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Abstract: A natural extension of the zinc-blende compounds from which they crystallographically derive, chalcopyrites are of 
great interest to the scientific community. Indeed, this family of compounds has many applications, from optoelectronics to 
diiodes electroluminescence. In order to improve their properties, the current study employs first-principles calculations using 
the CASTEP software to investigate the effect of gallium substitutional by thallium atoms (TlGa) in the CuGaS2 (CGS) 
chalcopyrite structure. The effect, including structural, electrical and optical properties was studied. Several representatives 
semiconductors CuGa(1-x)TlxS2 were studied, x represents the atomic ratio of Thallium taken from 0 to 40. Properties, 
convergence of the cutoff energy and the K-mesh were carried out based on first-principles calculations of density functional 
theory (DFT). The optimized cutoff energy and the optimized K-mesh was found to be 420 eV, 6 6 3 respectively. The results 
show that, TlGa doping induced intermediate band (IB), which can be ascribed to donors’ states. That results in a shift of the 
conduction band minimum (CBM) of CGS towards lower energies. When increasing Tl atomic ratio, the band gap energy 
decreases from 0.758 (x=0) to 0.172 eV (x=0.40). From optical properties study, CuGa0.78Tl0.22S2, CuGa0.67Tl0.33S2, 
CuGa0.60Tl0.40S2 showed high absorption coefficient in visible light range, at ca. 1.5 eV. These results suggest that the substitution 
of Ga by Tl can significantly impact the optical and electrical properties of compounds may have potential applications in 
photovoltaic, photocatalytic and optoelectronic devices. 

Keywords: First-principles Calculations, Doping, Chalcopyrite Structure, Intermediate Band, Band Gap Energy,  
Absorption Coefficient 

 

1. Introduction 

In recent years, a great deal of attention has been paid to 
chalcopyrite-based ternary semiconductors AIBIIIC2

VI where A 
= Cu, Ag; B = Al, Ga, In; C = S, Se, Te because of their 
exceptionally tight band gap, high absorption coefficient of ca. 
104 to 106 cm-1 [1], good solar stability and excellent chemical 
stability for corrosion in electrolytes containing water. Such 
composites demonstrate considerable development potential 

in a wide range of fields, including photovoltaic cells [2–4], 
electroluminescent diodes [5, 6] and visible-light 
photocatalyst [5, 7]. Of these, CuGaS2 is particularly 
interesting because of its direct band gap by approximately 
2.43 eV [8, 9], which makes it suitable for use in photovoltaic 
(PV), photocatalyst and optoelectronic devices. However, the 
performance of CuGaS2 can be further enhanced by doping 
with impurities to tune its electrical and structural properties. 
Transition and post-transition metal with similar atomic radius 
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and electronegativity to copper and gallium are suitable for 
cations doping in CGS [10, 11]. 

Doping CGS with metals can be achieved by substituting a 
small amount of copper or gallium with the desired metal ion 
[11]. The most commonly used metals for dopant are iron [12, 
13], cobalt [14], nickel [14], manganese [15, 16], and indium 
[17–20]. Copper indium gallium di-sulfite (CIGS) is a popular 
semiconductor material for thin film solar cells, for its high 
efficiency in converting sunlight into electricity. However, the 
scarcity and cost of indium and gallium are major issues, 
which have led researchers to search for alternative materials. 
Doping CGS creates an intermediate band (IB) within the 
material's band gap. IB is defined as a band of states which is 
located in the forbidden band of the semiconducting material. 
The IB acts as a level for carriers before transitioning for the 
conduction band (CB) or valence band. Thus, leading to an 
increase in the efficiency of the devices. Solar cells conversion 
efficiency depends mainly on its absorbance in the solar 
spectral region and by the electron hole pair recombination 
rate. A great approach to get high conversion efficiency is to 
expand the absorption region of the material by tuning its 
optical properties [21]. So, the use of thallium, post-transition 
metal, abundant and less expensive with similar radius to 
gallium as dopant could affect the band gap energy, the 
conductivity, and the optical properties of the material. 
Several works [22-25] have studied the effect of thallium as 
dopant on the electrical and structural properties of some 
chalcogenide materials. Mouacher and al. [25] have 
investigated using first-principles codes, the effect of Tl 
incorporation in Ga sites on AgGaS2 properties. They 
established that Tl replacement enhances the movement of 
hole and electron carrier mobility. Tl substitution results in the 
reduction of bandgap. It also improves the optical properties 
of AgGaS2 by improving absorption in visible light region. 

