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Abstract: Due to the rapid development of information technology and data acquisition technology, the model which only
considers the linear main effect can not provide accurate prediction results, and the interaction between the predictor and response
variables can not be ignored, so the variable selection problem of the model with interaction terms has become an important
research topic in the statistical analysis today. In this paper, we discuss the problem of variable selection for a partially linear
model with interaction terms using the profile forward selection method under high dimensional data. We propose the two-stage
interactive selection algorithm (iPFST) under strong genetic condition and the profile forward selection algorithm (iPFSM) under
marginality principle respectively. Theoretically, we use the consistency of profile estimators to prove that profile estimators have
uniform convergence rate, and use the screening consistency to prove that iPFST algorithm and iPFSM algorithm can uniformly
identify all important linear main effect terms and important interaction effect terms with probability 1. Seven regularization
conditions for the theorem are given. Numerical simulation shows the superiority of iPFST and iPFSM in variable selection,
and the two algorithms are compared, then iPFST algorithm is better than iPFSM algorithm. Finally, we give detailed technical
proof.

Keywords: Profile Forward Selection, Strong Genetic Condition, Marginality Principle, Screening Consistency,
Variable Selection

1. Introduction
With the increasing complexity of data, the interaction

between predictors and response variables is difficult to ignore.
Schwender and Ickstadt found that SNPs interactions play an
important role in cancer diagnosis [1], Assary et al. argue
that interactions with multiple genes are crucial in molecular
analysis [2]. For the partial linear model proposed by Engle
et al [3], consider the following partially linear model with
interaction terms

Yi =

pn∑
d=1

βdXid +

pn∑
k,l=1

γklXikXil +m(U) + εi, (1)

where Y = (Y1, Y2, · · · , Yn)T is the n-dimension response
variable, Xi = (Xi1, Xi2, · · · , Xipn)T is the n × pn order
main effects, β = (β1, β2, · · · , βpn) is the pn × 1 dimension

unknown parameter vector, U = (U1, U2, · · · , UL) is the
indicator variable, m(U) is the unknown smooth function,
X2
jk(i = 1, 2, · · · , n, 1 ≤ k = l ≤ pn) and XikXil(i =

1, 2, · · · , n, k < l = 1, 2, · · · , pn) are the quadratic terms and
the second-order interaction terms respectively, and γkl(k ≤
l = 1, 2, · · · , pn) is the regression parameter vector of the
interaction terms. ε is a random error independent of Xi, Ui,
and its conditional mean is 0, its variance is σ2, and σ2 is finite.

There have been many studies on the variable selection of
models with interaction terms. Hao, Feng and Zhang proposed
a two-stage regularization method for linear regression models
with interaction terms, and introduced sign consistency to
prove that the main effect and interaction terms satisfy the
hierarchical structure [4]. Yao and He proposed the two-
stage square root hard ridge method for high-order interaction
models, and provided the prediction and estimation error
bounds of the algorithm by using the overfitting hypothesis and
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the weak factorability hypothesis [5]. Radchenko and James
proposed a “Variable selection using Adaptive Nonlinear
Interaction Structures in High dimensions” method (VANISH)
based on the penalty least squares criterion for nonlinear
models with interaction terms, and demonstrated that VANISH
can select the correct model with probability 1 as n and p
approach infinity [6].

However, there is no research on variable selection for a
partially linear model with interaction terms at present. Wang
proved that the forward selection method can select all main
effects with probability 1 under high-dimensional data [7]. Fan
and Huang used the profile-least-square method to transform
a partially linear model into a linear regression model, and
obtained a consistent bound on the absolute difference between
the profile predictors and their estimators [8]. Based on this,
Liang, Wang and Tsai proposed a profile forward regression
algorithm for partially linear models, which can select relevant
predictors within a limited number of steps, even though the
dimension of the predictors is much larger than the sample size
[9]. In this paper, we use the profile forward selection method
to study the variable selection problem of partially linear
models with interaction terms. We propose two algorithms,
that is, iPFST and iPFSM, and prove that both algorithms can
identify all important interaction terms with probability 1 by
screening consistency.

The rest of the organization is as follows: The second
section introduces the profile forward selection method, iPFST
algorithm and iPFSM algorithm. Regularization conditions
and screening consistency are given in section 3. The fourth
section gives the numerical simulation results. All technical

proofs are given in section 5.

