 

variance. The standard particle swarm optimization 

algorithm combined with CAE technology is used to obtain 

the global optimal combination of injection molding process 

parameters with the minimum warpage, and the optimal 

combination of parameters is verified in production, which 

effectively reduces the cost of mold trial and improves 

production efficiency. 

2. Moldflow Analysis of Product 

2.1. Two-Dimensional and Three-Dimensional Models 

The automotive brake Plug-in is a body injection molded 

part, the whole of which is composed of a shaped surface, with 

reinforcement ribs to enhance the structural strength of the 

product and some hooks for installation, and the end of the 

hooks in five places have a certain angle. The product size is 

229 mm × 92 mm × 133 mm, and the average thickness is 

about 1.05 mm. Its two-dimensional and three-dimensional 

models are shown in Figure 1 and Figure 2. The product is 

required to have a bright and clean surface, without obvious 

air traps, weld lines, and other defects that affect the 

appearance or function. 

  
                              (a)                                                      (b) 

 
(c) 

Figure 1. Automotive brake Plug-in 2D model (unit: mm) (a) Front view (b) Top view (c) Cross-sectional view. 
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                                         (a)                                             (b) 

Figure 2. Automotive brake Plug-in 3D model (a) Front view (b) Side view. 

2.2. Mesh Division 

The 3D model of the automotive brake Plug-in designed by 

UG NX10.0 was imported into Moldflow CAD doctor 2015 

software, and the model was pre-processed to repair features 

affecting the mesh quality such as chamfers, edges, and 

recesses. The repaired model has been imported into 

Moldflow 2015 software for meshing. Due to the thin wall 

thickness and small size of the product, the dual-domain mesh 

was used. The mesh side length is set to 2 mm. The number of 

meshes is 25806. The matching rate reaches 91%, and the 

average aspect ratio is 1.89, which meets the requirements of 

the mold flow analysis, as shown in Figure 3. 

 

Figure 3. Mesh model. 

2.3. Feed System Design 

The feed system is the flow channel between the melt 

flowing from the beginning of the main flow runner through 

each branched runner and then to the gate, which can fill the 

melt into the cavity in a smooth and orderly manner to 

complete the product molding. As shown in Figure 4, the open 

hot-runner system to cold-runner system is used in the 

injection molding process, considering the structural 

characteristics of the mold kernel, to ensure the balance of 

melt flow and to minimize the waste generated by the 

cold-runner. From the flow resistance analysis, it is concluded 

that the left front side of the product has the lowest flow 

resistance and is the best location for the gate, but according to 

the molding requirements, the single design of the gate will 

lead to uneven pressure holding around the product, as shown 

in Figure 5a. The gate matching analysis is shown in Figure 5b. 

The dark area is the best area for product gate matching. The 

gate position should avoid interfering with the mold mandrel 

and insert and be located at the thicker part as much as 

possible, considering the factors such as melt flow balance, 

mold processing complexity, and customer's requirements for 

the product, so the 4-point feeding scheme is adopted. The 

best matching value of the side gate is selected to be about 0.7. 

The final scheme is shown in Figure 6. 

 

Figure 4. Mold kernel structure and feed system. 

 

(a) 
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(b) 

Figure 5. Gate position (a) Gate flow resistance (b) Gate matching. 

 

Figure 6. Feed system. 

2.4. Cooling System Design 

The cooling system controls the temperature of the mold 

through the water circuit to make the product cool evenly after 

molding, and the water circuit arrangement will directly affect 

the molding quality of the product. According to the structural 

characteristics of the product, six sets of cooling circuits are 

set to ensure uniform cooling of the mold and product, with a 

cooling pipe diameter of 8 mm and a cooling water well 

diameter of 10 mm, as shown in Figure 7. 

 

Figure 7. Cooling system. 

