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Abstract: In this study the Sparre Andersen risk process with reinsurance is considered. The second-order asymptotic 
expansion for the ruin probability is obtained, when the claim sizes have the strongly semiexponential distribution. Moreover, 
numerical examples in cases proportional reinsurance and exsess stop loss reinsurance are provided. 
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1. Introduction 

Consider the surplus process 

1

tN

t i

i

R u ct η
=

= + −∑ , 0t ≥                        (1) 

where ,
t

R is the surplus of the insurer at time t , 0 0u R= >
the initial surplus of insurance company, 0c > the constant 
rate per unit time at which the premiums are received, 

1 2, ,...η η are independently and identically distributed (i.i.d.) 

positive random variables representing individual claim 

amounts. Counting process { }1max : ...t kN k tξ ξ= + + ≤  

denotes the number of claims up to time t , where the claim 
inter-arrival times or times between claims , 1

i
iξ ≥ are 

assumed i.i.d. positive random variables. Further, we assume 

that the sequences { }, 1i iξ ≥ and { } , 1i iη ≥  are independent. 

Suppose that, also 1 1c m µ> , so that ruin is not certain to 

occur, where 1 1m Eη=  and 1 1Eµ ξ= . To provide this 

condition it is suggested that 1 1(1 )c mρ µ= + , where 0ρ > is 

safety loading coefficient. When inter-claim times , 1
i

iξ ≥
are have an exponential distribution with mean 1/ λ , which 

is equivalent to that, 
t

N  has a Poisson distribution with 

parameter tλ , in this case (1) is called classical risk process 
or Cramer-Lundberg model in actuarial literature. In case, 
when inter-claim times , 1

i
iξ ≥  have an arbitrary distribution 

on [0, )∞ , in other words, 
t

N  an ordinary renewal process, 

(1) is called a Sparre Andersen risk process. There are exists 
in literature studies, where some important problems 
connected with Sparre Andersen risk process were solved 
(see, for example, Asmussen S. (2000), Albrecher H., 
Claramunt M. M., Mármol M. (2006), Aleškeviciene A., 
Leipus R., Šiaulys J. (2009), Aliyev R. T., Jafarova V. (2009), 
Gerber H. U., Shiu E. W. (2005), Hald M., Schmidli H. 
(2004), Li S., Garrido J. (2004), Li S., Dickson D. C. M. 
(2006), Luo S., Taksar M., Tsoi A. (2008), Schmidli H. 
(2002)). 

The ultimate ruin probability ( )uψ , which is the main 

global characteristic of the renewal risk model, is given by 

0
0

( ) {inf 0 }.t
t

u P R R uψ
≥

= < =  

Note that in the classical studies major role in the study of 
the probability of ruin is the so-called adjustment coefficient 
or the Lundberg coefficient. Adjustment coefficient is 
defined as the positive solution of the characteristic equation 
with respect to r : 
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1( ) 1M r с rη µ= +                                (2) 

where 

( )
0

( ) ( )r rxM r E e e dF xη
η η

∞

≡ = ∫  

Note that a special place in the study of the probability of 
ruin takes the case of large claims. Note that, for the 
modelling of large claims is used with heavy-tailed 

distributions. In the case of heavy tails ( ) ( )rM r E e η
η ≡ = ∞ . 

Hence, the characteristic equation (2) becomes meaningless. 
So in this case a new approach is required. 

In this direction we mention Embrechts P., Veraverbeke N. 
(1982), Baltrunas A. (1999), Aleškeviciene et al. (2009) etc. 
In study Embrechts P., Veraverbeke N. (1982) was obtained 
asymptotic equivalence as u → ∞ for ruin probability ( )uψ , 

when equilibrium function ( ) ( )1

1 0

1
, 0

u

e
F u F t dt u

m
η= >∫  

belong to the class of subexponentional distributions (see, 
definition 2 in section 2): 

1
( )~ ( )eu F uψ

ρ
                              (3) 

where  

1

1

1
с

m

µρ = −  

In study Baltrunas A. (1999) the rate of convergence for 
asymptotic relation (3) was obtained, when 

1
Fη  belongs to a 

subclass of subexponential distributions and , 1
i

iξ ≥
 
have an 

exponential distribution. Based on results of paper Borovkov 
A. (2002), in study Aleškeviciene A., Leipus R., Šiaulys J. 
(2009) the second-order behavior in relation (3) is 
investigated, in the case claim size distribution belong to the 
strongly semiexponensional class. 

