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Abstract: As a result of volatility dynamics, investors and other stakeholders in businesses and industries have difficulty 

making financial decisions. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are the most widely 

applied in the analysis of financial derivatives volatility. Volatility persistence is a common issue when analyzing stock prices, 

making it cumbersome for GARCH models. The GARCH model is transformed into the Makov switching GARCH model to 

check for dynamics in volatility persistence. Markov Regime-Switching GARCH (MSGARCH) models permit the conditional 

mean and variance to change across regimes over time. The Markov switching GARCH models incorporate the regime variables 

in the parameter space, making it viable for the parameters to be estimated by the maximum likelihood estimation method, unlike 

the classical GARCH models. Zenith Bank plc’s daily closing stock prices, a top-tier stock on the Nigerian Stock Exchange 

market, are fitted using the GARCH and MSGARCH models. The comparison between the MSGARCH model and the classical 

GARCH model was verified using the AIC and BIC metrics as well as the one with the maximum log likelihood estimates. The 

outcome suggests that MSGARCH model performs better than the single-regime GARCH model and that it yields significantly 

better out of-sample volatility forecasts. The results will aid the stakeholders to leverage and mitigate risks in their investment 

on the selected stocks. 
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1. Introduction 

As demonstrated by numerous authors in the past, including 

Bollerslev, Engle, and Nelson, Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models can be used 

to model changes in variance or volatility over time when 

modeling time series, particularly in financial markets [1]. 

GARCH models support time-dependent volatility changes, 

such as increasing and declining volatility in time series. 

GARCH models frequently exhibit high conditional variance 

persistence. The nearly integrated behavior of the conditional 

variance demonstrated by some financial data, according to 

Diebold, F. X., Lamoureux, C. G., Lastrapes, W. D. and other 

authors, may result from structural changes in the variance 

process not taken into account by traditional GARCH models 

[2, 3]. In addition, Mikosch, T. and Starica, C. demonstrates 

that GARCH effect occurs when using GARCH models on 

samples that exhibit structural changes in the unconditional 

variance [4]. These findings indicate that the estimates may 

suffer from a significant upward bias in the persistence 

parameter if the form of the conditional variance is fixed and 

relatively rigid for the entire sample period. Therefore, 

allowing the parameters to change over time may be a better 

choice for volatility modeling. Volatility in stock prices or 

other financial indexes is the degree of fluctuation over time. 

Factors that trigger financial volatility are demand, supply, 

economic policy, company earnings and many others. 

The Markov regime-switching model is a widely used 

method for allowing modifications in the data generation 

process. Schwert, G. W. worked with a model which switches 

between high and low variance returns, controlled by a 

two-state Markov process [5]. For stock price volatility, the 

Markov process is sufficient to control the switches between 

regimes with different variances. See Franses, P. H., Van Dijk, 

D.; Haas, M., Mittnik, S., and Paolella, M. S. for more details 
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on Markov-switching models [6, 7]. 

The construction of the likelihood function of MSGARCH 

is made possible by using a dynamic model where the 

unobservable state variables are part of the model parameters. 

As demonstrated by Gray, S. F., the switching GARCH model 

does not place any constraints on the GARCH parameters [8]. 

In real-life data, according to Chung-Ming Kuan., it is 

possible to postulate the residuals as independent and 

identically distributed random variables with t(n)-distribution 

instead of always assuming conditional normality [9]. 

Classical time series models assume that a single set of 

parameters is sufficient to model a given data over time, but 

real-life data does not always support this presumption. Real-life 

time series may exhibit different statistics, like mean and variance, 

across different periods, hence the need to utilize regime-switching 

models. Regime-switching models estimate data as residing in 

various recurrent regimes or states. These models permit the 

characteristics of time series data, including means, variances, and 

model parameters, to change across the states. Regime-switching 

models also assume that at any given period, the series may be in 

any of the regimes and may transit to a different one with a certain 

probability. To better capture the actual behavior of real-life data, it 

may be better to use regime-changing models than single-regime 

models. See also Klaassen, F. J. G. M. [10]. 