2. Variable Selection Method

2.1. Profile Forward Selection (PFS)

Liang, Wang and Tsai proposed a profile forward selection
(PFS) method for variable selection in a partially linear
model with ultra-high-dimensional data [9], which can select
all relevant variables in a limited number of steps. Next,
consider a partially linear model (1) with interaction terms.
Write Z = (X2

1 , X1X2, · · · , X1Xpn , X
2
2 , X2X3, · · · , X2

pn)
= (Z11, Z12, · · · , Z1pn , Z22, Z23, · · · , Zpnpn), γ = (γ11, γ12,
· · · , γ1pn , γ22, γ23, · · · , γpnpn), then equation (1) can be
written

Y = XTβ + ZT γ +m(U) + ε, (2)

Assume E(Xd) = 0,V ar(Xd) = 1,E(Y ) = 0,V ar(Y ) =
1,d = 1, 2, · · · , pn,ε ∼ N(0, σ2),σ2 is finite. Let matrix X =

(X1, X2, · · · , Xn)
T and Y = (Y1, Y2, · · · , Yn)

T . The index
set of linear main effects is defined as P1 = {1, 2, · · · , pn},
and the index set of second-order terms is defined as P2 =
{(k, l), 1 ≤ k ≤ l ≤ pn}, the non-zero linear main effect
terms is defined as T1 = {d : βd 6= 0, d ∈ P1}, and the
non-zero second-order interaction effect terms is defined as
T2 = {(k, l), γkl 6= 0, (k, l) ∈ P2}.

According to Fan and Huang [8], the profile-least-squares
method was used to transform the semi-parametric models
into the least-squares models, combined with local linear
regression technique [10], then Equation (2) can be written

Yi − E(Yi | Ui) =

pn∑
d=1

βd[Xid − E(Xid | Ui)] +

pn∑
k,l=1

γi,kl[Zi,kl − E(Zi,kl | Ui)] + εi, (3)

Let X∗i = Xi − E(Xi|Ui) = (X∗i1, X
∗
i2, · · · , X∗ipn),

Y ∗i = Yi − E(Yi|Ui), Z∗i = Zi − E(Zi|Ui) =
(Z∗i,11, Z

∗
i,12, · · · , Z∗i,pnpn), then we can get

Y ∗i = X∗Ti β + Z∗Ti γ + εi. (4)

According to the solution path of PFS algorithm proposed
by Liang, Wang and Tsai [9], Wk(1 ≤ k ≤ n) represents the
selected variable at the end of step k. The PFS algorithm is
briefly described below:

Step 1(Initialize): W0 = ∅,
Step 2(Forward regression): In the kth(k ≥ 1) step, given

Wk−1, for every d ∈ P1 \Wk−1, construct a candidate model
Dd,k−1 = Wk−1 ∪ d, calculate the sum of residual squares
RSSd,k−1 of each d, ak = argmind∈P1\Wk−1

RSSd,k−1,
update Wk = Wk−1 ∪ ak, and repeat this step until it stops.

2.2. Two-stage PFS Algorithm for Partially Linear Models
with Interaction Terms (iPFST)

In this section, based on the PFS algorithm, a two-stage
PFS algorithm is proposed to select variables for partial linear
models with interactive terms. In the first stage, PFS only

selects the main effect, and all the second-order terms are not
included in the model. In the second stage, the selected the
main effect set is represented by M̆, and the strong genetic
condition is automatically satisfied by expanding M̆ by adding
all bidirectional interactions within M̆, and then performing
PFS on the expanded set while forcing M̆ to remain in the
final model. The iPFST algorithm is briefly described below:

Step 1: define D = P1, implement PFS on D, the final
solution path is {ϕ(1)

t , t = 1, 2, · · · }, and the main effect
chosen is M̆ = {j1, j2, · · · , jt1}.

Step 2: update D = M̆ ∪ {(d, j) : d, j ∈ M̆}, implement
PFS on D by forcing M̆.

2.3. PFS Algorithm Based on Marginality Principle for
Partially Linear Models with Interaction Terms
(iPFSM)

iPFST algorithm regresses the response variable of each step
to the most relevant covariable, calculates the residuals as the
new response variable of the next step, after selecting the most
relevant covariable X1, regresses all other covariables to X1,
and then replaces these covariables with the corresponding
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normalized residuals as the new covariable of the next step.
The iPFSM algorithm is proposed by combining marginality

principle [11] and PFS algorithm. The main idea of iPFSM
algorithm is to apply PFS algorithm to a dynamic candidate
index set C in the model (4), and in step t, use St,Mt and Ct
to represent all selected items, selected linear main effect and
current candidate index set respectively. Let C = P1 represent
all linear main effects, and update candidate index set C by
adding interaction effect terms among existing linear main
effects in the model, that is, by defining Ct = P1 ∪ {(k, l) :
k, l ∈ Mt}. iPFSM algorithm allows interaction effect terms
to enter the model as soon as possible, so as to select weakly
correlation linear main effects. The iPFSM algorithm is briefly
described below:

Step 1: let S0 = ∅,M0 = ∅, C0 = P1,
Step 2: at step t, given St−1,Mt−1, Ct−1, PFS algorithm

is used to select a predictor from St−1, Ct−1 (set as X1) into
the model, add X1 to St−1 to get St, if the newly selected
predictor is an important linear main effect, update Mt, Ct,
otherwiseMt =Mt−1, Ct = Ct−1.

Step 3: Step 2 is iterated until the reasonable upper bound
D of the total number of important linear main effect terms is
reached, and a solution path {St, t = 1, 2, · · · , D} is obtained.

3. Asymptotic Properties of Variable
Selection

For convenience, some notations are given. λmin(A) and
λmax(A) is used to represent the minimum and maximum
eigenvalues of arbitrary square matrix A, Σ(1) and Σ(2)

are used to represent the covariance matrices of linear

principal effect term and bidirectional interaction effect term
respectively, and Σ is used to represent the total covariant
matrix. Relabel Profile response variable Y ∗, linear main
effectX∗d and interaction effect term Z∗dj are P, L, respectively.
In addition, let G0(t) = E(Y |t),Gd(t) = E(Xd|t),Gdj(t) =

E(Zdj |t), ˆGd(t) be the estimator of Gd(t),Md(u) be the
generating function of Vd. Here is the regularization conditions
required for the proof:

(B1) The error ε is normal.
(B2) Suppose there are two constants 0 < τmin < τmax <

∞, then 2τmin < λmin(Σ(1)) ≤ λmax(Σ(1)) < 1
2τmax.

(B3) Assume ‖ β ‖≤ Cβ , where Cβ > 0, such that
βmin ≥ vβn−ξmin , where βmin = mind∈T | βd |, vβ > 0.

(B4) There are constants ξ, ξ0 and v, such that log pn ≤
vnξ, d0 ≤ vnξ0 and ξ + 6ξ0 + 12ξmin < 1.

(B5) Gd(·), d = 0, 1, 2, · · · , pn is first order Lipschitz
uniformly continuous.

(B6) The weight function ωnk(·) satisfies with probability
1:

(i) max1≤k≤n
∑n
i=1 ωnk(Ui) = O(1);

(ii) max1≤i,k≤n ωnk(Ui) = O(bn), where bn = n−
4
5 ;

(iii)max1≤i≤n
∑n
k=1 ωnk(Ui)I(| Ui−Uk |> cn) = O(cn),

where cn = n−
2
5 log n.

(B7) max0≤d≤pn E {exp(u | Vd)} < ∞, where 0 ≤
u ≤ t0

σv
, constants t0 > 0, σ2

v > 0, generating function
Md(u), d = 0, 1, 2, · · · , pn satisfies max0≤d≤pn sup0≤u≤t0 |
d3 log{Md(u)}

du3 |<∞, max0≤d≤pn E | Vd |2k≤ σ2
v , k > 2.

First, the consistency of profile estimators is given, and it is
shown that profile estimators have uniform convergence speed
n−

1
4 log−1 n.

Theorem 1 Suppose that the regular conditions (B4)-(B7)
hold, then we have

max
0≤d≤pn

max
1≤i≤n

| Ĝd(Ui)−
n∑
k=1

ωnk(Ui)Gd(Uk) |= op

(
n−

1
4 log−1 n

)
. (5)

In the process of variable selection, Fan and Lv proposed
that the solution path has screening consistency [12]. Next, the
screening consistency of the iPFST algorithm is established,
as shown in Theorem 2 and Corollary 1, indicating that iPFST
can detect all relevant predictors within the step size Q with
probability 1.

Theorem 2 Suppose that the regular conditions (B1)-(B4)
hold, define K = 2τmaxvC

2
βτ
−2
minv

−4
β , the first stage of iPFST

is a consistent screening of linear main effects, for t1 ≥
Knξ0+4ξmin , then we have

P
(
T1 ⊂ ϕ(1)

t1

)
→ 1, n→∞. (6)

In the first stage of iPFST, iPFST reduces the dimension
of linear main effect from p to o(n

1
3 ). Next, the asymptotic

condition of iPFST under strong genetic condition [13] is
studied:

βkl 6= 0⇔ βkβl 6= 0. (7)

Since the number of linear main effects is o(n
1
3 ), under

strong genetic conditions, the interactive selection of the
second stage of iPFST no longer needs to deal with high-
dimensional predictors. The consistency of the determined
screening of the interactive selection of the second stage of
iPFST is given below.

