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Abstract: Non-fragile fault-tolerant controller is designed for a class of linear uncertain time-delayed systems. Two cases of 

controller perturbation are investigated in view of different application conditions. One case is the controller gain attenuation, the 

other is random uncertainty caused by noise possibly existing in an industrial field. The controller to be designed can guarantee 

systems to have robust fault-tolerant capability and non-fragility. Sufficient conditions for the existence of such controllers are 

derived basing on Lyapunov stability theory and LMI method. A numerical example of a beam reheating furnace is given. And 

computation results demonstrate the effectiveness of the proposed algorithm. 
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1. Introduction 

In industrial engineering systems, due to a huge number of 

instruments, communication components and interfaces, 

different types of malfunction or improper behavior may 

result in the unexpected variations in normal operations. The 

final effects of these phenomena are usually represented by 

some sensor or actuator faults [1]. The faults may deteriorate a 

system performance and even cause loss of effectiveness in 

stability. Therefore, it is important to design a controller which 

can guarantee a system to have robust fault-tolerant capability. 

That means whenever sensor or actuator faults appear, the 

system can maintain stable performance close to desirable 

requirements. 

During the past two decades, a lot of achievements have 

been reported for the fault-tolerant control (FTC) aiming at 

different types of systems. They can mainly be classified into 

two groups, namely the passive FTC techniques and the active 

ones [2-3]. In a passive FTCs [3-7], the controller generally 

has a fixed structure. There is no controller switching during a 

system running process. The control laws allow a system to 

cope with the fault presence within a certain margin. 

Theoretically, passive FTC takes the fault appearence as a 

system perturbation. For the active FTC approaches, they can 

reconfigure a controller by using the real-time information 

coming from the fault detection and diagnosis (FDD) module. 

Some self-adaptive adjustments in a closed-loop system are 

carried out when a fault appears in order to achieve a control 

objective with a minimum performance degradation [1-3, 

8-10]. 

In addition, because of equipment aging and possible 

random noise in power circuits, it’s also necessary to 

investigate the non-fragility of a fault-tolerant controller as it 

can improve the system robust stability. There are already a 

number of research results aiming at the non-fragile controller 

design in recent years. In [11], non-fragile H∞ controller 

assumed to have multiplicative gain variations is designed for 

a linear time-invariant system. The controller is given in terms 

of symmetric positive-definite solutions of algebraic Riccati 

inequalities. In [12], a corresponding non-fragile adaptive 

fault-tolerant control scheme is proposed for the longitudinal 

dynamics of an airbreathing hypersonic vehicle. Two adaptive 

laws are employed to estimate a minimum value of an 

actuation effectiveness factor and the upper bound under 

external disturbances. In [13], a non-fragile observer-based 

control is studied for continuous systems. Two types of 

uncertainties which perturb the gains of control and observer 

are investigated separately. In [14-15], non-fragile guaranteed 

cost-control controller problem is studied based on the LMI 

method combined with the Lyapunov theory. They take an 

uncertain system into account. Non-fragile controllers are 

given by the feasible solutions of specific LMIs. 

For the above research work, seldom literatures consider 
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both of the fault-tolerant capability and non-fragility during 

the design of robust state feedback controller. In the present 

work, a class of linear uncertain time-delayed systems are 

taken into account. The gain of fault-tolerant controller is 

assumed to have uncertain perturbation which are divided into 

two cases, namely gain attenuation and random noise 

disturbance. Therefore the controller to be designed has 

non-fragility under above two cases. The LMI method and 

Lyapunov theory are used to derive the control law which can 

maitain the closed-loop system asymptotically stable under 

any admissible fault cases and controller perturbation. 

Basically, it’s the passive FTC approach and its real-time 

amount of computation is low that makes easy implementation 

in an engineering system. It’s also an extending research of 

literature [7] which aims at the design of non-fragile 

memoryless and time-delayed fault-tolerant controllers. This 

paper focuses on gain perturbation of the FTC controller. 

For the main content of the paper organized as follows: in 

section 2, a system model, lemmas and assumptions are given. 

The computation and proof are presented for the non-fragile 

FTC control. In section 4, a numerical example is given to 

verify the proposed method. Finally, some remarks are 

included in section 5. 

