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Abstract: Although Corona Virus disease (COVID-19) is a contagious disease cause by severe acute respiratory syndrome 

which affects mostly people whose immune system are weak or not resistance to the disease, there exists no vaccine that is 100% 

effective for its cure though efforts are being intensify by researchers in discovering the vaccine as well as model for prediction of 

Corona Virus Disease. In this era of advanced information and communication technology, as well as evidence-based medicine, 

statistical modeling has become as necessary the medical practitioners who are interested in lasting solution to diagnosed 

problems. In this work a logistic regressions model has been proposed to serve the purpose. The data was obtained from Nigeria 

Centre for Disease Control (NCDC) and was analyzed using binary logistic regression model in which Corona Virus disease was 

considered as categorical dependant variable (COVID-19 status: chance of being positive or negative) and the predictors 

considered are; Age, any of either Headache or Vomiting, Fever, Sore throat/runny nose, Any of Cold, cough or sweating, Loss of 

Smell or taste, and Breathing Difficulties. The results shows the significant predictors for predicting Corona Virus Diseases are; 

Loss of Smell or taste, Breathing Difficulties, Fever, Sore throat or runny nose, Age, any of either Headache or Vomiting, and 

Any of Cold, cough or sweating. The logit model obtained was: Logit (P(y=1)) = -3.748 + 0.356 Age +2.938 any of either 

Headache or Vomiting + 0.752 Fever + 2.792 Sore throat or runny nose – 0.028 Any of Cold, cough or sweating + 1.872 Loss of 

Smell or taste + 0.844 Breathing Difficulties. So also from the same results, it was found among predictors that; Sex/Gender, 

Temperature >37.5 degree and Fatigue or Muscle Pain were not good predictors of Corona Virus disease. 
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1. Introduction 

Logistic regression deals with the binary case, where the 

response variable consists of just two categorical values [23]. 

Logit model is mainly used to identify the relationship 

between two or more explanatory variables. Xi and the 

dependent variable Y. Logistic regression model has been 

used for prediction and determining the most influential 

explanatory variables on the dependent variable [11, 12]. The 

Logistic regression model for the dependence of pi (response 

probability) on the values of k explanatory variables x1, 

x2,……..xk is given below [10]. 
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Which is linear and similar to the expression of multiple 

linear regression. 
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 is the ratio of the probability of a failure 

and called odds, β0, βi are parameters to be estimated and pi 

is the response probability. 
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Logistic regression predict the outcome of a dichotomous 

dependent variable based on one or more predictor variables 

(features) that is, in estimating empirical values of the 

parameters in a qualitative response model [4]. The 

probabilities describing the possible outcomes of a single 

trial are modeled, as a function of the explanatory (predictor) 

variables, using a logistic function [1]. Logistic regression 

measures the relationship between a categorical dependent 

variable and one or more independent variables, which are 

usually (but not necessarily) continuous, by using probability 

scores as the predicted values of the dependent variable [2]. 

Logistic regression is binomial or binary logistic 

regression when the observed outcome for a response 

variable can have only two possible types (for example, “the 

patient is Corona Virus positive" vs. “the patient is Corona 

Virus negative") and Logistic regression is Multinomial 

logistic when the outcome of the response variable can have 

three or more possible types (e.g., " the patient A is Corona 

Virus positive" vs. "the patient B is Corona Virus positive" 

vs. "the patient C is Corona Virus positive") [6]. Logistic 

regression is used to predict the odds of being a case based 

on the values of the independent variables (predictors). The 

odds are defined as the probability that a particular outcome 

is a case divided by the probability that it is a non-case [18]. 

Logistic regression models are adequate for those 

situations where the dependent variable of the regression 

problem is binary. That is, the dependent variable has only 

two possible outcomes, e.g., “success/failure” or 

“normal/abnormal”. We assume that these binary outcomes 

are coded as 1 and 0. [19]. The application of linear 

regression models to such problems would not be satisfactory 

since the fitted predicted response would ignore the 

restriction of binary taking on values for the observed data. 