It is known that insurance companies also insure their risks 
to another company. This type of insurance is called 
reinsurance. Basically there are some types of reinsurance 
contracts: proportional reinsurance, excess of loss 
reinsurance and excess stop loss reinsurance. Each type of 
reinsurance are described by a function ( )h x , when describes 

the amount paid by the insurance company in the event of a 
claim value x and 0 ( )h x x≤ ≤  (see, for example, Dickson D. 

C., Waters H. R. (1996), Dickson D. C., Waters H. R. (1997), 
Dickson D. (2005), p. 190-207. 

1. Proportional reinsurance. If a transferor company itself 
satisfies a certain fraction 0 1β< ≤  of each claim, and the 

remaining share 1 β−  reinsurance company, then this kind is 

called a proportional reinsurance. Parameter β  is called the 

retention limit. In this case, the loss of the transmission 
company is 

i
βη  for i

th claim. For the proportional 

reinsurance 1 1( ) , 0 1h η βη β= < ≤ and.

( ) ( ) ( ) ( )1
1

/hF x F xηη β= . 

2. Excess stop loss reinsurance. In this case, reinsurance 
company pays claims exceeding a certain level , and in 
order to insure themselves against large losses, to identify 
some of the upper level L. In this case 

{ }1 1 1( ) min max{ ;0},h M Lη η η= − − . It is not difficult to 

determine function ( )
1( )h

F xη . Distribution function of 1( )h η
is 

( ) ( ) ( ){ }
1 1 1 2 3hF x P h x P P Pη η= ≤ = + +  

where 

( ){ }

{ }
( )
( )

1

1

1

1 1

1 1

,

,
,

,

P P h x M

F x x M
P x M

F M x M

η

η

η η

η η

= ≤ ≤

<= ≤ ≤ =  >

 

( ){ }
{ }

( ) ( )

2

1 1

1 1

1

,

,

0,

,

P P h x M M L

P M x M M L

x M

F M L F M x Mη η

η η

η

= ≤ < ≤ +

= ≤ < ≤ +

<=  + − >

 

( ){ }
{ }

( ) ( )
1 1

3 1 1

1 1

,

,

0,

,

P P h x M L

P L x M L

x M

F M L F M L x Mη η

η η

η η

= ≤ > +

= − ≤ > +

<=  + − − >

 

Consequently, 

( ) ( ){ } ( )
( )
1

1

1

( ) 1

,

,h

F x x M
F x P h x

F x L x M

η
η

η

η
<= ≤ =  + >

 

Tail function of 
1( ) ( )

h
F xη is 

( ) ( ){ } ( )
( )
1

1

1

( ) 1

,

,
h

F x x M
F x P h x

F x L x M

η
η

η
η

 <= > = 
+ >

 

Now suppose that the insurer effects reinsurance and that 
the amount paid by the insurer when the i

th claim 
i

η , occurs 

is ( )
i

h η , where 0 ( )
i i

h η η≤ ≤ . We will assume throughout 

that reinsurance premiums are calculated with a loading 
factor

h
ρ , where 

h
ρ ρ≥ . Then assuming that reinsurance 

premium are paid continuously, the insurer’s surplus at time 

t, is denoted by tR∗ , 

( )
1

tN

t i

i

R u c t h η∗ ∗

=

= + −∑ , 0t ≥                   (4) 

where 

M
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( )1
1 1

1 1

1
(1 ) (1 ) ( )

h h

m
c c c E hρ ρ η η

µ µ
∗ = − = + − + −      (5) 

The purpose of this paper is to investigate of the ultimate 
ruin probability 

0
0

( ) {inf 0 }h t
t

u P R R uψ ∗ ∗

≥
= < =  

2. Main Result 

Let us introduce some classes of distribution functions 
(see, Borovkov A. (2002)). 