Corollary 1 Under the conditions of (6) and (7), t2 ≥
Knξ0+4ξmin , then

P
(
T ⊂ ϕ(2)

t1+t2

)
→ 1, n→∞. (8)

Next, the consistency of iPFSM algorithm is established
under the condition that only Σ(1) is related.

(H1): Assume there are two constants 0 < τmin < 1
4 <

1 < τmax < ∞, then we have
√
τmin < λmin(Σ(1)) ≤

λmax(Σ(1)) < 1
2τmax.

(H2): There are constants ξ, ξ0 and v, then log pn ≤
vnξ, d0 ≤ vnξ0 and ξ + 6ξ0 + 12ξmin <

1
2 .
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Finally, we give the screening consistency of iPFSM
algorithm and show that iPFSM algorithm can identify all
important predictors with probability 1.

Theorem 3 Under the conditions of (B1), (B3), (H1), (H2)
and strong genetic condition, iPFSM is screening consistent,
for t ≥ Kvn2ξ0+4ξmin , then

P (T ⊂ ϕt)→ 1, n→∞. (9)

4. Numerical Simulations
This section uses numerical simulation to verify the

validity of iPFST algorithm and iPFSM algorithm for variable
selection. In the whole simulation process, we use Chen and
Chen [14] extended Bayesian information criterion(EBIC),
data were generated by the model (1), each covariable followed
the standard normal distribution N(0, 1), and the model error
followed the normal distribution N(0, 1) and the normal
distribution N(0, 5). The correlation between covariable Xi

and Xj was Cov(Xi, Xj) = 0.5|i−j|, and the indicator
variableU followed the uniform distribution [0, 1]. The sample
size n was 100,200,400 respectively, let m(u) = 5 sin(4πu),
the coefficient vector of the linear main effect be β =
(1, 3, 2,−1, 0, 0, 0, 0, 0, 0), the coefficient of the interaction
term be γ12 = γ13 = γ24 = 2, and the remaining γ be zero
vectors.

The variable selection results and estimation accuracy of the
proposed method were evaluated by the following indexes.

The square root of the mean square error of nonparametric
components(RMSE):

RMSE =

{
1

n

n∑
i=1

(m̂l(uil)−m0l(uil))
2

} 1
2

the square root of generalized mean square error of parameter
part(GMSE):

GMSE =
(
β̂d − β0d

)
E
(
ZZT

) (
β̂k − βk

)
.

The simulation results are shown in Table 1 and Table 2,
where CL represents the average number of zero coefficients
correctly identified as zero in the linear main effect part.
The average number of zero coefficients in the CI interaction
section that are correctly identified as zero.

Table 1. The numerical result at ε ∼ N(0, 1).

n Method RMSE GMSE CL CI

n = 100 iPFST 0.1135 0.0947 3.98 2.97

iPFSM 0.1088 0.0819 3.99 2.99

n = 200 iPFST 0.0976 0.0608 4.01 2.99

iPFSM 0.0764 0.0515 4.00 2.99

n = 400 iPFST 0.0616 0.0573 4.01 3.00

iPFSM 0.0549 0.0416 4.02 3.01

Table 2. The numerical result at ε ∼ N(0, 5).

n Method RMSE GMSE CL CI

n = 100 iPFST 0.1896 0.1016 3.95 2.95

iPFSM 0.1651 0.0756 3.97 2.95

n = 200 iPFST 0.1746 0.0994 3.96 2.96

iPFSM 0.1512 0.0445 3.99 2.97

n = 400 iPFST 0.1573 0.0766 3.98 2.94

iPFSM 0.1533 0.0374 3.99 2.96

5. Proof of Theorems

Let’s first give three lemmas to prove the theorem. Since
iPFST algorithm only focuses on the screening consistency of
linear main effect, the proof of Theorem 2 is similar to theorem
3, and theorem 2 will not be proved in this paper.