When studying linear regression, we attempted to estimate a 

population regression equation; 

1 1 2 2 ... k kY X X Xα β β β ε= + + + + +                (3) 

By fitting the model of the form; 

1 1 2 2
ˆ ˆ ˆˆ ˆ ... k kY X X Xα β β β= + + + +             (4) 

The response Y was continuous, and was assumed to 

follow a normal distribution. We were concerned with 

predicting or estimating the mean value of the response 

corresponding to a given set of values for the explanatory 

variable [20]. In general, the value 1 is used to represent a 

“success” or the outcome we are not interested in, and 0 

represents a “failure” [5]. The mean of the dichotomous 

random variable Y, designated p, is the proportion of times 

that it takes the value 1. Equivalently; 

( 1) ( )p P Y P success= = =  

Just as we estimated the mean value of the response when Y 

was continuous, we would like to be able to estimate the 

probability p associated with a dichotomous response (which, 

of course, is also its mean) for various values of an explanatory 

variable. To do this, we use the technique of logistic 

regression. A simple regression model for this situation is: 

( )i i iY g x ε= +                             (5) 

With  

According to [24], logistic regression is identified as the 

most popular method used in analyzing epidemiological data 

when the outcome variable is binary. The response variable is 

coded with the value 0 or 1 and it is used in categorical data. 

Logistic regression provides a method for modeling a 

binary response variable. For example, we may wish to 

investigate how death (1) or survival (0) of patients can be 

predicted by a level of one or more metabolic markers. 

According to [25], a logistic regression is considered as a 

parametric model and is a form of generalized linear model. 

This is because the probability distribution for the response 

variable is specified as well as the error terms. Logistic 

regression makes use of several predictor variables which 

may be categorical or numerical. The odds ratio is usually of 

interest in a logistic regression due to its ease of 

interpretation. Odds ratio is a statistic that measures the odds 

of an events compared to the odds of another event [for 2 x 2 

contingency table, the odds ratio is a measure of association 

[3]. Combination of the odds and the logistic regression leads 

to the interpretation of any logistic regression result [19]. 

A large sample size is needed for testing of hypothesis in 

logistic regression since it does not require much assumption 

for the hypothesis to be accurate. This is because of the 

nature of probabilities which logistic regression principles 

are based. A logit transformation is used [15, 16, 21]. 

Hauck, W. W, and Donner, A. [17] examined the 

performance of the Wald test and likelihood ratio test. They 

found that Wald test behaved in an aberrant manner, often 

failing to reject the null hypothesis when the coefficient was 

significant. Therefore, they recommended the likelihood ratio. 

Hosmer, David W. et al [20] highlighted that it is possible to 

construct a model that fits the data (good estimation of the 

relationship between response and explanatory variables) but is a 

poor predictive model. 

According to Michael, H. K et al [26], logistic regression 

is an important nonlinear regression model and could be 

considered for use when the response variable is qualitative 

with two possible outcomes, such as financial status of firm 

(sound status, headed towards insolvency) or blood pressure 

status (high blood pressure, low blood pressure). 

2. The Logistic Function 

The term “Logit” as a contraction of the phrase 

“logarithmic unit” was introduced by [7]. This is in analogy 

to the term “Probit” as a contraction of the phrase 

“Probability unit” as introduced by [8]. Recall that if an event 

occurs with probability p, odds in favour of the event are; 
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This expression on the right, called a logistic function 

(logit model), cannot yield a value that is either negative or 

greater than 1; consequently, it restricts the estimated value 

of p to the required range [9]. 

3. The Method of Maximum Likelihood 

Logistic regression uses the Maximum Likelihood 

Estimation method to estimate the model coefficients and the 

method of maximum likelihood uses the information in a 

sample to find the parameter estimates that are most likely to 

have produced the observed data. This method yields values 

of α and β which maximize the probability of obtaining the 

observed set of data [14]. Conceptually, it works like this: 

First construct a likelihood function which expresses the 

probability of the observed data as a function of the unknown 

parameters α and β. In the univariate case, the contribution to 

the likelihood function for a given value of the predictor X, is 

Let Yi represent response variable, Xi represent covariates, 

we get: 

���� = 1� 	= 	� = 
���
��
������
���
��
����                 (8) 

We can extend the simple logistic regression model easily 

to more than one predictor variable. 

Let us define, 

� = � ����…������×�
	� = � 1��…������×� 	�� = �

1���…��,�����×�
 

Then, we get, ��� = �� + ���� +⋯+ ��������              (9) ��′� = �� + ����� +⋯+ ������,���           (10) 

So "#��$ = 	� = 
���%��
���
���%��
�                 (11) 

Recall that, the joint probability function for binary 

logistic regression is: 

&���, … , �'� = ∏ )����� = ∏ 	�*�'�+� �1 − 	����*�'�+�  (12) 
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= ∑ 2��-.&
 3 4���4�56 + ∑ -.&
�1 − 	��'�+�'�+�                                                               (15) 

Since 1 − 	� = ���
���
�7
���� and -.&
 3 4���4�5 = �� + ����                                                         (16) 

Therefore,  -.&
8���, ��� = ∑ ����� + ����� − ∑ -.&
01 + 9�:��� + �����1'�+�'�+� .                                         (17) 

