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Abstract: One of the problems that appear in reliability and survival analysis is how we choose the best distribution that fitted 

the data. Sometimes we see that the handle data have two fitted distributions. Both inverse Gaussian and gamma distributions 

have been used among many well-known failure time distributions with positively skewed data. The problem of selecting 

between them is considered. We used the logarithm of maximum likelihood ratio as a test for discriminating between these two 

distributions. The test has been carried out on six different data sets. 
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1. Introduction 

It is well known that the inverse Gaussian distribution (IG) 

and gamma distribution (GAM) are used to analyze 

asymmetric positively data. In reliability and survival analysis 

we need these distributions on modeling the failure time data. 

Sometimes we see that the both distributions fit our data. So, 

the question is: which one will be preferable than the other? To 

answer to this question we use in this paper the likelihood ratio 

test to discriminating between the IG and GAM distributions. 

Six data sets have been taken to prove our test. Discriminating 

between any two general probability distribution function was 

studied by Atkinson (1969, 1970), Dumonceaux et al (1973), 

Dumonceaux and Antle (1973), and Kundu and Manglick 

(2004, 2005). 

This paper is organized as follows. Section 2 and section 3 

show the properties of the IG and GAM distributions, 

respectively. In section 4 the description of the likelihood ratio 

test is mentioned. Six data sets are analyzed in section 5. 

2. The Inverse Gaussian Distribution 

The inverse Gaussian distribution is used to model 

nonnegative skewed data. This distribution referred to the 

theory of Brownian motion because the distribution of the first 

passage time of a Brownian motion belongs to the inverse 

Gaussian (Cklikara & Floks 1988). Inverse Gaussian 

distribution has many applications and uses especially in 

reliability (survival analysis), and in the area on natural and 

social sciences. Since it is a positively skewed distribution, it 

has advantage over some other skewed distributions like 

lognormal, gamma, and weibull. 

The p.d.f of an inverse Gaussian r.v X is 
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Where 0µ> and 0λ > . The parameter µ  represents 

the mean of the distribution and λ  represents the scale 

parameter. There are three other forms of (1) (Tweedie 1957). 

The likelihood function of (2.1) is 
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And the natural logarithm of (2) is, 
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From (3) one can obtain the m.l.e for µ and λ  (Tweedie 

1956) as following: 

ˆ xµ=                       (4) 
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3. The Gamma Distribution 

The Gamma distribution is widely used in engineering, 

science, and business, to model continuous variables that are 

always positive and have skewed distributions. It is also a 

flexible life distribution model that may offer a good fit to 

some sets of failure data. The density function of the gamma 

distribution with shape parameter α  and the scale parameter 

β  will be 
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The likelihood function of the gamma p.d.f is, 
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The natural logarithm of (7) is, 
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By solving 
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and (10) represent the m.l.e for α  and β  (Johnson & Kotz, 

1995). 

4. Likelihood Ratio Test 

A likelihood ratio test (LRT) is a statistical test relying on a 

test statistics computed by taking the ratio of the maximum 

value of the likelihood function. 

Let 
1 2
, ,........,

n
X X X  are i.i.d random variables from a 

known distribution (with p.d.f). Recall that the likelihood 

function and its logarithm are given, and then the LRT (let us 

denoted it here by L) is defined as: 
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where )ˆ,ˆ( 211 θθL  and )ˆ,ˆ( 212 λλL  are the likelihood 

function of a known different p.d.f, and
21

ˆ,ˆ θθ , 
1λ̂  and 

2λ̂  

are the m.l.e of
21

ˆ,ˆ θθ , 
1λ̂ and

2λ̂ , respectively. Now, from our 

problem, we rewrite (11) as: 
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By taking the natural logarithm of (12) and from (3), (4), (5), 

(8), (9), and (10), one can get 
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Where X , G and H  is the arithmetic, geometric, and 

harmonic mean, respectively. The hypothesis test will be 

0
H = The data belong to the IG distribution. 

1
H = The data belong to the GAM distribution. 

Our decision to choose whether the data belong to the IG or 

to the GAM distribution is based on the value of (13). If 

ln 0L>  we choose the IG distribution as a fitted to the data, 

elsewhere ( ln 0L< ) we prefer the GAM distribution as a 

fitted to the data. 

5. Analysis of Data 

In this section we have taken six data sets in order to apply 

the formula (13) to discriminating between the two mentioned 

distributions. 

5.1. Data Set (1) 

Gacula and Kubala (1975) give the following data on shelf 

life (days) of a food product: 24, 24, 26, 26, 32, 32, 33, 33, 33, 

35, 41, 42, 43, 47, 48, 48, 48, 50, 52, 54, 55, 57, 57, 57, 57, 

61. 

Table 1. The m.l.e for both distribution parameters and kolmogrove- 

Smirnove (K-S) statistic. 

GAM IG 

ˆ 12.5002α=  ˆ 42.88µ=  

ˆ 3.11307β=  ˆ 484.2519λ=  

K-S = 0.1386 K-S = 0.1378 

Both K-S values are significant (i.e. the data belong to the 

both distributions). But the value of lnL is 1.1369 > 0, 

therefore the IG distribution is more suitable than GAM 

distribution. Also, the K-S distance of IG is less than the K-S 

of GAM. 
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Figure 1. The CDF for both distributions and the ECDF (KS CDF) for data 

set (1). 