Lemma 1 Under the (B5) and (B6) of (i) and (iii), we have,

max
0≤d≤pn

max
1≤i≤n

∣∣∣∣∣Gd(Ui)−
n∑
k=1

ωnk(Ui)Gd(Uk)

∣∣∣∣∣ = O(cn)

Proof: Given Gd(Ui), d = 1, 2, · · · , pn, i = 1, 2, · · · , n, we have

Gd(Ui)−
n∑
k=1

ωnk(Ui)Gd(Uk)

=

n∑
k=1

ωnk(Ui) [Gd(Ui)−Gd(Uk)]

=

n∑
k=1

ωnk(Ui) [Gd(Ui)−Gd(Uk)] I (| Ui − Uk |> cn)

+

n∑
k=1

ωnk(Ui) [Gd(Ui)−Gd(Uk)] I (| Ui − Uk |≤ cn)
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by (B6) of (iii), we can get

max
0≤d≤pn

max
1≤i≤n

∣∣∣∣∣
n∑
k=1

ωnk(Ui) [Gd(Ui)−Gd(Uk)] I (| Ui − Uk |> cn)

∣∣∣∣∣
≤ C max

0≤d≤pn
max
1≤i≤n

∣∣∣∣∣
n∑
k=1

ωnk(Ui)I (| Ui − Uk |> cn)

∣∣∣∣∣ = O(cn)

by (B5) and (B6) of (i), we can get

max
0≤d≤pn

max
1≤i≤n

∣∣∣∣∣
n∑
k=1

ωnk(Ui) [Gd(Ui)−Gd(Uk)] I (| Ui − Uk |≤ cn)

∣∣∣∣∣
≤ max

0≤d≤pn
max
1≤i≤n

∣∣∣∣∣
n∑
k=1

ωnk(Ui)cn

∣∣∣∣∣ = O(cn).

This completes the proof of Lemma 1.
Lemma 2 : Let W1,W2, · · · ,Wn be iid with variance σ2,Rk = Wk−EWk

σ , and M(u) = E{exp(uRk)} is generating function
of Rk, k = 1, 2, · · · , n. Assume there is a constant t0 > 0, we have E{exp(t|Wk|)} < ∞, where 0 ≤ t ≤ t0

σ . Let the constant
sequence A1, A2, · · · satisfy An ≥

∑n
k=1 a

2
nkσ

2, and constant sequence ank, 1 ≤ k ≤ n satisfy A ≥ maxk|ankσ|
An

. If

M∗
.
= sup

0≤u≤t0

∣∣∣∣d3 logM(u)

dt3

∣∣∣∣ <∞, (10)

for 0 < ζ < t0
A , we have

P

{∣∣∣∣∣
n∑
k=1

ank (Wk − EWk)

∣∣∣∣∣ > ζ

}
≤ exp

{
− ζ2

2An

(
1− 1

3
AM∗ζ

)}
. (11)

Proof Let tζ = ζ
An

, then | ankσζAn
|≤ Aζ ≤ t0. Taylor expansion for logM(u) at u = 0, we can get

logM(u) = logM(0) + t
d logM(u)

du

∣∣∣∣
u=0

+
u2

2
· d

2 logM(u)

du2

∣∣∣∣
u=0

+
u3

6

d3 logM(u)

du3

∣∣∣∣
u=u∗

,

where 0 < u∗ < u. Note that logM(0) = 0, d logM(u)
du

∣∣∣
u=0

= E(R1) = 0, d
2 logM(u)
du2

∣∣∣
u=0

= 1 and
∣∣∣∣ d3 logM(u)

du3

∣∣∣
u=u∗

∣∣∣∣ ≤ M∗,

then

log {M(ankσζ)} ≤ 1

2

(
ankσζ

An

)2

+
1

6

∣∣∣∣ankσζAn

∣∣∣∣3M∗ ≤ a2nkσ
2ζ2

2A2
n

(
1 +

1

3
AM∗ζ

)
.

After a simple calculation, we can get

logP

{
n∑
k=1

ank (Wk − EWk) > ζ

}
= logP

{
n∑
k=1

ankσRk

}

≤ logE

{
exp

(
tζ

(
n∑
k=1

ankσRk − ζ

))}
= ζtζ +

n∑
k=1

logM(ankσζ) ≤ − ζ2

An
+

n∑
k=1

a2nkσ
2ζ2

2A2
n

(
1 +

1

3
AM∗ζ

)
≤ −− ζ2

An
+− ζ2

2A2
n

(
1 +

1

3
AM∗ζ

)
= − ζ2

2An

(
1− 1

3
AM∗ζ

)
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then,

logP

{
n∑
k=1

ank (Wk − EWk) > ζ

}
≤ exp

{
− ζ2

2An

(
1− 1

3
AM∗ζ

)}
. (12)