We are trying to find �� and �� to maximize the log-likelihood function: -; = -.&
8���, ��� = ∑ ����� + ����� − ∑ -.&
'�+� 01 + exp	��� + �����1'�+� .                 (18) 

Define: 

?~A = �B�BC…BD�	�E = FGG
H��I�CI…�DIJK
KL 

The model is � = �I� . The estimator of M  is �N =��EI ∑ �E��E ����EI ∑ BE��E , where ∑ OPQ  a diagonal matrix 

with Oth diagonal element R�C. 
3.1. WALD Test 

The Wald test will be familiar to those who use multiple 

regressions. In multiple regressions, the common t-test for 

testing the significance of a particular regression coefficient is a 

Wald test [25]. In logistic regression, the Wald test is calculated 

in the same manner. The formula for the Wald statistic is 

Zj = (bj / sbi)                               (19) 

where sbi is an estimate of the standard error of bj provided 

by the square root of the corresponding diagonal element of 

the covariance matrix, v(β). 

With large sample sizes, the distribution of Zj is closely 

approximated by the normal distribution. With small and 

moderate sample sizes, the normal approximation is 

described as ‘adequate’ [27]. 
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3.2. Likelihood Ratio Tests 

The likelihood ratio test (LRT) is based on the difference in 

-2LL between the researcher's model and the null model, with 

a finding of significance indicating a good model. The 

likelihood ratio test statistic is -2 times the difference between 

the log likelihoods of two models, one of which is a subset of 

the other [17]. The distribution of the LR statistic is closely 

approximated by the chi-square distribution for large sample 

sizes. The degrees of freedom (DF) of the approximating chi-

square distribution is equal to the difference in the number of 

regression coefficients in the two models. The test is named as 

a ratio rather than a difference since the difference between 

two log likelihoods is equal to the log of the ratio of the two 

likelihoods. That is, if Lfull is the log likelihood of the full 

model and Lsubset is the log likelihood of a subset of the full 

model, the likelihood ratio js defined as 

LR = - 2 [Lsubset – Lfull] = -2 [ln (lsubset/lfull)]        (20) 

Note that the – 2 adjusts LR so the chi-square distribution 

can be used to approximate its distribution [17]. 

3.3. Goodness of Fit of the Model 

In logistic regression, instead of R
2
 as the statistic for 

overall fit of the model, we have chi-square instead. when 

we studied chi-square analyses, chi-square was said to be 

a measure of "goodness of fit" of the observed and the 

expected values. We use chi-square as a measure of model 

fit here in a similar way. It is the fit of the observed values 

(Y) to the expected values (Y’). The bigger the difference 

(or "deviance") of the observed values from the expected 

values, the poorer the fit of the model [22, 13]. So, we 

want a small chi-square if possible. As we add more 

variables to the equation the deviance should get smaller, 

indicating an improvement in fit. The difference between 

these two deviance values is often referred to as G for 

goodness of fit. 

( ) ( )2G D for themodel without thevariable D for themodel withthevariableχ= = −                              (21) 

or, using the Pedhazur notation, ( )2 2 2R FG LL LLχ= = − − −                                      (22) 

An equivalent formula is: 2
2 ln R

F

likelihood
G

liklihood
χ

 
= = −  

 
                                                (23) 

where the ratio of the ML values is taken before taking the 

log and multiplying by –2. This gives rise to the term 

“likelihood ratio test” to describe G. 

3.4. The Hosmer-Lemshow Test 

H-S test was considered a model goodness of fit for 

logistic regression [20]. H-L test divides the sample into 

portions (usually 10 deciles) and compares observed and 

expected (predicted) values of the DV within each decile, 

then uses a type of averaging to get a whole-model result 

for which a finding of non-significance indicates a good 

model. The data are divided into approximately ten groups 

defined by increasing order of estimated risk. The 

observed and expected number of cases in each group is 

calculated and a Chi-squared statistic is calculated as 

follows: 

�STC =	∑ �UV�WV�XWV���WV/'V�Z[+�                          (24) 

with Og, Eg and ng the observed events, expected events and 

number of observations for the g
th

 risk decile group, and G 

the number of groups. The test statistic follows a Chi-squared 

distribution with G-2 degrees of freedom. 

A large value of Chi-squared (with small p-value < 0.05) 

indicates poor fit and small Chi-squared values (with larger 

p-value closer to 1) indicate a good logistic regression model 

fit. 