2.5. Analysis Results 

The filling and cooling analyses were performed on the feed 

system and cooling system models, and the default values were 

used for all injection process parameters to obtain the filling 

analysis results as well as the cooling analysis results, as shown 

in Figure 8 and Figure 9. As shown in Figure 8a, the melt is 

filled into the cavity from four gates, and the flow balance is 

maintained throughout the filling process. As shown in Figure 

8b, the melt filling time is 1.357 s, which can ensure a better 

processing efficiency, and the plastic melt reaches the end of the 

cavity on both sides almost simultaneously. There is no gray 

part, indicating that the filling flow is balanced and there is no 

short shot or hesitation. As shown in Figure 8c, the air traps 

created by melt filling are located on the product surface, and 

air can be expelled through the gap between the cavity and the 

product. As shown in Figure 8d, most of the product weld lines 

are located on the surface of the product and distributed in the 

thicker part of the product. The length is short, which can 

ensure the strength and appearance of the product. Figure 9a 

shows the results of the circuit coolant temperature analysis. To 

ensure the cooling efficiency, the temperature difference is 

required to be less than 3°C. As can be seen from Figure 9a, the 

maximum temperature is 25.48°C and the minimum 

temperature is 24.99°C, and the temperature difference is only 

0.49°C, which meets the requirements. As shown in Figure 9b, 

the minimum value of the loop Reynolds number in the cooling 

process is 10,000 and the maximum value is 12,266, and the 

Reynolds number is greater than 4,000. It is easier for the 

coolant to form turbulent flow in the cooling loop, so the 

cooling effect of the product is better and the molding quality of 

the product is higher. In summary, the product feed system and 

cooling system are reasonably designed and can meet the 

requirements of later process optimization. 
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                              (a)                                      (b) 

  

 (c)                                      (d) 

Figure 8. Filling analysis (a) Filling area (b) Filling time (c) Air trap (d) Weld line. 

  
                                           (a)                                       (b) 

Figure 9. Cooling analysis (a) Coolant temperature (b) Coolant Reynolds. 
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3. Response Surface Method - Central 

Composite Experiment Design (CCD) 

The automotive brake Plug-in injection material is 

Lustran Elite HH ABS 1827. ABS plastic products not only 

have excellent molding processability, good dimensional 

stability, and colorability, but also have good mechanical 

strength, and the material property parameters can be 

obtained by Moldflow software and production experience. 

In the injection molding process, to reduce the cost, the 

warpage of product can be reduced by optimizing the 

injection process parameters. In this paper, the mold 

temperature (A), melt temperature (B), holding pressure 

(C), and holding time (D) are selected as the test factors 

based on the production experience, and the cooling time is 

taken as the default value to analyze the warpage 

deformation of automotive brake Plug-in under different 

process conditions by selecting "filling + holding + cooling 

+ filling + holding + warping". 

In the central composite experiment design, if the number 

of factors is k, cubic points �� are used to fit the primary and 

cross terms of the function, which constitute the factorial test 

part, the number of which is �� = 2� or �� = 2��� (k≥5). 

Axial points ��, also known as asterisk points, have a total of 

2k. The center point �	 is the design center, which is the zero 

point on the coordinate axis. The test was designed according 

to the number of center points and the number of tests 

recommended by the central composite experiment design 

(CCD), as shown in Table 1. The test factors and levels are 

shown in Table 2. 

Table 1. Number of recommended test sites for CCD. 

Number of factors Cubic points 
� Axial points 
� Center points 

 Number of tests 

4 16 8 6 30 

Table 2. Test factors and levels. 

Test factors 
Level range 

-2 -1 0 1 2 

Mold temperature A/°C 60 65 70 75 80 

Melt temperature B/°C 220 235 250 265 280 

Holding pressure C/Mpa 35 50 65 80 95 

Holding time D/S 4 7 10 13 16 

 

4. Analysis of Test Results, Discussion 

and Optimization of Process 

Parameters 

4.1. Central Composite Test (CCD) Results 

Thirty sets of experimental process parameters were 

simulated and analyzed using Moldflow 2015 software, and 

the results of the product warpage obtained from the 

simulation are shown in Table 3. From the results of the 24th 

group of tests, it can be concluded that the automotive brake 

Plug-in has the largest warpage, with a value of 1.77mm. The 

minimum warpage of 1.18 mm in the first group of test results 

corresponds to the following process parameters: mold 

temperature of 70°C, melt temperature of 250°C, holding 

pressure of 95 MPa, and holding time of 10s. The result of the 

first group of tests is shown in Figure 10, and it can be 

concluded that the maximum warpage is located at the edge of 

the product hook position. 

Table 3. Test results. 

Serial number A B C D Warpage (mm) 

1 0 0 2 0 1.18 

2 -1 -1 1 -1 1.309 

3 0 0 0 0 1.438 

4 2 0 0 0 1.418 

Serial number A B C D Warpage (mm) 

5 -1 1 1 1 1.338 

6 0 0 0 0 1.438 

7 -1 -1 1 1 1.291 

8 -2 0 0 0 1.426 

9 1 1 1 1 1.359 

10 0 0 0 0 1.438 

11 1 -1 -1 -1 1.582 

12 1 1 -1 1 1.6 

13 0 0 0 0 1.438 

14 0 0 0 0 1.438 

15 0 -2 0 0 1.371 

16 1 -1 1 -1 1.31 

17 0 0 0 0 1.438 

18 0 -2 0 0 1.446 

19 -1 1 -1 -1 1.676 

20 1 -1 -1 1 1.442 

21 1 1 1 -1 1.314 

22 -1 -1 -1 1 1.443 

23 0 0 -2 0 1.684 

24 0 0 0 -2 1.77 

25 -1 1 -1 1 1.569 

26 -1 -1 -1 -1 1.578 

27 0 0 0 2 1.398 

28 1 -1 1 1 1.285 

29 1 1 -1 -1 1.699 

30 -1 1 1 -1 1.304 
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Figure 10. Group 1 warpage test result. 