Definition 1. Distribution function F  on [0, )∞ belongs to 
the class L of distributions with long tails, if for any fixed 

0y ≥ as u → ∞  

( )~ ( )F u y F u+  

Definition 2. Distribution F on [0, )∞  is called 

subexponential, and denoted F ∈ S , if ( ) 1 ( ) 0F x F x= − >
for all 0x > and 

( ) ( )(2) ( ) ~2 ,F x F F x F x∗ ≡ ∗ as x → ∞  

Where 

(2) ( )F x∗ = ( )*(2)1 F x− ( )
0

1 ( ) d
x

F x t F t t= − −∫  

Distribution function F  centered on ( , )−∞ ∞ and belongs 

to the class S or L , if the function { 0}( ) ( ) uF u F u I+ ≥= belongs 

to the corresponding class, where { 0}uI ≥  is indicator of the set

{ 0}u ≥ . 

Consider the following class of functions (see, Borovkov 
A. (2002)): 

Definition 3. Distribution function F belongs to the class 
Se of semiexponential distributions, if 

( )( ) ,Q xF x e−=  

where ( ) ( )Q x x L xα= , 0 1α≤ ≤ and ( )L x  a slowly varying 

function at infinity and ( ) 0L x → , as x → ∞ , if 1α = . 

Furthermore, 

1) 
( )

( ) ( )~
Q x

Q x Q x
x

α ∆+ ∆ − as x → ∞ , 
( )Q x

x
ε∆ >  for 

every 0;ε >  

2) ( ) ( ) (1)Q x Q x o+ ∆ − =  as x → ∞ , 
( )

0
Q x

x

∆ → . 

Definition 4. Distribution function F belongs to the class 
Se∗ of strongly semiexponential distributions, if F is 

semiexponential with parameter 0 1α< < . 
Examples for strongly semiexponential distributions such 

as the Weibull distribution and Benktandera II-type tails 

which are as follows, respectively: 

( ) ,xF x e
αλ−= 0x ≥ , 0λ > , 0 1α< < ; 

1( ) exp , 0F x x x xα αλ λ
α α

−  = − ≥ 
 

, 0λ > , 0 1α< < . 

In paper, Borovkov A. (2002) was proved the following 
theorem: 

Theorem 1 (Borovkov). Let 1 2, ,...X X independent and 

identically distributed random variables with nonarithmetic 

distribution function 
1X

F ∈ Se∗  
and 2

1 10, .EX EX< < ∞  

Then for as u → ∞  

1 1 1
0 1 1

1
sup ( ) ( ) ( ( ))

n

k X X X
n k u

P X u F t dt aF u o F u
EX

∞

≥ =

 > = − + + 
 

∑ ∫    (6) 

Where 

( ) 1

2
( )1

2
0 1 11 01

1
, sup ( ),

2

n
n

k X
n k n

EX b
a b E X tdF t

EX nEX

∞∞
∗

≥ = =

 = − = = 
 

∑ ∑ ∫

1

( )n

X
F ∗

- n vold convolution of function of 
1
( )

X
F x with itself. 

Let us give following lemmas from Foss S., Korshunov D., 
Zachary S. (2009) and Aleškeviciene A., Leipus R., Šiaulys 
J. (2009). 

Lemma 1. Let F ∈ L centered on [0, )∞  and G centered on 

( , 0]−∞ . Then when u → ∞ , ( )~ ( )F G u F u∗ . 
Lemma 2. Let Z nonnegative random variable with    

Z
F ∈

L  and Y nonnegative random variable, not depending of ,Z

such that EZ < ∞ . Then when u → ∞
 

( ) ( ) ( ) ( ( )).
Z Y Z Z Z

u u

F t dt F t dt EY F u o F u

∞ ∞

− = − +∫ ∫  

The main result of this paper can be formulated in the form 
of the following theorem. 