Generalization of the GARCH model by allowing for regimes 

with volatility levels to avoid excessive GARCH effects in 

volatile periods was adopted. To estimate a model that permits 

parameter regime switching, the Markov-switching GARCH 

model that allows for a different persistence in the conditional 

variance of each regime was utilized. A 2-regime Markov chain 

was used to investigate whether the inclusion of states aids in 

resolving the issue with GARCH forecasts. Finally, compared 

with the single-regime GARCH, the allowance of regimes and 

dynamics improved shock persistence. We applied this 

approach to a time series of Zenith Bank plc stock prices traded 

daily on the Nigerian stock exchange. The bank was chosen 

because of it’s rating in the industry as well as the volume 

traded daily on the Nigerian stock market. 

2. Models 

In this section are reviews of the standard one-regime 

GARCH volatility model, the Markov Switching model, and 

the Markov-Switching GARCH model. 

2.1. GARCH Model 

Bollerslev, T. extended the ARCH model to produce the 

Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) [11]. He achieved that by including a moving 

average component to the autoregressive component. In 

particular, the model incorporates lag variance terms and 

residual lag errors from a mean process. Including a moving 

average component enables the model to capture changes in 

the time-dependent and conditional variance over time. See 

Jason B.. for more details [12]. Therefore, the GARCH model 

introduces a new parameter “p” that describes the number of 

lag variance terms, where q is the number of residual lag errors. 

In essence, the GARCH model uses values of the past squared 

observations and past variances to model the variance at time t 

as thus: 

�� = ��	�� 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (1) 

��� = �� + ∑ �
 	���
��

�  + ∑ �� 	�������
�        (2) 

Where �� > 0; �
 ≥ 0, i=1,2,...,q and �� 	≥ 0, j=1,2,...,p 

In the GARCH (p, q) model, the variance forecast takes the 

weighted average of both past square errors and historical 

values. In real-life data applications,β�  component is often 

used in the analysis because it clearly interprets the specific 

volatility processes of the model. 

Thus, equation (2) becomes: 

��� = �� +  ��	�����  + ��	�����     (3) 

2.2. Markov Switching Model 

Markov-switching model assumes that the unobserved 

states are accounted for by an underlying stochastic process 

known as the Markov chain. Markov-chain is used to describe 

how data falls in unobserved regimes, and one of its properties 

is that future states are dependent only on the present state. 

Markov-switching models capture the non-linearity and 

asymmetries of data behavior in various regimes. See 

Bauwens, L., Preminger, A., Rombouts, J. V. K.; Lin, C. C., 

Hung, M. W. and Kuan, C. M.; Sachin, Date for more reading 

[13-15]. 

If the dynamic pattern of stock prices is represented as an 

unobservable state-dependent process, then the standard 

2-state Markov switching model is given as: 

y� =	μ�� +	σ��ε�, where ε�	~N(0,1)      (4) 

such that 

y� =	μ� +	σ�ε�  when S� =1          (5) 

y� 	= μ� +	σ�ε� when S� =2.       (6) 

where y�	 is the log return of stock price at period t, S�= k is 

the period in state k, and ε� is the white noise error term. 

The unobserved state variable S� {1,2,...k} controls the 

mean, μ  and variance, σ�  of the Markov process. The 

transition of the state variables from one regime to another is 

dependent on the transition probabilities. 

Let’s take k = 2 for the analysis, where S� = 1 is the 

downward shift of the stock price, and S�= 2 is the upward 

shift of the stock price. 

Since the state variables S� follow the first-order Markov 

process on a finite set S = {1, . . . , k}, with transition 

probabilities {	P$% = P(S�= j |S���= i)} and the state probability 

distribution {&�}. 

Then, the probability of state variables of S� is: 

P$% =	Pr (S�= j |S���= i)  ∀ i, j = 1,2     (7) 

and 

∑ P$%�$
� = 1                   (8) 
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where P$%= Pr (S�= j |S���= i) is the probability that the process 

is in state j at time t given that it resided in i at the previous 

period. The transition probability in matrix form is 

P = ' (�� 1 − (��1 − (�� (�� *            (9) 

The unconditional probability distribution of S�  is the state 

probability distribution of the Markov variable S�  at each 

time step t and is denoted by 	π�	 . The unconditional 

probability distribution always adds up to one as with other 

probability distributions. The unconditional probability of the 

process being in state j at time t can be represented as π%� . 