Similarly, we have

logP

{
n∑
k=1

ank (Wk − EWk) < −ζ

}
≤ exp

{
− ζ2

2An

(
1− 1

3
AM∗ζ

)}
. (13)

By the equation (12) and (13), this completes the proof of Lemma 2.
Lemma 3 : Under the conditions (B2) and (B4)-(B7), let Σ̂ = 1

n X̂
T X̂, Σ∗ = 1

nX
∗TX∗. For any submodel F , set Σ̂(F) and

Σ∗(F) is submatrix of Σ̂ and Σ∗ respectively. If m̃ = O
(
n2ξ0+4ξmin

)
, then

P

{
τmin ≤ min

|F|≤m̃
λmin{Σ̂(F)} ≤ max

|F|≤m̃
λmax{Σ̂(F)} ≤ τmax

}
→ 1. (14)

Proof: Let r = (r1, r2, · · · , rpn)T ∈ Rpn is any pn dimensional vector, r(F) is subvector of F . by the condition (B2), we
have

2τmin ≤ min
F⊂P1

inf
‖r(F)‖=1

rT(F)Σ(F)r(F) ≤ max
F⊂P1

sup
‖r(F)‖=1

rT(F)Σ(F)r(F) ≤
1

2
τmax.

So to prove that equation (14) is true, we just have to prove that

P

{
max
|F|≤m̃

sup
‖r(F)‖=1

∣∣∣rT(F)

(
Σ̂(F) − Σ(F)

)
r(F)

∣∣∣ > ε̃

}
→ 0 (15)

where ε̃ > 0 is any constant. Note that for any F , |F| ≤ m̃, we have

Σ̂(F) − Σ(F) =
1

n

{
X̂T(F)X̂(F) − X∗T(F)X

∗
(F)

}
=

1

n

{
X̂(F) − X∗(F)

}T {
X̂(F) − X∗(F)

}
+

1

n

{
X̂(F) − X∗(F)

}T
X∗(F) +

1

n
X∗T(F)

{
X̂(F) − X∗(F)

}
.

According to conditions (B4)-(B7), Theorem 1 and Cauchy inequality, we can get

1

n
max
|F|≤m̃

sup
‖r(F)‖=1

∣∣∣rT(F)

[
X∗T(F)

(
X̂(F) − X∗(F)

)]
r(F)

∣∣∣ = op

(
n

1
4 log−1 n

)
(16)

Similarly, we can prove that equations (17) and (18) are hold.

1

n
max
|F|≤m̃

sup
‖r(F)‖=1

∣∣∣∣rT(F)

[(
X̂(F) − X∗(F)

)T
X∗(F)

]
r(F)

∣∣∣∣ = op

(
n

1
4 log−1 n

)
(17)

1

n
max
|F|≤m̃

sup
‖r(F)‖=1

∣∣∣∣rT(F)

[(
X̂(F) − X∗(F)

)T (
X̂(F) − X∗(F)

)]
r(F)

∣∣∣∣ = op

(
n

1
4 log−1 n

)
(18)

then by (16), (17) and (18), we have

P

{
max
|F|≤m̃

sup
‖r(F)‖=1

∣∣∣rT(F)

(
Σ̂(F) − Σ∗(F)

)
r(F)

∣∣∣ > ε̃

}
→ 0 (19)

So, next we only need to prove equation (20) is hold.
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P

{
max
|F|≤m̃

sup
‖r(F)‖=1

∣∣∣rT(F)

(
Σ∗(F) − Σ(F)

)
r(F)

∣∣∣ > ε̃

}
→ 0 (20)

Because for any F , we have

∣∣∣rT(F)

(
Σ∗(F) − Σ(F)

)
r(F)

∣∣∣
≤

∑
f1,f2∈F

|rf1 | × |rf2 | ×
∣∣σ∗f1f2 − σf1f2 ∣∣

≤ max
1≤f1,f2≤pn

∣∣σ∗f1f2 − σf1f2 ∣∣ ∑
f1,f2∈F

|rf1 | × |rf2 |

= max
1≤f1,f2≤pn

∣∣σ∗f1f2 − σf1f2 ∣∣
∑
f∈F

|rf |

2

≤ |F| max
1≤f1,f2≤pn

∣∣σ∗f1f2 − σf1f2 ∣∣
≤ m̃ max

1≤f1,f2≤pn

∣∣σ∗f1f2 − σf1f2∣∣
So we can get

∑
|F|≤m̃

P

{
sup

‖r(F)‖=1

∣∣∣rT(F)