2. Methodology and Results 

2.1. System Description and Preliminaries 

Consider a linear uncertain system with state and control 

time-delayed as follows 

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

d d a

d b

x t A A t x t A A t x t h

Bu t B u t h

= + ∆ + + ∆ −
+ + −

ɺ

   (1) 

where ( )
n

x t R∈  is a state vector and ( )
m

u t R∈  is a control 

input. And
a

h , 
b

h  denote the state and input constant 

time-delays separately. n nA R ×∈ , n n

dA R
×∈ , n mB R ×∈  are 

basic matrices with appropriate dimensions. ( )A t∆ , ( )
d

A t∆  

represent time-varying parameter uncertainties. assumed to 

have the following form: 

[ ] [ ]( )d dA A DH t E E∆ ∆ =           (2) 

where ,D E  and 
d

E  are constant matrices with appropriate 

dimensions, and ( )H t  is an unkown, real and possibly 

time-varying matrix with Lebesgue-measurable elements and 

satisfying 

( ) ( ) ,
T

H t H t I t≤ ∀              (3) 

The initial condition of ( )x t  is given by 

( ) ( ) [ ,0], max{ , }
a b

x t t t h h h hϕ= ∈ − =      (4) 

where ( )tϕ  is a continuously differentiable function with

[ ,0]t h∈ − . 

Next, an assumption of a fault model and some lemmas are 

introduced which will be used in the algorithm derivation later 

on. 

Assumption 1: Taking the sensor fault cases for example, 

according to the practical sensor characteristics in 

engineering systems, its working states can be classfied into 

four types shown in Table 1: 

Table 1. Fault Mode. 

Fault cases The i-th Sensor State:  si  

Normal 1 

Value Reduced 0 1is< <  

Value Magnified 1isσ > >  

Outage is σ=  

i
s  denotes the i-th sensor working state, n represents the 

quantity of sensors existing in a system. Then the following 

fault model is given by 

1 2( , , )nS diag s s s= ⋯ 0 , 1is σ σ≤ ≤ ≥        (5) 

where 1
i

s =  represents the ith sensor is normal. And 

0 1
i

s< <  denotes the ith sensor measured value is less than a 

normal value, accordingly 1
i

sσ > >  represents the current 

value is greater than the normal value. If a sensor open circuit 

fault occurs, the sensor output will give out a maximum value 

which is denoted by 
i

s σ= . 

Lemma 1 [16]: (Schur complement) For a given symmetric 

matrix 
11 12

22

,
*

Z Z
Z

Z

 
=  
 

where
11

r r
Z R

×∈ , then the following 

inequalities are equivalent 

0;Z <                                (6) 

11
0Z < , 1

22 12 11 12 0;
T

Z Z Z Z
−− <             (7) 

22
0Z < , 1

11 12 22 12 0
T

Z Z Z Z
−− <             (8) 

Lemma 2 [16]: Let M , N , L and H be real matrices with 

appropriate dimensions and T
H H I≤ , 0ε > , then the 

following inequalities hold 

2 ;M HL M M L L≤ +T T T
                (9) 

1
;

T
M N N M M M N Nε ε −+ ≤ +T T T

     (10) 

1
2

T T T
L N L L N Nε ε −± ≤ +               (11) 

2.2. Non-frangile State Feedback Controller 

Consider system (1). If matrices ,
d

A A , B  are 

controllable and measurable, the following non-frangile state 

feedback controller is employed: 

( ) ( ) ( )u t K K x t= + ∆             (12) 
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where K  is a gain matrix and K∆  represents a controller 

perturbation. 

Considering different industrial conditions, take two cases 

of controller perturbation K∆  into account in the paper. 

2.2.1. Case 1 with K-dependent Controller Perturbation 

In this case, consider the controller perturbation K∆ caused 

by controller component aging or equipment performance 

degradation. K∆  is K-dependent. It’s given by the following 

form 

1 2, [ ]j mK K diagδ δ δ δ δ δ∆ = = ⋯ ⋯  

where δ  is a perturbation coefficient matrix with 

| | 1, ( 1,2, , )j j j mδ δ≤ < = ⋯ , jδ  is the upper bound of 

parameter perturbation. 