Current work is performed through a first-principles 
calculation on CASTEP method to study structural, electrical, 
and optical properties of CuGa(1-x)TlxS2, x is the atomic ratio of 
Tl. First-principles calculation (simulation) is an essential tool 
for determining electronic states using quantum mechanics 
(first principles) as the sole basis to calculate electronic states, 
without resorting to empirical parameters determined by 
experiment [26]. The substitution, TlGa in the CGS host is 
expected to have impact on structural, electrical and optical 
properties of the material, which could make it a promising 
candidate for use in flexible PV and photocatalyst materials 
for water splitting. 

2. Methodology 

The DFT calculations used in this work were carried out on 
Biovia Materials Studio 2020 using the Cambridge Serial Total 
Energy Package (CASTEP) under Perdew-Burke-Ernzerhof 
(PBE) pseudo-potential of the generalized gradient 
approximation (GGA). The core electrons were treated with the 
ultrasoft pseudo-potential, and the Kohn-Sham wave functions 
of the valence electrons. The valence electronic configuration 
of Cu, Ga, Tl, and S are respectively, Cu: 3d104s1, Ga: 

3d104s24p1, Tl: 5d106s26p1 and S: 3s23p4. In Fine convergence 
thresholds condition, the convergence parameters were as 
follows: total energy tolerance 10-5 eV/atom, maximum force 
tolerance 3×10-2 eV/Å, and maximum stress component 5×10-2 
GPa. For precise results, optimized atomic coordinates were 
obtained by the total energy and atomic forces minimizing. To 
achieve this, an iterative process was set up, during which the 
coordinates of the atoms are adjusted so that the total energy of 
the structure is minimized. By proceeding in this way, we were 
able to obtain stable structures for all the Tl-doping models. To 
obtain an accurate cutoff energy and k-mesh, geometry 
optimization was performed separately on both cells, CGS 
conventional cell and CuGa(1-x)TlxS2 supercell 2×2×2. Based on 
energy minimization, the cutoff energy of 420 eV was chosen to 
customize the k-mesh value. From the k-mesh values 2 2 1, 4 4 
2, 6 6 3, 8 8 4, the optimal was found to be 6 6 3 for both cells. 

3. Results and Discussion 

3.1. Structural Properties 

The conventional cell and the supercell of Tl-doped 
CuGaS2 considered in this work are respectively presented in 
Figure 1 a) and Figure 1 b). The conventional CGS cell has a 
tetragonal structure ( ��� 

��  ��	
� �
��� 122: � − 42�� ) 
contains four formula units (CGS) per conventional cell. The 
unit cell contains four copper atoms, four gallium atoms, and 
eight sulfur atoms. In the tetragonal CuGaS2 crystal structure, 
each Cu and Ga atom is surrounded by four equivalent S 
atoms, and each S atom has two equivalent Cu atoms and two 
equivalent Ga atoms as its nearest neighbors. 

After optimization, CuGaS2 conventional cell and supercell 
have the same lattice parameters and found to be a = b = 5.351 Å, 
c = 10.48 Å, α = β = χ = 90°. They are in good agreement with 
experimental and others studies [10, 27, 28]. A change in the 
chemical composition of CuGaS2 leads to a tetragonal distortion 
with (2-c/a) different from 0, where a and c are the lattice 
parameters. The occurring of distortions may be explained by the 
differences between dopant and doped ion radii and valence 
electron [29]. In this work, the lattice distortions are not obvious 
for the Tl-doping structure. This can be explained by Ga and Tl 
similarly radii and electronegativities [10]. 