Theorem 2. Let the sequences { }, 1i iξ ≥ and { } , 1i iη ≥ be 

two independent sequences of random variables, such that 
variables in each sequence are independent and identically 

distributed. Moreover,
1

Fη ∈ Se∗ , 2
2 1m Eη= < ∞ and 

2
2 1Eµ ξ= < ∞ . Then as u → ∞  

1 1 1( ) ( ) ( )

1

1
( ) ( ) ( ) ( ( ))

h h h h h

u

u F t dt a F u o F u
e

η η ηψ
∞

= + +∫      (7) 

Where 

2 1
2
1 1 12

h

h

be c
a

e e e

µ∗

= + −  

( )1 1( ) , 1,2
k

ke E c h kξ η∗= − =  
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1 1

( )

( )
0 1 1 0

1
sup ( ( ) ) ( )

n
n

h k k h c
n k n

b E h c tdF t
n η ξη ξ ∗

∞∞
∗ ∗

−
≥ = =

 = − = 
 

∑ ∑ ∫  

c∗ defined from (5). 
Proof. It is easy to see that for the proportional and excess 

stop loss reinsurance types the condition 
1

Fη ∈ Se∗  
provides 

1( )h
F η ∈ Se∗ . Consequently, can be used the scheme of the 

proof of Theorem 1 from Aleškeviciene A., Leipus R., 

Šiaulys J. (2009). Since, 
1( )h

F η ∈ Se S L∗ ⊂ ⊂
 
and 1ξ is 

positive random variable, according to Lemma 1, as u → ∞
can be obtained: 

11 1
( )( )

( )~ ( )hh c
F u F uηη ξ∗−                            (8) 

On the other hand
1 1( )h c

F
η ξ∗−

∈ Se∗ , according to the 

definition of the class of strongly semiexponential 
distributions. 

It is not difficult to see that ( )1 1( ) 0E h cη ξ∗− < , or 

1 1( )c Ehµ η∗ > . 

Indeed, from (5) can be obtained: 

( )1 1 1 1(1 ) (1 ) ( )hc m E hµ ρ ρ η η∗ = + − + −

1 1( ) (1 ) ( )
h h

m Ehρ ρ ρ η= − + +  

On the other hand by definition 0 ( )
i i

h η η≤ ≤ . Therefore, 

1 1( )Eh mη ≤ . Consequently, taking into account 
h

ρ ρ≥  can 

be obtained: 

1 1 1( ) (1 ) ( )h hc m Ehµ ρ ρ ρ η∗ = − + + 1 1(1 ) ( ) ( )Eh Ehρ η η> + >  

Since, 1 1( )h cη ξ∗−  have non-arifmetic distribution and

( )1 1( ) 0E h cη ξ∗− < , so using Theorem 1 can be obtained: 

( )00 0 1

( ) {inf 0 } sup ( )
n

h t k k
t n k

u P R R u P h c uψ η ξ∗ ∗ ∗

≥ ≥ =

 = < = = − > = 
 

∑

( ) 1 1 1 1 1

2
2( ) ( ) ( )
1 11 1

1
( ) ( ) ( ( ))

2( )
h

h c h c h c

u

be
F t dt F u o F u

e eE h c
η ξ η ξ η ξη ξ

∗ ∗ ∗

∞

− − −∗

 
= − + + + 

−  
∫ = 

1 11 1

2
( ) ( )2( )

1 1 1

1
( ) ( ) ( ( ))

2
h

h hh c

u

be
F t dt F u o F u

e e e
η ηη ξ∗

∞

−

 
= + + + 

 
∫                                                        (9) 

where 

( )1 1( ) , 1,2,
k

ke E c h kξ η∗= − =

0 1

sup ( ( ) ) .
n

h k k
n k

b E h cη ξ∗

≥ =

 = − 
 

∑  

Applying Lemma 2 to the integral 
1 1( )

( )
h c

u

F t dtη ξ∗

∞

−∫ can be 

obtained: 

1 1 11 1
( ) 1 ( ) ( )( )

( ) ( ) ( ) ( ( )).h h hh c

u u

F t dt F t dt c E F u o F uη η ηη ξ ξ∗

∞ ∞
∗

−
= − +∫ ∫   (10) 

Taking into account (10) in (9) statement of Theorem 2 can 
be obtained. 