2.3. Markov-Switching GARCH Model 

The regime-switching GARCH model allows all the 

GARCH parameters to switch and does not impose any 

constraints on the parameters; thus, it is dynamic. Recall also 

that in practice, instead of assuming conditional normality, it is 

possible to postulate as i.i.d. random variables with 

t(n)-distribution. Therefore, to estimate a model that permits 

regime switching in the parameters, the Markov-switching 

GARCH (MSGARCH) model, a conception of the GARCH 

model that permits distinct persistence in the conditional 

variance of each regime is applied. The Markov-Switching 

GARCH model, therefore, involves estimating the optimal 

values of these variables: the predicted mean, the conditional 

variance, the regime-switching process, and the model’s 

distribution. See also Gray, S.F.; Mohd, Azizi Amin Nunian; 

Siti, Meriam Zahari and Sarifah, Radiah Shariff [16, 17]. 

The predicted mean equation can be modeled as a constant 

mean using any of the AR, ARMA, or ARIMA components; 

see Onyeka-Ubaka, J. N., Ogundeji, R. K., Okafor, R. U. [18]. 

The conditional variance of the model can be expressed as: 

σ�� = ��,-+ α�/0ε����+ β�/0σ����         (10) 

where 1� 	ϵ{1, 2, . . . k} and ��=3� - 45�.. The conditional 

variance depends on the observable Ω���, the current regime S�  that determines all the parameters, and also on all past 

states 	S��� . Therefore, the optimal parameters can be 

decomposed into three components: 

θ�(
) = (μ�(
), σ��(9), υ�(
))          (11) 

where μ�($) = E [ r�|Ω��� ,S� = i] is the conditional mean, 

σ��(i)= Var (r�|Ω���) the conditional variance, and υ�(
) the 

shape parameter of the conditional distribution. 

The pivot feature of MSGARCH models is the ability for 

some or all of their parameters to switch across different 

regimes, controlled by a state variable S�. This state variable 

is assumed to follow a first-order Markov chain with a 

transition probability, 	P$% = Pr( S� = j| S��� = i). The state 

transition probability contains the probabilities of transition 

to the next state which are conditional upon the current state. 

Thus, to apply the regime-switching GARCH model that 

allows for regime-switching in the parameters, let S�	ϵ	{ 1, 

2, . . . , k} be the unobserved state variable for each t, {	P$%= 

P(S�= j|S���= i)}is the transition probability, and Ω��� is the 

information set available at time t. 

Then, the Markov switching GARCH model can be written 

as: 

r�|(S� = k, Ω���) = ?@(θ�($)) AℎCD	((P�,�)
@(θ�(%)) AℎCD	((1 − P�,�)   (12) 

where f (θ�) is the conditional distribution, (θ�($)) is the vector 

of parameters in the ith regime, P�,�= Pr [S�=1 |Ω���] is the 

state probability distribution, Ω��� is the information set up 

until (t - 1) of the Markov process, S� = k is the current state 

and r� is the stock price returns at time t. r� is transformed to 

stationarity with zero mean and is uncorrelated before using 

for the analysis. 

3. Methodology 

The first step in creating a volatility model for an asset return 

series in the GARCH model is to define a mean equation by 

determining whether the data is serially dependent. If they are, 

we build an econometric model (such as the ARMA or ARIMA) 

for the return series to eliminate any linear dependence. 

Afterward, the residuals of the mean equation is used to test for 

ARCH effects. If the ARCH effects are statistically significant, 

a volatility model is specified and then a joint estimation of the 

mean and volatility equations is performed. See more details at 

Caporale, G.M.; Zekokh, T.; Yuehchao Wu and Remya 

Kannan [19, 20]. The parameters of the models can be 

estimated using Maximum Likelihood (MLE). In modeling 

volatility, choosing an appropriate model from various suitable 

models is essential. Identifying the best model in time series 

analysis is crucial in getting the best result. The model selection 

principle is a criterion to assess if the fitted model suggests an 

optimum balancing between parsimony and goodness of fit. 