 

Figure 2. The p.d.f for both distributions for data set (1). 

5.2. Data Set (2) 

The second set gives data of precipitation (inches) from Jug 

Bridge, Maryland (Chhikara and Folks, 1978). 

1.01,1.11,1.13,1.15,1.16,1.17,1.17,1.2,1.52,1.54,1.54,1.57,

1.64,1.73,1.79,2.09,2.09,2.57,2.75,2.93,3.19,3.54,3.57,5.11,5.

62 

Table 2. The m.l.e for both distribution parameters and (K-S) statistic. 

GAM IG 

ˆ 3.9896α=  ˆ 2.1556µ =  

ˆ 0.5403β=  ˆ 8.082λ=  

K-S = 0.1458 K-S = 0.15 

Because of the value of lnL = 1.8952 > 0, we conclude 

that the data well-fitted by the IG distribution. 

 

Figure 3. The CDF for both distributions and the ECDF (KS CDF) for data 

set (2). 

 

Figure 4. The p.d.f for both distributions for data set (2). 

5.3. Data Set (3) 

Kumagai et al (1989) presented the following time series 

data for toluene exposure concentrations (8 hr TWAs) for a 

worker doing stain removing. 

0.9,1.1,1.9,2.1,2.6,2.9,3.1,3.2,4.9,4.9,5.2,5.8,6.2,6.9,7.8,8.

3,8.7,10.5,11.1,13.6,16.6,17.4,20.4,21.9,22.4,50.9,57.4,58.3,5

8.6,66.9 

Table 3. The m.l.e for both distribution parameters and (K-S) statistic. 

GAM IG 

ˆ 0.8944α=  ˆ 16.75µ =  

ˆ 18.7273β=  ˆ 6.4641λ=  

K-S = 0.0973 K-S = 0.0952 

According to the values of K-S test of the two distributions, 

we conclude that the data are very well described by these two 

distributions. But lnL = 2.4588 > 0, we prefer that the IG 

distribution well be more reasonable. 
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Figure 5. The CDF for both distributions and the ECDF (KS CDF) for data 

set (3). 

 

Figure 6. The p.d.f for both distributions for data set (3). 

5.4. Data Set (4) 

Kumagai and Matsunaga (1995) give these data 1.5, 1.7, 

2.1, 2.2, 2.4, 2.5, 2.6, 3.8, 3.8, 4.2, 4.3, 5.6, 6, 7, 7.5, 9.3, 9.9, 

10.2, 10.6, 12.3, 12.9, 13.7, 14.1, 17.8, 27.6, 31, 42, 45.6, 

51.9, 91.3, 131.8. 

Table 4. The m.l.e for both distribution parameters and (K-S) statistic. 

GAM IG 

ˆ 0.8010α=  ˆ 19.0065µ =  

ˆ 23.7288β=  ˆ 7.2326λ=  

K-S = 0.2205 K-S = 0.088 

The value of lnL is 5.9404 > 0. It suggest that the IG 

distribution to be preferred over the GAM distribution. 

According to the K-S test these data belong to both 

distributions. 

 

Figure 7. The CDF for both distributions and the ECDF (KS CDF) for data 

set (4). 

 

Figure 8. The p.d.f for both distributions for data set (4). 

5.5. Data Set (5) 

This data represent the survival times in weeks for male rats. 

(Lawless, 2003). 

40,62,69,77,83,88,94,101,109,115,123,125,128,136,137,15

2,152,153,160,165 

Table 5. The m.l.e for both distribution parameters and (K-S) statistic. 

GAM IG 

ˆ 8.7992α=  ˆ 113.45µ =  

ˆ 12.8932β=  ˆ 808.4072λ=  

K-S = 0.09221 K-S = 0.1561 

Both K-S values are significant. But the value of lnL is – 

1.152< 0, therefore the GAM distribution is more suitable than 

IG distribution. 
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Figure 9. The CDF for both distributions and the ECDF (KS CDF) for data 

set (5). 

 

Figure 10. The p.d.f for both distributions for data set (5). 

5.6. Data Set (6) 

The following data are failure times (in minutes) of 

electronic components (Lawless, 2003). 

1.4,5.1,6.3,10.8,12.1,18.5,19.7,22.2,23,30.6,37.3,46.3,53.9

,59.8,66.2 

Table 6. The m.l.e for both distribution parameters and (K-S) statistic. 

GAM IG 

ˆ 1.4417α=  ˆ 27.5467µ =  

ˆ 19.1069β=  ˆ 14.6397λ=  

K-S = 0.10336 K-S = 0.25 

According to the values of K-S test of the two distributions, 

we conclude that the data are very well described by these two 

distributions. But lnL = - 22.0976 < 0, we prefer that the 

GAM distribution well be more reasonable. 

 

Figure 11. The CDF for both distributions and the ECDF (KS CDF) for data 

set (6). 

 

Figure 12. The p.d.f for both distributions for data set (6). 
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