(
Σ∗(F) − Σ(F)

)
r(F)

∣∣∣ > ε̃

}

≤
∑
|F|≤m̃

P

{
max

1≤f1,f2≤pn

∣∣σ∗f1f2 − σf1f2∣∣ > ε̃

m̃

}

≤
∑
|F|≤m̃

∑
1≤f1,f2≤pn

P

{∣∣σ∗f1f2 − σf1f2 ∣∣ > ε̃

m̃

}

By the regularization conditions (B1)-(B2) and Lemma A.3 of Bickel and Levina [15], there are constants C1 > 0, C2 > 0,
we have P

{∣∣∣σ∗f1f2 − σf1f2 ∣∣∣ > ε̃
}
≤ C1e

−C2nε̃
2

. Since the number of models satisfying |F| ≤ m̃ does not exceed pm̃+1
n , then

we can get

∑
|F|≤m̃

∑
1≤f1,f2≤pn

P

{∣∣σ∗f1f2 − σf1f2 ∣∣ > ε̃

m̃

}
≤ pm̃+1

n p2nC1e
−C2nε̃

2m̃−2

= C1e
(m̃+3) log pn−C2nε̃

2m̃−2

.

Since m̃ = O
(
n2ξ0+4ξmin

)
, then for a constant C > 0, there is m̃+ 3 ≤ Cn2ξ0+4ξmin , by the (B4), we can get

C1e
(m̃+3) log pn−C2nε̃

2m̃−2

≤ C1e
Cvnξ+2ξ0+4ξmin − C2ε̃

2C−2n1−4ξ0−8ξmin

= C1e
Cvnξ+2ξ0+4ξmin(1−C2ε̃

2C−2v−1n1−ξ−6ξ0−12ξmin),

Because of ξ + 6ξ0 + 12ξmin < 1, when n → ∞, C1e
Cvnξ+2ξ0+4ξmin(1−C2ε̃

2C−2v−1n1−ξ−6ξ0−12ξmin) → 0, so equation (20)
is hold. This completes the proof of Lemma 3.

Proof of Theorem 1
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It’s easy to prove in the case of j = 0, next let’s prove the case of j ≥ 0. Since Ĝj(Ui) =
∑n
k=1 ωnk(Ui)Gj(Uk) +∑n

i=1 ωnk(Ui)Vjk, where Vjk is the kth column of Vj , that is Vjk = X∗jk, then

max
1≤j≤d

max
1≤i≤n

∣∣∣Ĝj(Ui)−Gj(Ui)∣∣∣
≤ max

1≤j≤d
max
1≤i≤n

∣∣∣∣∣
n∑
k=1

ωnk(Ui)Gj(Uk)−Gj(Ui)

∣∣∣∣∣+ max
1≤j≤d

max
1≤i≤n

|ωnk(Ui)Vjk|

,I1 + I2

By the (B5)-(B6) and Lemma 1, we have I1 = O(cn). Let An = Cσ2bn, A ≥ max1≤k≤n
ωnk(Ui)
Cbn

, where C > 0 is a

constant,then we can prove that An ≥
∑n
k=1 a

2
nkσ

2, A ≥ maxk
|ankσ|
An

, where ank = ωnk(Ui). According to equation (10),
(B4), (B7) and set ζ = n−

1
4 log−1 n, we can get

P

{
max
1≤j≤d

max
1≤i≤n

∣∣∣∣∣
n∑
i=1

ωnk(Ui)Vjk

∣∣∣∣∣ > ζ

}

≤dn max
1≤j≤d

max
1≤i≤n

P

{∣∣∣∣∣
n∑
i=1

ωnk(Ui)Vjk

∣∣∣∣∣ > ζ

}

≤2dn exp

{
− ζ2

2An
(1 +AMvζ)

}
≤2dn exp

{
− ζ2

4bnC

}
=2 exp

{
−n 3

10 log−2
n

C
+ log(dn)

}
→ 0

Therefore

max
1≤j≤d

max
1≤i≤n

∣∣∣Ĝj(Ui)−Gj(Ui)∣∣∣ = op

(
n−

1
4 log−1 n

)
.