This study utilized the frequently used model selection 

principle, the Akaike Information Criterion (AIC), to analyze 

the fitted models. Also used for th ecomparison is the maximum 

likelihood estimation method. Hence, the best model has a 

lower AIC value and the highest log-likelihood metrics. 

For the Markov switching models, the method of 

maximization of log-likelihood is by taking partial derivatives 

of the log-likelihood w.r.t. to each parameter (��, (��, β�^�, β�^�, σ², setting them to zero, and solving the resulting system 

of equations using any optimization algorithm. 

In MSGARCH model, for a 2-regime switching, the 

transition probabilities in transition matrix form are 

represented as follows: 

P = ' (�� 1 − (��1 − (�� (�� * = '(�� (��(�� (��*      (13) 

4. Results and Discussion 

The data used for the work is the daily historical closing 

prices in Nigerian Naira of Zenith Bank Nigeria PLC stock, 

extracted from the Nigerian Stock Exchange website. The 

duration is March 1, 2012, to March 29, 2022, with 2494 
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observations. Some of the observations fell into the Covid era 

but the effect on the market was negligible since the 

devastation of the virus was not huge on the Nigerian market 

unlike in the western countries. Therefore, no consideration 

was given to that in this study. First, using the rugarch package 

for the Garch model process in R Studio, followed by the R 

package MSGARCH, which implements a comprehensive set 

of functionalities for Markov-switching GARCH and a 

mixture of GARCH models. [21]. The model's conditional 

distribution is verified using the normal distribution and 

Student t-distribution for the GARCH process. Student t 

distribution fits better for the sGARCH(1,1) model. Therefore, 

in the MSGARCH model analysis, the Student t distribution 

was adopted. Finally, the performance of the models is 

estimated using the AIC and BIC metrics and the 

log-likelihood. 

4.1. Exploratory Analysis of the Data 

 

Figure 1. Time plot of Daily Zenith Stock Prices (2012-2022). 

The time plot of the data appears to be non-stationary with 

an upward and downward trend, which indicates changes in 

variation over time, as shown in Figure 1. To further check for 

the stationarity of the time series, let’s examined the ACF and 

PACF plots. 

 

Figure 2. ACF Plot of Daily Zenith Stock Prices (2012-2022). 
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Figure 3. PACF Plot of Daily Zenith Stock Prices (2012-2022). 

Figures 2 and 3 are the Autocorrelation Function (ACF) and 

Partial autocorrelation Function (PACF) plots of Zenith bank 

daily stock prices. The ACF plot decays to zero slowly, indicating 

that the shock affects the process which also confirms 

non-stationarity. Therefore, to achieve time series stationarity, the 

data is transformed to obtain log return of the stock prices. 

Figure 4 is the time series plot of the Zenith stock price 

return series, and Figure 5 is the time plot of the Zenith stock 

price squared return. The log returns distribution also show 

non-normality. 

 

Figure 4. Plot of Daily Zenith Stock Price Return (2012-2022). 

Table 1. Descriptive Statistics of Zenith Stock (F�) and Zenith Returns G�= log (
H-

H-IJ). 
 

Statistics Zenith Stock (KL) Zenith Returns (ML) 

Observations 2494. 00000 2493.00000 

Minimum 9.00000 -0.261480 

Maximum 33.51000 0.097222 
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Statistics Zenith Stock (KL) Zenith Returns (ML) 

Mean 20.174439 0.000218 

Median 20.55500 0.00000 

Standard deviation 4.447583 0.024175 

Skewness 0.067143 -0.730154 

Kurtosis -0.538133 9.406979 

 

Figure 5. Plot of Daily Zenith Stock Price Squared Return (2012-2022). 

The descriptive statistics in Table 1 show that the mean of 

the return series was constant and nearly zero. The ACF plot in 

Figure 6 also confirms that the log stock price returns are 

uncorrelated for the time series. However, the ACF plot of 

stock price return squared in Figure 7 shows correlation. 

 

Figure 6. ACF Plot of Zenith Stock Prices Returns (2012-2022). 
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Figure 7. ACF Plot of Zenith Stock Returns Squared (2012-2022). 