For the supercell, case of thallium doping models, Ga atoms 
was partially replaced with the Tl impurity. The symmetry was 
changed to 81: � − 4 . Six representatives semiconducting 
materials in form of CuGa(1-x)TlxS2 were studied, x=0; 0.07; 

0.15; 0.22; 0.33; 0.40. The total formation energy �����
 of 

these materials are presented in Table 1. The following 
equation 1 was used [30]. 

�����
= � !"#(%&')��') + +,�� − (� !"#)-

+ (1 − +),"#) (1) 

Where � !"#(%&')��')  and � !"#)-
 stand for the total 

energies of the doped and undoped material obtained via 
CASTEP calculation. The chemical potential ,�� =

1.085236+103 �4 and ,"# = −1.446705+106 �4 [25]. All 
doped materials formation energies are negatives, that shows 
they are thermodynamically stable. One can see a decrease of 
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the total formation energy with the increase of Tl 
concentration. It appears that, based on energy minimization, 

CuGa(1-x)TlxS2 materials are easily formed when increasing 
dopant concentration. 

 

Figure 1. a) CuGaS2 conventional cell visualization using CASTEP and b) 2×2×2 supercell of typic CuGa0.85Tl0.15S2. 

Table 1. Calculated total formation energies �����
of CuGa(1-x)TlxS2 materials. 

x (%) 
Energy (eV) 

789:;<=
  789:;(>&?)@A?<  B:;  B@A  7@A:;

  

0 

-8877.7867 

-8877.7868 

-144670.5 -10852.4 

0 
7 -38174.5597 -564569.3329 
15 -38174.5601 -1099841.8933 
22 -20418.4311 -1617358.3243 
33 -20418.4252 -2420267.1584 
40 -43499.1706 -2978620.4638 

 

3.2. Electrical Properties 

Figure 2 describes the detailed bands structures, the density 
of state (DOS) and the partial DOS, whereas Figure 3 compare 
the bands gap energies of CGS and Tl-doped material. All of 
CuGa(1-x)TlxS2 semiconductors have the valence bands 
maximum and the conduction bands minimum lie along the 
same symmetry point showing direct band gap semiconductors. 

The calculated band gap energies for the five compositions 
ranges from 0.758 eV to 0.167 eV, showing a decreased of the 
forbidden band width with the increased of Tl content. The band 
gap energy calculated are in good agreement with other 
theoretical studies [31, 32]. Comparing to experimental data [28], 
the band gap energies of these compounds are underestimated in 
local-density approximation (LDA) because it doesn’t take into 
account the quasiparticle self-energy correctly [33]. 
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Figure 2. Bands structures, electrons total and partial density of state (DOS) for a) CuGaS2, b) CuGa0.93Tl0.07S2, c) CuGa0.85Tl0.15S2, d) CuGa0.78Tl0.22S2, e) 

CuGa0.67Tl0.33S2, f) CuGa0.60Tl0.40S2 calculated using CASTEP code. 

 

Figure 3. Comparison of the calculated bands gap energies of CuGaS2 and Tl-doped CuGaS2. 
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From partial DOS plot, one can notice that for doped and 
undoped materials, the valence band (VB) of the materials is 
split into two parts. Between - 2 eV and 0 eV, the sub-band is 
essentially composed of both Cu-3d and S-3p states [10, 25]. 
In more negative energies, we note the contribution of the 
Ga-4s, Cu-3d and S-3p states. The CB includes both Ga-4s 
and S-3p states. The hybridization states between S atoms and 
their neighboring metal atoms consists the electronic states 
near the bandgap, which dominate the optoelectronic 
performance [10]. When replacing Ga by Tl atoms, the band 
structure is essentially modified around the forbidden band 
without however altering the semiconducting properties of the 
material. The insertion of Tl atoms, creates in the forbidden 
band, an intermediate donor band just below the minimum of 
the conduction band. The new states (IB) are essentially Tl-6s 

and Ga-4s hybridization states and S-3p [25]. This confirms 
that the doping is n-type and therefore this family of materials 
can be used as photoanodes in photocatalytic or photovoltaic 
cells [34]. 