Proof of Theorem 3
Let K = 6τmaxτ

−2
minC

2
βv
−4
β v, L = Knξ0+4ξmin , d0 ≤ vnξ0 , note that |St| < d0L ≤ Knξ0+4ξmin , then the eigenvalues of

Σ(F) are controlled by lemma 3. Next we only need to prove that n−1Ω(t) ≥ 2L−1 (1 + o(1)) , 1 ≤ t ≤ L is hold. By the (B.2)
and (B.3) of Wang(2009), we can get

Ω(t)
1
2 ≥
√

3

3
max
j∈ϕ∗t

∥∥∥H(t)
j Q(ϕt)X

∗
(T )β(T )

∥∥∥−max
j∈T

∥∥∥H(t)
j Q(ϕt)ε

∥∥∥−max
j∈T

∥∥∥H(t)
j Q(ϕt)

(
Ŷ− Y∗

)∥∥∥ , (21)

where Q(ϕt) = In −H(ϕt), H(ϕt) = X̂(ϕt)

(
X̂T(ϕt)X̂(ϕt)

)−1
X̂T(ϕt), ϕ

∗
t = T

ϕt
, ε = (ε1, ε2, · · · , εn)

T . Since maxi

∣∣∣Ŷi − Y ∗i ∣∣∣ =

op

(
n−

1
4 log−1 n

)
, then

∥∥∥Ŷ− Y∗
∥∥∥2 = n · op

(
n−

1
2

)
. According to Theorem 1, we can get

max
i,j

∥∥∥X̂ij −X∗ij
∥∥∥ = op

(
n−

1
4 log−1 n

)
. (22)

Since

max
j∈ϕ∗t

∥∥∥H(t)
j Q(ϕt)

{
X∗(T )β(T )

}∥∥∥2 = max
j∈ϕ∗t

∥∥∥H(t)
j Q(ϕt)

{
X∗(ϕ∗t )β(ϕ∗t )

}∥∥∥2
≥
{

max
j∈T

∥∥∥X̂j∥∥∥2}−1 [max
j∈ϕ∗t

∣∣∣X̂Tj Q(ϕt)

{
X∗(ϕ∗t )β(ϕ∗t )

}∣∣∣2] ,
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by the Cauchy inequality and (B3), we have∥∥∥Q(ϕt)

{
X∗(ϕ∗t )β(ϕ∗t )

}∥∥∥2
=
∑
j∈ϕ∗t

βj

(
X̂Tj Q(ϕt)

{
X∗(ϕ∗t )β(ϕ∗t )

})

≤

∑
j∈ϕ∗t

β2
j

 1
2
∑
j∈ϕ∗t

(
X̂Tj Q(ϕt)

{
X∗(ϕ∗t )β(ϕ∗t )

})2 1
2

≤Cβ · |T |
1
2 ·max

j∈ϕ∗t

∣∣∣X̂Tj Q(ϕt)

{
X∗(ϕ∗t )β(ϕ∗t )

}∣∣∣ ,
By the Bernstein’s inequality, we can get{

max
j∈T

∥∥∥X̂j∥∥∥2}−1 [∥∥∥Q(ϕt)

{
X∗(ϕ∗t )β(ϕ∗t )

}∥∥∥2 · C−1β · |T |− 1
2

]2
≥ nτ−1maxτ2minβ4

min|T |−1C−2β
≥ τ−1maxτ2minC−2β v4βv

−1n1−ξ0−4ξmin ,

and
∥∥∥X̂(t)

j

∥∥∥2 ≥ nτmin, so we can get

∥∥∥H(t)
j Q(ϕt)ε

∥∥∥2 ≤ τ−1minn−1 max
j∈T

max
|µ|≤m∗

(
X∗Tj Q(µ)ε

)2
, (23)

where m∗ = Knξ0+4ξmin ,X∗Tj Q(µ)ε is a normal random variable with mean 0 and variance
∥∥Q(µ)X∗j

∥∥2 ≤ ∥∥X∗j∥∥2. So,we have

τ−1minn
−1 max

j∈T
max
|µ|≤m∗

(
X∗Tj Q(µ)ε

)2 ≤ τ−1minn−1 max
j∈T

∣∣X∗j ∣∣2 max
j∈T

max
|µ|≤m∗

χ2
1, (24)

where χ2
1 represents a Chi-squared random variable with 1 degree of freedom. Then,

∥∥∥H(t)
j Q(ϕt)ε

∥∥∥2 ≤ 3Kvnξ+ξ0+4ξmin is
hold with probability 1, therefore,

n−1Ω(t)

≥3−1τ−1maxτ
2
minC

−2
β v4βv

−1n−ξ0−4ξmin · {1 + op(1)} ·
{

1− 9Kv2τmaxτ
−2
minC

2
βv
−4
β nξ+2ξ0+8ξmin−1

}
=2L−1 {1 + op(1)} .
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