4.2. Automotive Brake Plug-in Warpage Model and Analysis 

of Variance 

Response surface algorithm models are divided into 

first-order response surface models and second-order response 

surface models. The first-order response surface model only 

responds to the linear correlation problem, which is obviously 

not applicable to the warpage deformation of this product, so 

the second-order response surface model is used. The general 

expression is shown in eqn. (1). 

2
0

1 1

k k k

i i ii i ij i j

i i i j

y b b x b x b x x

= = <

= + + +∑ ∑ ∑      (1) 

Where y  is the warpage objective function. k  is the 

number of factors. �� and jx  indicate the encoded levels for 

independent variables. 

�� is a constant term. ��, iib , ijb are the partial regression 

coefficients. 

Based on the 30 sets of test data, the second-order response 

surface model is obtained by ordinary least squares fitting, and 

the partial regression coefficients can be obtained by adopting 

the matrix form of the equation to construct a second-order 

polynomial model for predicting the minimum warpage, as 

shown in eqn. (2). 

5 5

5 4

4 4 4 2

5 2 5 2

3 2

1.78278 0.022963 0.024284 0.01496

6 0.20602 7.25 10 2.58333 10

2.91667 10 1.05278 10 2.65278

10 7.18056 10 2.79583 10

4.60648 10 1.99537 10 3.72338

10

y A B

C D AB AC

AD BC

BD CD A

B C

D

− −

− −

− − −

− −

−

= − + + +

− + × − ×

+ × − × +

× + × − ×

− × − × +

×

  (2) 

After the response surface model was established, the 

warpage was analyzed by ANOVA and the results are shown 

in Table 4. 

Table 4. Analysis of variance results. 

Error source Sum of squares Degree of freedom Mean-square error F P 

Model 0.55 14 0.039 21.76 <0.0001 

A 1.870×10-4 1 1.870×10-4 0.10 0.7521 

B 0.025 1 0.025 13.63 0.0022 

C 0.40 1 0.40 219.70 <0.0001 

D 0.059 1 0.059 32.59 <0.0001 

AB 4.731×10-4 1 4.731×10-4 0.26 0.6164 

AC 6.006×10-5 1 6.006×10-5 0.033 0.8578 

AD 3.063×10-6 1 3.063×10-6 1.695×10-3 0.9677 

BC 8.978×10-3 1 8.978×10-3 4.97 0.0415 

BD 2.280×10-3 1 2.280×10-3 1.26 0.2790 

CD 0.017 1 0.017 9.24 0.0083 

A² 1.340×10-3 1 1.340×10-3 0.74 0.4028 

B² 2.947×10-3 1 2.947×10-3 1.63 0.2211 

C² 5.529×10-4 1 5.529×10-4 0.31 0.5884 

D² 0.031 1 0.031 17.04 0.0009 

Residual 0.027 15 1.807×10-3   

Lack of fit 0.027 10 2.711×10-3   

�� = 0.9531 ����
� = 0.9093 

 

The response surface model can be tested using a p-value test, 

when the smaller the p, the better the significance of the model. 

When the corresponding model parameter p is less than 0.05, 

then the corresponding process parameter has a significant 

effect on the warpage. When the parameter p is less than 0.01, 

the corresponding process parameter has an extremely 

significant effect on the warpage. When the parameter p is 

greater than 0.05, the effect of the corresponding process 

parameter on the warpage is not significant. From Table 4, the 

order of factors affecting the warpage is: holding pressure (C) > 

holding time (D) > melt temperature (B) > mold temperature 

(A). Among them, the holding pressure and holding time have 

an extremely significant effect on the warpage of the product. 

The main reason is that during the pressure-holding stage, as the 

mold cavity is full of melt, the screw of the injection molding 

machine moves forward a short distance. At this time, the melt 

flow is very slow and the flow no longer plays a dominant role. 

The holding pressure is the main factor affecting the product 
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molding at this stage, so it is important to set the appropriate 

holding pressure and holding time. In summary, in the actual 

injection molding process, the holding time and holding 

pressure parameters can be adjusted to obtain good product 

quality. 