For the residual diagnostic check, the Ljung Box test was 

used to check the independence of the stock return price 

residuals. The Ljung Box tests from the results show that the log 

returns of Zenith stock prices are not correlated as the p-values 

are > 0.05. Hence, the default null hypothesis of no 

autocorrelation cannot be rejected. From the Ljung Box tests on 

the squared values of the stock price returns and the absolute 

values of the stock price returns, the ARCH effect on the 

log-returns of the stock prices was confirmed, hence the 

conclusion that there are ARCH effects and that the volatility 

can be modeled. For the parameter of the mean equation to be 

used for the MSGARCH model, the ARIMA model was used to 

select the optimal parameters. Using the "auto.arima" command 

in R Studio, the best model is ARIMA (2, 1, 1) with AIC as 

3174.51. The auto.arima function generally picks the ARIMA(p, 

d, q) with the lowest AIC metric. 

4.1.1. GARCH Process 

To determine the order of the GARCH Model, the plots of 

the PACF of the log return of the stock prices, and the squared 

log return of the stock prices were checked. Figure 8 is the 

PACF of the Zenith stock price returns, while Figure 9 is the 

PACF plot of the squared return of Zenith stock prices. 

 

Figure 8. PACF Plot of Zenith Stock Price Returns. 
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Figure 9. PACF of Zenith Stock Return Squared. 

GARCH(1,1) model was found appropriate for the process 

and since a significant ARCH effects was noticed from the 

PACF plots, a joint estimation of the mean and volatility 

equations was performed where ARMA(2,1) model is fit as 

the mean equation and sGARCH(1,1) model is fit as the 

volatility equation. The conditional variance dynamics are 

shown in Table 2. The Log-Likelihood is 6348.738, Akaike: 

-5.0868, and Bayes: -5.0682. 

Table 2. The Conditional Variance Dynamics. 

Parameter Estimate Std. Error t value Pr(>|t|) 

Mu 0.000098 0.000273 0.35952 0.719207 

ar1 0.522552 0.192771 2.71074 0.006713 

ar2 -0.098546 0.022894 -4.30443 0.000017 

ma1 -0.426970 0.193651 -2.20484 0.027465 

omega 0.000059 0.000017 3.41552 0.000637 

alpha1 0.391050 0.061688 6.33918 0.000000 

beta1 0.607950 0.063528 9.56984 0.000000 

shape 3.197932 0.199045 16.06641 0.000000 

 

The simple GARCH model consists of; 

Mean equation: 3� =4 +	��,	 ε� ~ N(0, σ²) 

The fitted model is thus; Y�	=μ�ˆ +	ε� 

3� = 0.000098 + �� 

Volatility equation: ��
� � �� 	� 	��F���

� �	������
�  

The fitted model is thus; 

��
�^ = ��	 	� 	��	�

^
���

�
 + ��	�

^
���

�
 

��
�^ = 0.000059 + 0.391050 �^���

�
 + 0.607950 �^���

�
 

4.1.2. GARCH Process Residual Diagnostic 

The Ljung-Box test on squared residuals indicates no serial 

correlation since the p-values are > 0.05. Thus, the null 

hypothesis of serial correlation is not accepted, and we 

conclude that the residuals behave as a white noise process. 

The goodness-of-fit test reveals that all the p-values are > 0.05, 

indicating that this model adequately fits the data. 

From our analysis, the best model, from the results of all the 

potential models that are good candidates for the GARCH 

model, is the sGARCH(1, 1) with student t-distribution, which 

is the model with the lowest AIC value of -5.0868, BIC value 

of-5.0682, and log-likelihood of 6348.738. Table 3 is the 

9-day-ahead GARCH model forecast prediction of Zenith 

stock volatility returns. 

Table 3. A 9 days ahead GARCH model prediction of Zenith stock returns volatility. 