This completed the proof of Theorem 2. 
Remark. In the particular case h(x)=x, i.e. when there is 

without reinsurance, Theorem 2 implies Theorem 1 of paper 
Aleškeviciene A., Leipus R., Šiaulys J. (2009). 

Corollary 1. Let conditions of Theorem 2 be satisfied and 

1ξ has an exponential distribution with a tail

( ) , 0xF x e xξ
−= ≥ . Then as u → ∞  

1( )( ) ( ) ( ( ))
h h h

u u o F uηψ ψ= +ɶ                       (11) 

where 

1 1

2
1

( ) ( )2
1 1

( )1
( ) ( ) ( )

h h h

u

Eh
u F t dt F u

e e
η η

ηψ
∞

= +∫ɶ  

Really, in this case, the constant 
h

b in the asymptotic 

expansion (9) can be explicitly computed using the formula 
Pollaczek-Khinchin (see, Aleškeviciene A., Leipus R., 

Šiaulys J. (2009)). Therefore, coefficient is 
2

1
2
1

( )
h

Eh
a

e

η
= and 

from (7) can be obtained (11). 

3. Numerical Examples 

In this section we can consider the following numerical 
examples. 

Example 1. Let 1ξ
 
has an exponential distribution with a 

tail ( ) , 0xF x e xξ
−= ≥ and ( )h x x= , i.е. without reinsurance. 

In this case 1 1 1Eµ ξ= =  and using (11) and Corollary 1 of 

study Aleškeviciene A., Leipus R., Šiaulys J. (2009) as 
u → ∞ can be obtained: 

1
( ) ( ) ( ( ))u u o F uηψ ψ= +ɶ                          (12) 

where 
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1 1

2
1

2
1 1

1
( ) ( ) ( )

u

E
u F t dt F u

e e
η η

ηψ
∞

= +∫ɶ  

( ) ( )1 1 1 1 1 1 1( )e E c h E c с m mξ η ξ η ρ∗≡ − = − = − =  

Let also the random variable 1η  has Weibull distribution 

with tail 
1

3

1
( ) , 0xF x e xη

−= ≥ and 0, 7ρ = .

 The results of calculations values of function ( )uψɶ  at 

different values of the initial capital u are given in the 
following table: 

Таble 1. ( 1 1µ = ; 1 6m = ; 0,7ρ = ; 10, 2c = ). 

1µ  100 200 250 300 350 400 450 500 

( )uψ~  0.6197 0.2165 0.1462 0.1038 0.0764 0.0578 0.0447 0.0352 

Example 2 (Proportional reinsurance). Under conditions of 
Example 1 consider proportional reinsurance. Let 0, 7ρ =  

and the relative insurance premium reinsurance company be 
0,81

h
ρ = . It is known that retention limit must satisfy the 

inequality (see, Dickson D. (2005), p. 199): 

1
h

ρβ
ρ

> −  

In our example 0,1358.β > Let 1 2β = . Consequently, 

we can draw the following tables for the function ( )uψɶ from 

(11) for different values of the initial capital u: 

Таble 2. ( 1 1µ = ; 1 6m = ; 0,7ρ = ; 0,81; 0, 7; 6,942
h

cρ β= = ∗ = ). 

1µ  100 200 250 300 350 400 450 500 

( )uψ~  0.4153 0.1266 0.0812 0.055 0.0389 0.0284 0.0212 0.0162 

Таble 3. ( 1 1µ = ; 1 6m = ; 0,7ρ = ; 0,81; 0,5; 4, 77
h

cρ β= = ∗ = ). 