4. Material and Methods 

The data was obtained from Nigeria Centre for Disease 

Control (NCDC) consist 500 people diagnosed for Corona 

Virus disease (COVID-19) out of which some happens to be 

positive while others are negative. For easy analysis of data, 

the following coding were made; 

Corona Virus disease status (1= Patient is COVID-19 

Positive, and 0 = Patient is COVID-19 Negative). 

Any of either Headache or Vomiting (1 = Yes 0 = No). 

Ages (between 1-25 years=1, 26-50 years=2, 50 years and 

above=3). 

Sex/Gender (1 = male, 0 = female). 

Fever (1 = Yes, 0= No). 

Temperature ≥ 37.5°C (1 = Yes, 0 = No) 

Sore throat or runny nose (1 = Yes, 0 = No) 

Loss of Smell or taste (1 = Yes, 0 = No) 

Breathing Difficulties (1 = Yes, 0 = No) 

Fatigue or Muscle Pain (1 = Yes, 0 = No) 

Any of cough, cold or sweating, etc. (1 = Yes, 0 = No). 

5. Results and Discussions 

Analysis was performed using Statistical Package for 

Social Sciences (SPSS) version 20 and the output of the 

analyzed data are as follows; 
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Table 1. Logistic Regression Coefficients for Likelihood of Corona Virus Diseases (COVID-19). 

 
B S.E. Wald Df P-value Odd Ratio 

95% C.I. for Odd Ratio 

Lower Upper 

Sex/Gender -0.237 0.340 0.487 1 0.485 0.789 0.405 1.535 

Age 0.356 0.325 1.199 1 0.027 5.701 1.370 9.325 

Headache or Vomiting 2.938 0.303 94.27 1 0.000 18.878 10.432 34.16 

Fever < 7 Days 0.752 0.263 8.144 1 0.004 2.121 1.265 3.553 

Temperature ≥ 37.5°C 0.600 0.519 1.336 1 0.248 1.822 0.659 5.041 

Sore throat or Runny nose 2.792 0.460 52.615 1 0.012 9.371 7.536 24.263 

Cold, Cough or Sweating -0.028 0.010 8.544 1 0.003 2.973 0.955 6.991 

Loss of smell or taste 1.872 0.290 41.765 1 0.016 6.503 3.686 11.474 

Breathing Difficulties 0.844 0.324 6.792 1 0.009 2.325 1.233 4.386 

Fatigue or Muscle Pain 0.868 0.477 3.32 1 0.068 2.383 0.936 6.063 

Constant -3.748 0.543 47.699 1 0.000 0.024 
  

a. Variable(s) entered on step 1: Any of either Headache or Vomiting, Ages, Sex/Gender, Fever, Temperature ≥ 37.5°C, Sore throat or runny nose, Loss of 

Smell or taste, Breathing Difficulties, Fatigue or Muscle Pain, Any of Cold, cough or sweating, etc. 

It can be noted from Table 1 that the predictors such as 

Age, any of either Headache or Vomiting, Fever, Sore throat 

or runny nose, Any of Cold, cough or sweating, Loss of 

Smell or taste, and Breathing Difficulties, with the 

significance values 0.027, 0.000, 0.004, 0.012, 0.003, 0.016 

and 0.009 respectively are each less than α = 0.05. This 

means that these predictors are each important to be included 

in the final model. Therefore, there are enough bases to 

conclude that these predictors are relevant predictors in 

predicting Corona Virus in kebbi state. From the same table 

1, it is revealing to note that, the predictors such as 

Sex/Gender, Temperature >37.5 degree and Fatigue or 

Muscle Pain were dropped from the model. Since the p – 

values 0.485, 0.248 and 0.068 were each greater than α = 

0.05, that means there is sufficient evidence to indicate that 

these predictors were not important to be included in the 

model. Hence the predictor’s Sex/Gender, Temperature ≥ 

37.5°C and Fatigue or Muscle Pain were not relevant in 

predicting Corona Virus. 

5.1. Interpretation of THE Odds Ratios and Wald Statistic 

As in Table 1 the strongest predictor of the outcome of 

Corona Virus patient was Severe Headache or Vomiting, 

recording an odds ratio of 18.878 (95% C.I. = 10.432 to 

34.16). This indicated that patients who had been checked and 

referred as having Severe Headache or Vomiting is likely to 

estimate the success of Corona Virus as to those who were not 

referred, controlling for all other factors in the model. The 

odds ratio 9.371 with (95% C.I. = 7.536 - 24.263) for Sore 

throat or runny nose indicating that for every treatment per 

patient, there were more Corona Virus due to a pain in throat 

lasting for some time caused by changes in pressure in the 

blood vessels leading to and from the brain, controlling for 

other factors in the model. Again, the odds ratio with respect to 

Loss of Smell or taste was 6.503 (95% C.I. = 3.686 to 11.474) 

meaning that more of the Corona Virus positive was estimated 

by Loss of Smell or taste, holding other factors constant. 