 T+1 T+2 T+3 T+4 T+5 T+6 T+7 T+8 T+9 

Series 6.393e-03 4.660e-03 1.862e-03 5.701e-04 1.709e-04 8.960e-05 8.645e-05 9.282e-05 9.646e-05 

Sigma 0.06715 0.06756 0.06796 0.06836 0.06876 0.06916 0.06955 0.06995 0.07033 
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From the volatility forecast, the sigma represents the 

expected conditional volatility at time (t + h) and the 

conditional mean at time (t + h) is represented by the series. 

4.2. Markov Switching GARCH Process 

Let G�  represents the log-returns of the Zenith Bank plc 

stock price at time t. The conditional variance of G� is assume 

to follow a GARCH process and the unobserved state variable 

S� assume to follow a first-order Markov chain with transition 

probability matrix P. 

Thus, the Markov-Switching GARCH model is represnted 

as r� |(S� � k,Ω���)~f (0,σO,�
�,PQ). 

where k is the number of states, R��� is the information set 

available at time (t -1),�Q,�
�  is the time-dependant variance, 

PQis the shape parameters in the vector and f(0,�Q,�
� ,PQ) is a 

conditional distribution such as normal, student t or 

generalized normal distribution, having zero mean. In this 

work, a Markov 2-regime-switching homogeneous 

MSGARCH model was considered. The sGARCH 

conditional variance with the student t-distribution was used 

to analyze the error distribution in the model. The log return 

time series of Zenith's daily stock prices served as the input for 

the MSGARCH model for estimating the volatility of the 

stock prices. The performance of the model was determined 

using the AIC and BIC metrics. Tables 4 and 5 contain the 

fitted parameters for regimes 1 and 2 of the model respectively. 

Table 6 shows the parameter estimates of the transition matrix. 

The Log-likelihood estimate of the Markov Switching 

GARCH model is 6816.9143, the AIC: -13613.8285, and BIC: 

-13555.6161. Table 7 is the Initial probabilities of the states 

and Table 8 shows the MSGARCH model's nine-day-ahead 

prediction of the Zenith stock price volatility forecast. 

Table 4. Parameter Estimates for Regime 1. 

Parameter Estimate Std. Error t-value Pr (>|t|) 

alpha0_1 0.0000 0.0000 2917.3060 <1e-16 

alpha1_1 0.0000 0.0000 51.9364 <1e-16 

beta_1 0.0000 0.0002 0.0241 4.904e-01 

mu_1 2.1000 0.0000 63235.0455 <1e-16 

The MSGARCH model is thus; 

Conditional mean:,3� =4 �	�� ,	 ε� ~ N(0, σ²) when S� =1 

The fitted model is thus: Y�	=μ�ˆ +	ε� 

Y�	= 2.1 + ε� 

Conditional variance: ��� = ��	5� + ����	�����  + ��5� 	�����  

��� = �� + ��	�����  + ��	�����  

The fitted model is thus:	���^	 =	0	+	0	+	0 

Table 5. Parameter Estimates for Regime 2. 

Parameter Estimate Std. Error t-value Pr (>|t|) 

alpha0_2 0.0000 0.0000 3.3320 4.311e-04 

alpha1_2 0.2800 0.0539 5.1970 1.013e-07 

beta_2 0.7031 0.0555 12.6597 <1e-16 

mu_2 3.9127 0.2872 13.6216 <1e-16 

The MSGARCH model is thus; 

Conditional mean: 3� =4 +	�� ,,	 ε� ~ N(0, σ²) when S� =2 

The fitted model is thus: Y�	=μ�ˆ +	ε� 

Y�	= 3.9127 +	ε� 

Conditional variance: ���= ��	5� + ����	�����  + ��5� 	�����  

��� = ��� + �������  + �������  

The fitted model is thus: 	���^= 0 + 0.28	�����  + 0.7031 �����
 

The Transition matrix is: 

P = ' (�� 1 − (��1 − (�� (�� * = '(�� (��(�� (��* = S0.2003 0.79970.0839 0.9161Z 
Table 6. Parameter Estimate of the Transition Matrix. 