Consider sensor fault cases with 
1 2

( , , )
m

S diag s s s= ⋯ , 

system equation (1) can be written by 

( ) [ ] ( )

( ) ( )

( ) ( )

d b

d d a

x t A DHE BKS B KS x t

B KS B KS x t h

A DHE x t h

δ
δ

= + + +
+ + −
+ + −

ɺ

       (13) 

Then the following stability criteria can be obtained. 

Theorem 1: Consider any admissible sensor fault. Suppose 

the scalars 0( 1, 2)
i

iλ > =  are given. The closed-loop system 

(1) is asymptotically stable if there exist a matrix K with 

appropriate dimension and a symmetric positive-definite 

matrix P satisfying with the following LMI 

1

1

1

2

1

2

(1 ) 2

* 0 0 0 0 0 0

* * 0 0 0 0 0

* * * 0 0 0 0
0

* * * * 0 0 0

* * * * * 0 0

* * * * * * 0

* * * * * * *

T T T T T T T

d d dX S Y D X E X E A B

I

I

I

δ
λ

λ

λ
λ

−

−

 Σ +
 

− 
 −
 

−  < − 
 −
 − 
 − 

                     (14) 

where 1X P−= , 1K Y X −= ⋅ , 2 +2 2 dAX BYS B YδΣ = +  

Proof: Choose a Lyapunov-Krasovskii candidate to be 

( ) 1

2

, ( ) ( ) ( ) ( )

( ) ( )

a

b

t
T T

t h

t
T

t h

V x t x t Px t x s Q x s ds

x s Q x s ds

−

−

= +

+

∫

∫
     (15) 

If defining 
1( , ) ( ) ( )

T
V x t x t Px t= , then calculate the 

derivative of 
1
( , )V x t  along the solutions of closed system (13) 

and yield 

1( , ) ( )( + + + ) ( )

+ ( ) ( + ) ( )

+ ( )( + ) ( )

+ ( ) ( + ) ( )

+ ( )( ) ( )

+ ( ) ( + ) ( )

T T

T

T T

b d d

T

d d b

T T

a d d

T

d d a

V x t x t A BKS B K DHE Px t

x t P A BKS B K DHE x t

x t h B KS B KS Px t

x t P B KS B KS x t h

x t h A DHE Px t

x t P A DHE x t h

δ
δ
δ

δ

=

+ +
−

−

− +

−

ɺ

    (16) 

Basing on lemma 2 

2 ( ) ( )

( ) ( )+ ( ) ( )

T

T T T T

x t PDHEx t

x t PDD Px t x t E Ex t≤
      (17) 

1

1 1

2 ( ) ( )

( ) ( )+ ( ) ( )

T

d a

T T T

d d a a

x t PA x t h

x t PA A Px t x t h x t hλ λ−

−

≤ − −
    (18) 

2 ( ) ( )

( ) ( )+ ( ) ( )

T

d a

T T T T

a d d a

x t PDHE x t h

x t PDD Px t x t h E E x t h

−

≤ − −
   (19) 

1 2

2 2

2 ( ) (1 ) ( )

( ) ( )+ (1 ) ( ) ( )

T

d b

T T T T

d d b b

x t PB KSx t h

x t PB B Px t x t h SK KSx t h

δ
λ λ δ−

+ −

≤ + − −
 (20) 

If defing 

1 1 +
T

d dQ I E Eλ=  

2

2 2 (1 )
T

Q SK KSλ δ= +  

Using (16)-(20), calculate the derivative of ( ),V x t  and 

yield 

1 1

2 2

( , ) 2 ( ) ( )+ ( ) ( ) ( ) ( )

+ ( ) ( ) ( ) ( )

T T T

a a

T T

b b

V x t x t Px t x t Q x t x t h Q x t h

x t Q x t x t h Q x t h

= − − −

− − −

ɺ ɺ

 

2

1 2

1 1

1 2

( , ) ( )[2 +2 2 +2

+ + (1 ) +

+ + ] ( )

( ) ( )

T T

d

T T T

d d

T T

d d d d

T

V x t x t PA PBKS PB K PDD P

I SK KS E E E E

PA A P PB B P x t

x t x t

δ
λ λ δ
λ λ− −

≤ +

+ +

= ∆

ɺ

  (21) 