1µ  100 200 250 300 350 400 450 500 

( )uψ~  0.2829 0.0742 0.045 0.029 0.0196 0.0138 0.0099 0.0073 

Таble 4. ( 1 1µ = ; 1 6m = ; 0,7ρ = ; 0,81; 0, 2; 1,512
h

cρ β= = ∗ = ). 

1µ  100 200 250 300 350 400 450 500 

( )uψ~  0.1613 0.0241 0.0118 0.0064 0.0037 0.0022 0.0014 0.0009 

Example 3 (Exsess stop loss reinsurance). Under 
conditions of Example 1 consider exsess stop loss 
reinsurance. Let 0, 7;ρ =  and 0,81

h
ρ = . 

It is not difficult to see, that 

1 1 1

1 1

1 ( ) ( ) ( )

0 0

( ) ( )

0

( ) ( ) ( ) ( )

( ) ( )

M

h h h

M

M

h h

M L

Eh F x dx F x dx F x L dx

F x dx F x dx

η η η

η η

η
∞ ∞

∞

+

= = + +

= +

∫ ∫ ∫

∫ ∫
 

1 1 1

1 1 1

2
1 ( ) ( ) ( )

0 0

( ) ( ) ( )

0

( ) 2 ( ) 2 ( ) 2 ( )

2 ( ) 2 ( ) 2 ( ) ,

M

h h h

M

M

h h h

M L M L

Eh xF x dx xF x dx xF x L dx

xF x dx xF x dx L F x dx

η η η

η η η

η
∞ ∞

∞ ∞

+ +

= = + + =

= + −

∫ ∫ ∫

∫ ∫ ∫
 

Consequently, we can draw the following tables for the 
function from (11) for different values of the initial capital u 

and parameters M and L: 

Таble 5. ( 1 1µ = ; 1 6m = ; 0,7ρ = ; 0,81; 50; 30; 9, 202
h

M L cρ = = = ∗ = ). 

1µ  100 200 250 300 350 400 450 500 

( )uψ~  0,45 0,1802 0,126 0,0917 0,0688 0,0529 0,0415 0,033 

Таble 6. ( 1 1µ = ; 1 6m = ; 0,7ρ = ; 0,81; 50; 40; 8,9786
h

M L cρ = = = ∗ = ). 

1µ  100 200 250 300 350 400 450 500 

( )uψ~  0,4064 0,1688 0,1192 0,0874 0,066 0,051 0,0401 0,0321 

Таble 7. ( 1 1µ = ; 1 6m = ; 0,7ρ = ; 0,81; 50; 50; 8, 79
h

M L cρ = = = ∗ = ). 

1µ  100 200 250 300 350 400 450 500 

( )uψ~  0,3681 0,158 0,1126 0,0832 0,0632 0,049 0,0387 0,031 

Note: If the transmission company will pay all claims up to a certain limit 
M , and the claims exceeding the limit M  is suing to reinsurance 
companies. If this rule applies to each claim, then this type of reinsurance is 
called the excess of loss reinsurance. Parameter M is called the limit of 
retention. For the excess loss reinsurance ( ) min{ , }h x x M= . 

It is not difficult to see that in this case 

( ) 1

1( )

( ),
( )

1,Mh

F x x M
F x F x

x M

η
η η

<= = 
≥

. 

Therefore, 
1( )h

F η ∉ Se∗ . Consequently, main result of 

present study Theorem 2 does not include excess of loss 
reinsurance. 

4. Conclusion 

In present paper the Sparre Andersen risk process with 
reinsurance is considered. Second-order asymptotic 
expansion for the ruin probability is obtained, when claim 
sizes have the strongly semiexponential distribution. The 
obtained result shows that, this asymptotic expansion true 
also for the proportional reinsurance and excess stop loss 
reinsurance types, but is not satisfied for the excess loss 
reinsurance. Numerical examples provided in paper show 
that, as are insurance effect on the probability of ruin. Note 
that, since, in most cases there are no analytic expressions 
available for the deficit distribution and its moments at the 
time of ruin in future studies can be obtain asymptotic 
expansions for these characteristics using methods of present 
study. 
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