 Estimate Std. Error t value Pr (>|t|) 

P_1_1 0.2003 0.0271 7.3912 7.272e-14 

P_2_1 0.0839 0.0062 3.6147 1e-16 

The state transition probability contains the probabilities of 

transition to the next state which are conditional upon the current 

state. The results show that the probability of the process 

remaining in state 1 given that it was previously in state 1 is 0.2 

and the probability of remaining in state 2 is 0.9 which shows 

higher pesistence in state 2. Again, the probability of moving to 

state 2 from state 1 is approximately 0.8 while that of moving 

from state 2 to 1 is 0.1 meaning that the process has a lower 

chance of transiting from state 2 to 1 than from state 1 to 2. 

Table 7. Initial probabilities. 

State 1 ([\) State 2 ([]) 

0.0949 0.9051 

Table 7 is the initial probability distribution over the two 

states. The state probability vector { &� } contains the 

unconditional probability of being in a certain state at time t. 

For the 2-regime Markov random variable S� , the state 

probability distribution &� , is given by the following 

2-element vector: &�	= P(1�=1), P(1� = 2). The result shows 

that the probability of the Markov chain to start in state 1 is 

0.0949 while the probability that the Markov chin will start 

in states 2 is 0.9051. 

Table 8. A 9-day ahead MSGARCH model prediction of Zenith stock returns volatility. 

 T + 1 T + 2 T + 3 T + 4 T + 5 T + 6 T + 7 T + 8 T + 9 

sigma 0.05846 0.06876 0.05629 0.05532 0.05138 0.05208 0.05032 0.05066 0.05081 

 

The results of the GARCH and MSGARCH models were 

compared. Both the AIC and BIC values in the MSGARCH 

model were smaller than those of the GARCH model. The 

MSGARCH model also has the maximum likelihood 
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estimates. Therefore, the Markov Switching GARCH model is 

concluded to be a better choice than the standard GARCH 

model. The results of the 9-day volatility forecast of both 

models also point to these facts. The state transition matrix of 

the 2-state Markov process contains the probabilities of 

transition to the next state conditional upon the current state. 

These results show that the Zenith stock price return has a high 

duration in Regime 2, with a probability value of 0.7997, 

indicating that when the process is in Regime 1, the 

probability of switching back to Regime 2 is high. The state 

initial probability vector {&� } contains the unconditional 

likelihood of being in a particular state at time t. The prior 

probability for the MSGARCH is 0.0949 for Regime 1 and 

0.9051 for Regime 2 in our 2-step Markov random variables. 

5. Conclusion 

Stock prices display extreme volatility due to many factors 

as established in the existing literature. Many analysts prefer 

the GARCH models for volatility modeling of stock prices 

and other financial indexes. The choice of the typical GARCH 

models for erratic financial indexes may result in inaccurate 

predictions, poor decisions, and in essence, monetary loss. 

Allowing regime dynamics in the classical GARCH model 

parameter space permits the characteristics of time series, 

including means, variances, and model parameters, to change 

across regimes. Therefore the approach that increases the 

model’s dynamics which seems to better capture the 

persistence of the volatility shocks in stock price analysis was 

adopted. From the observed results, the inclusion of states 

with transition probabilities, equips regime-switching 

GARCH models to capture the behavior of real-world data 

better than standard GARCH models. 

The results of the models were compared using two 

statistical metrics; the AIC and the Log-likelihood 

functions. The Akaike’s information was used to select the 

model with the lowest metric. From the results, the AIC for 

the GARCH model is -5.087 while that of MSGARCH is 

-13613.83, making it a better model for the time series. 

Also, from the Log-likelihood function which was used to 

select the model with the maximum likelihood of the 

optimal parameters, the GARGH model is 6348.74 while 

the MSGARCH model is 6816.91 making it the model with 

maximum likelihood out of the two models. Looking at the 

p-values, the value for the mean estimate of the GARCH 

model is greater than 0.05 and therefore not significant 

while that for the mean estimate of the MSGARCH model 

for both states are significant. Therefore, the results 

confirm that using the MSGARCH model out-performs 

using the GARCH model in the analysis of real-life 

time-series data which most times exhibit varying 

characteristics across different periods. GARCH 

parameters may be optimized in the future using data 

stream analysis which is a natural blend and extension of 

practical time series analysis or, other data mining 

algorithms for parameter estimation may be utilized for 

comparison. 
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