The Wald Chi-Square statistic, which tests the unique 

contribution of each predictor, in the context of the other 

predictors -- that is, holding constant the other predictors -- 

that is, eliminating any overlap between predictors. from the 

analysis it was observed that the Headache or Vomiting 

contribute more in predicting Corona Virus Diseases as it 

records 94.27 followed by Sore throat or Runny nose 

recording 52.615, then Loss of smell or taste as it has 41.765, 

followed by Cold, Cough or Sweating 8.544 then Fever less 

than 7 days i.e 2 to 3 days as it records 8.144 and Breathing 

Difficulties recording 6.792. 

5.2. Model Fit Assessment Test 

H0: The hypothesized model fits the data. 

H1: The hypothesized model does not fit the data. 

Table 2. Assessing Model Fit by Hosmer and Lemeshow Test. 

Step Chi-square Df Sig. 

1 15.898 8 0.044 

We can observe that from Table 2, for model assessment 

using Hosmer Lemeshow test, since the P-value which is 

0.044, is less than significance value i.e alpha = 0.05, we 

accept the null hypothesis (H0) and conclude that there is 

enough evidence to show that the hypothesized model fits the 

data set used in predicting Corona Virus. Hence, this 

indicates that the model adequately fits the data. 

Table 3. Regression Model Summary. 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 455.436a 0.369 0.494 

 

It is observed from above table that, between 36.9% and 

49.4% of the variance in predicting whether or not Corona 

Virus patient would be positive or negative was explained by 

the predictors; Age, any of either Headache or Vomiting, 

Fever, Sore throat or runny nose, Any of Cold, cough or 

sweating, Loss of Smell or taste, and Breathing Difficulties. 
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Meanwhile, Nagelkerke or Pseudo R-square was 12.8% more than the Cox & Snell R-Square value. 

Table 4. Classification Table. 

Observed 

Predicted 

Corona Virus Status 

Percentage Correct The Patient is Corona 

Virus Negative 

The Patient is Corona 

Virus Positive 

Corona Virus Status 
The Patient is Corona Virus Negative 85 9 90.4 

The Patient is Corona Virus Positive 7 399 98.3 

Overall Percentage   96.8 

 

However, it was shown from the classification table (table 

4) that, about 98.3% could be predicted as the patient has 

Corona Virus whilst about 90.4% can be predicted as the 

patient has no Corona Virus but any other related issue. It is 

worth noting that, overall, about 96.8% of the cases were 

correctly classified. 

In this research, it was discovered that the chance of being 

Corona Virus disease positive in dependant on predictors; 

Age, any of either Headache or Vomiting, Fever, Sore throat 

or runny nose, Any of Cold, cough or sweating, Loss of 

Smell or taste, and Breathing Difficulties. The logistic 

regression model obtained was: 

Logit (P(y=1)) = -3.748 + 0.356 Age +2.938 any of either Headache or Vomiting + 0.752 Fever + 2.792 Sore throat or runny 

nose – 0.028 Any of Cold, cough or sweating + 1.872 Loss of Smell or taste + 0.844 Breathing Difficulties 

Again, from the same results, it was found among 

predictors that; Sex/Gender, Temperature >37.5 degree and 

Fatigue or Muscle Pain were not good predictors of Corona 

Virus disease. 

6. Conclusion 

This study provides evidence for the predictors of Corona Virus 

diseases (COVID-19) in Nigeria. The model indicates that 

Headache, Sore throat/runny nose and difficult breathing 

contributes more in terms of predicting Corona Virus disease. So 

also it was observed that loss of taste or smell, feeling cold/cough 

or sweating were at higher chance of Corona Virus disease. 

Therefore, based on the data collected and analysis made on 

the data we conclude that the predictors which actually influence 

Corona Virus disease are Age, any of either Headache or 

Vomiting, Fever, Sore throat or runny nose, Any of Cold, cough 

or sweating, Loss of Smell or taste, and Breathing Difficulties. 

7. Recommendations 

The following are suggested recommendation: 

1) It is recommended that the model built by this research 

should be should be used as a means of justification 

concerning prediction of Corona Virus diseases. 

2) It is recommended that physical or social distance 

should be maintain as well as quarantining and covering 

coughs and sneezes, maintaining regular hand washing 

and keep hands away from the face or mouth. 

3) Use of face mask or coverings is recommended o as to 

minimize the risk of transmissions. 
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