3.3. Optical Properties 

In this study, optoelectronic properties of material are 
evaluated from absorption coefficient (α) and dielectric 
function (ε) measurement. Optical parameter analysis 
provides great information on material response to the 
electromagnetic spectrum. The dielectric function, C(D) =

C�(D) + EC�(D) , where C�(D) 	FG C�(D)  represent 
respectively the real and imaginary part. 

 

Figure 4. Comparison of the a) imaginary part of dielectric function (ε2) spectra and b) the calculated absorption coefficient (α) of CuGaS2 and Tl-doped 

CuGaS2. 

Figure 4 a) shows imaginary part (C�(D)) of the dielectric 
function vs. photon energy (eV) for undoped and Tl-doped 
materials. From this figure, there is a main peak around 6 eV 
and a small one at ca. 1.5 eV. For Tl doping materials, the peak 
appearing in lower energy region is resulting from the 
absorption of photons due to inter-band transitions between 
occupied states of valence band and Tl-6s states of 
intermediate band [35]. The peak is not obvious for Tl 
contents of 4 and 8%. It can be explained by the small number 
of available states created by the Tl low doping rate. In Figure 
4 b), the absorption coefficient (α) is plot vs. photon energy 
(eV). For pure CGS, there is a wide absorber peak centered at 
ca. 9 eV and starting about 2 eV. At about 1.5 eV, the 
absorption shoulder corresponds to the electron transfer from 
valence band to the little peak in the conduction band that has 
very little occupation probability for electrons [10]. 
Subsequently, the shoulder peak for CuGa0.88Tl0.22S2, 
CuGa0.67Tl0.33S2 and CuGa0.60Tl0.40S2 have very larger 
absorption coefficient, more than 104 cm-1 in visible region. 
whereas absorption coefficient has no obvious change in the 

visible-light region for undoped CGS and light doped material, 
CuGa0.93Tl0.07S2 and CuGa0.85Tl0.15S2. These optical 
phenomena can be explained clearly from above calculated 
results about electronic structure, and are in very good 
agreement with previous study of dielectric imaginary part 
plot. It is obvious that Tl substitution strongly enhances the 
absorption coefficient in visible region. These results are in 
agreement with those of Mouacher and al. [25] on the doping 
of AgGaS2 with thallium. 

4. Conclusion 

In This work, the impact of the gallium replacement by 
thallium on the structural, band gap width and optical 
properties was evaluated. CASTEP calculation shows that, the 
band gap of CuGa(1-x)TlxS2 materials decreases from 0.758 eV 
to 0.167 eV when Tl-doped rate increased from 0 to 0.40. The 
decrease in band gap width is the result of the creation of an 
intermediate band (IB) of donors just below at more negative 
energy. Analysis of Tl-doped bands structure reveals the 
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presence of the main hybridization states Tl-6s and S-3p in the 
(IB). Increasing the Tl rate helps to populate the (IB), which is 
useful for electronic transitions. From optical properties, it is 
established that Tl substitution enhances material absorption 
in visible region. High absorption coefficient was found for 
high Tl-doping rate, i.e., CuGa0.88Tl0.22S2, CuGa0.67Tl0.33S2 and 

CuGa0.6Tl0.40S2 makes them suitable for thin film and flexible 
application, especially as a photoanode in photovoltaic or 
photocatalytic cells in solar cells. 
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