 

Figure 11. Residual normal distribution. 

 

Figure 12. Distribution of fitted values and residuals. 

The multi-correlation coefficient ��  and modified 

multi-correlation coefficient 
2

adjr  were used to test the degree 

of fit of the established response surface model. From Table 4, 

it can be obtained that �� = 0.9531 , 
2 0.9093adjr = . The 

closer the value is to 1, the closer the correlation between the 

variables is. Therefore, it can be judged that this model meets 

the requirements. As shown in Figure 11, the residual normal 

distribution plot is generated using Design-Expert software, 

and it can be seen that the model residuals are basically on a 

straight line, which conforms to the normal distribution 

regularity. As shown in Figure 12, the residuals are randomly 

distributed in the region above and below the zero line. The 

normal distribution and random distribution of the residuals 

also fully demonstrate the reliability of the developed 

response surface model. 

4.3. Optimization of Process Parameters Based on Standard 

Particle Swarm Optimization 

Due to the limitations of the response surface method and 

the limitation of the number of test points, the resulting 

warpage minimum is only a local optimum solution. 

Therefore, the model established by the response surface 

method is used as the standard particle swarm algorithm 

model, and the global optimal solution is obtained by using the 

population intelligence-seeking behavior of the algorithm, 

which further provides a basis for the adjustment of actual 

injection molding process parameters. 

Particle swarm optimization (PSO) is widely used in 

different fields because they are simple in function and 

relatively easy to implement, while not requiring many 

parameters to be adjusted. In the PSO algorithm, particles are 

prone to fall into local extremes, early convergence, or 

stopping phenomena [19] due to inappropriate particle 

velocities as they continuously aggregate toward the 

individual optimum and the global optimum. In 1998, Shi [20] 

proposed to increase the inertia weighting coefficient to the 

velocity term ��� !"  in the equation to balance the local 

search and global search capabilities. The expressions are 

shown in eqn. (3) and (4). 

1 1

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

mn mn mn mn

n mn

v t wv t c r pbest t x t

c r gbest t x t

+ = + −
+ −

i i

i i

   (3) 

( 1) ( ) ( 1)mn mn mnx t x t v t+ = + +            (4) 

Where 1, 2,...,n n=  presents the dimension. 1,2,...,m N=  

represents the particle index. N is the size of the swarm. #� 

and #�  are called social scaling and cognitive parameters 

respectively that determines the magnitude of the random 

force in the direction of particle's previously best visited 

position ( ( )mnpbest t ) and best particle ( ( )ngbest t ). ��,�� 

are the uniform random variable between [0,1]. w is the 

inertia weighting coefficient. 

Table 5. Parameters of the standard particle swarm optimization. 

Population size Number of iterations Dimension of variables Weighting coefficient Learning factors 

200 100 4 [0.4,0.9] #� = #� = 2 

 

The particle swarm optimization algorithm was improved 

by increasing the inertia weight coefficient, which was later 

proven to be effective and widely accepted by scholars in 

various fields, and therefore became the standard particle 

swarm optimization algorithm. Shi [21] proposed to improve 

the performance of the algorithm by linearly decreasing the 

inertia weights. That is, at the beginning of the iteration, to 

enable the algorithm to search over a large range and have a 

strong search capability initially, the ability to perform a local 

search for better intervals can be improved in the later part of 



 International Journal of Materials Science and Applications 2022; 11(4): 84-94 92 

 

the iteration. It is shown that the algorithm can obtain optimal 

results when w  decreases from 0.9 to 0.4. In using the 

standard particle swarm optimization algorithm to optimize 

the product warpage, MATLAB is used to write the program. 

The range of variables and optimization objectives of the 

algorithm are set according to Moldflow injection molding 

process recommendations and production experience as 

shown in eqn. (5). The algorithm parameters are shown in 

Table 5. The algorithm process is shown in Figure 13. 

 

Figure 13. Standard particle swarm optimization flowchart. 

miny ( )

60 80

220 280
range

35 95

4 16

y mm

A

B

C

D

=
 ≤ ≤
  ≤ ≤ 

 ≤ ≤
 ≤ ≤

            (5) 

 

Figure 14. Convergence plot of standard particle swarm optimization. 

As shown in Figure 14, the convergence result is obtained 

after 100 iterations of operations. It can be concluded that the 

slope of the convergence process of the global optimum result 

is more stable in the process of finding the optimum using the 

standard particle swarm optimization, which proves that the 

algorithm calculation process is more effective. The final 

combination of process parameters for global minimum 

warpage of 1.0323 mm is obtained as shown in Table 6. 

Table 6. Standard particle swarm optimization results. 

Warpage /mm Mold temperature/°C Melt temperature /°C Holding pressure /°C Holding time/s 

1.0323 60 280 95 8.296 

 

4.4. CAE Analysis 

As shown in Figure 15, the combination of the process 

parameters obtained by the particle swarm optimization 

algorithm is simulated and analyzed using Moldflow 

software, and the results show that the standard particle 

swarm optimization algorithm can effectively optimize the 

warpage of the product. From Figure 15a, the minimum 

warpage obtained by the particle swarm optimization 

reaches 1.0323 mm. The combination of the optimal 

process parameters of the algorithm is input into Moldflow, 

and the warpage obtained is 1.057 mm, which is reduced 

compared with the warpage of 1.18 mm analyzed by the 

response surface method, proving that the standard particle 

swarm optimization is more effective in optimizing the 

warpage deformation of the product. As shown in Figure 

15b, when the temperature is higher, the weld line is less 

obvious. The maximum temperature of the flow front is 

281.4°C, and the temperature of the flow front at other 

locations of the product is about 280°C, with a temperature 

difference of only 1.4°C. Therefore, during the filling 

process, the overall flow of the material is better and the 

strength of the weld line is higher, which can ensure the 

strength and appearance of the products. The distribution of 

the weld lines is shown in Figure 15c. As shown in Figure 

15d, the melt filling time can be reduced to less than 1s, 

which ensures production efficiency. As shown in Figure 

15e, there is no flash at the end of the product when the 

end-of-fill pressure reaches approximately 16 MPa. The 

optimal combination of process parameters was obtained 

according to the standard particle swarm optimization, 

namely, the mold temperature was 60°C, the melt 

temperature was 280°C, the holding pressure was 95 MPa, 

and the holding time was 8.296 s. The combination of the 

parameters was input into the injection molding machine 

for trial production, with good results, and the product is 

shown in Figure 16. 

Initialize particles velocity and position

Define the range of variables:lb=[60 220 35 4],ub=[80 280 95 16]

Set the number of iterations and population size

Inertia weighting coefficient w linear type adjustment 

method calculation

Calculate the fitness value pbest for individual particles 

and gbest for population particles

Update the individual optimal position and global 

optimal position of the particle

Whether the number of 

iterations is satisfied

Algorithm end

N

Y



93 Huan-Lao Liu et al.:  Optimization of Injection Molding Process Parameters for Automotive  

Brake Plug-in Based on CCD and PSO 

 

   
                               (a)                               (b)                             (c)       

   
                                 (d)                                (e) 

Figure 15. Simulation results (a) Warpage (b) Flow front temperature (c) Weld line (d) Filling time (e) End-of-fill pressure. 

 
               (a)                            (b) 

Figure 16. Qualified product (a) Front view (b) Side view. 

5. Conclusion 

Through CAE mold flow analysis of automotive brake 

Plug-in and actual injection molding production, the following 

conclusions can be drawn: 

1) Thirty sets of injection molding simulation tests with 

mold temperature, melt temperature, holding pressure, 

and holding time as parameters and warpage as the 

index was constructed by response surface-central 

composite experiment design (CCD). A response 

surface regression second-order polynomial model for 

predicting the minimum warpage deformation was 

established based on the 30 sets of experimental data. 

The analysis of the results shows that the model can 

better map the relationship between the process 

parameters and the minimum warpage deformation, 

and the preliminary optimized combination of process 

parameters for the product is obtained: mold 

temperature of 70°C, melt temperature of 250°C, 

holding pressure of 95 MPa, holding time of 10s, and 

the corresponding warpage of 1.18mm. The optimal 

combination of process parameters, namely, mold 

temperature of 60°C, melt temperature of 280°C, 

holding pressure of 95 MPa, and holding time of 8.296 

s, was further optimized by using response surface 

model combined with standard particle swarm 

optimization algorithm (PSO). At this time, the 

corresponding minimum warpage deformation 

predicted value is 1.0323mm and the simulated value is 

1.057mm, with a difference of 2.27% and a 10.85% 

reduction in the minimum warpage compared to the 

central composite experiment design. The proposed 

method has been effectively verified by actual injection 

production. 

2) Practice shows that the optimal process parameters 

obtained by using the response surface method and 

standard particle swarm optimization (PSO) can ensure 

the molding quality of products. In the automotive 

industry, it has become a trend for plastic materials to 

replace metal materials. When producing automotive 

components by injection molding with other materials, 
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the research method of this paper can be referred to, so 

that the potential defects that will be generated by 

plastic parts can be excluded in advance, shortening the 

product production cycle and reducing the pollution to 

the environment. 
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