If defing 
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1

2

2

1

1

1

2

2 +2 2 +

+ (1 ) +2

+ +

+

d

T T

T T T

d d d d

T

d d

PA PBKS PB K I

SK KS PDD P

E E E E PA A P

PB B P

δ λ
λ δ

λ
λ

−

−

Θ = +

+

+
        (22) 

According to Lyapunov-Krasovskii stability theory, it can 

be drawn that the closed-loop system (13) is asymptotically 

stable with 0Θ < . Now multiplying 1P−  on both sides of 

inequality 0Θ <  and defining 
1
,X P Y KX

−= = , it can be 

obtained 

2

1 2

1 1

1 2

2 +2 2 + + (1 )

+2 +( ) ( )

+ +

0

T T T

d

T T T

d d

T T

d d d d

AX BYS B Y X X S Y YS

DD EX EX E X E X

A A B B

δ λ λ δ

λ λ− −

Θ = + +

+

<

ɶ

  (23) 

Basing on lemma 1, it can be found that inequality (23) is 

equivalent with (14), which completes the proof. 

Remark 1: It can be found the stabilization criterion is 

dependent with δ  which denotes the controller perturtation 

in a system. Thus we can obtain the permissible perturtation 

value by solving the inequality (14). On the other side, the 

stability condition is delay-independent by choosing a proper 

Lyapunov-Krasovskii functional. 

Now taking an actuator failure into account, the following 

fault actuator matrix is given  

1 2( , , )mG diag g g g= ⋯ 0 , 1ig σ σ≤ ≤ ≥      (24) 

G has a similar structure with sensor fault model shown in 

Table 1. m represents the actuator quantity in a system. 

Accordingly a closed-loop system equation with actuator fault 

cases can be given by 

( ) [ ] ( )

( ) ( )

( ) ( )

d b

d d a

x t A DHE BGK BG K x t

B GK BG K x t h

A DHE x t h

δ
δ

= + + +
+ + −
+ + −

ɺ

     (25) 

It can be noticed equation (25) has similar structure with 

(13). After calculating, we obtain the stabilization condition 

under actuator fault cases given as corollary 1. 

Corollary 1: Consider any admissible actuaor fault. 

Suppose positive scalars 0( 1,2)
i

iγ > =  are known. The 

closed-loop system (25) is asymptotically if there exist a 

matrix K with appropriate dimension and a symmetric 

positive-definite matrix P satisfying with the following LMI 

1

1

1

2

1

2

(1 ) 2

* 0 0 0 0 0 0

* * 0 0 0 0 0

* * * 0 0 0 0
0

* * * * 0 0 0

* * * * * 0 0

* * * * * * 0

* * * * * * *

T T T T T T T

d d d
X G Y D X E X E A B

I

I

I

δ
γ

γ

γ
γ

−

−

 Σ +
 

− 
 −
 

−  < − 
 −
 − 
 − 

ɶ

                    (26) 

where
1,X P−=  1

K Y X
−= ⋅ , 2 +2 2 dAX BGY B YδΣ = +ɶ  

Remark 2: It can be found that LMI structure of a 

stabilization condition under an actuator fault case is the same 

with (11) if the quantity of actuators is the same with sensors’ 

in one system. Thus a control law derived in the sensor fault 

case is also fit for an actuator fault case. 

2.2.2. Case 2 with K-independent Controller Perturbation 

Consider the controller perturbation caused by random 

noise because of fluctuations in power system or 

communication circuits. K∆  is K-independent. It’s 

supposed to have the following form 

( )
K

K DH t E∆ =  

where 
K

E  is a specific constant matrix, D and ( )H t  have 

the same state values with (2). Then system equation (1) can 

be written by 

( ) [( ( )) ( )] ( )

( ( )) ( )

( ) ( )

K

d d a

d K b

x t A A t B K DHE x t

A A t x t h

B K DHE x t h

= + ∆ + +
+ + ∆ −
+ + −

ɺ

     (27) 

If considering the actuator fault cases with 

1 2
( , , )

m
G diag g g g= ⋯ . The closed-loop system equation (27) 

is changed to 

( )
( )

( ) ( )

( )

( ) ( )

K

d d K b

d d a

x t A BGK BGDHE DHE x t

B GK B GDHE x t h

A DHE x t h

= + + +

+ + −
+ + −

ɺ

    (28) 

Then the following stability criteria can be deduced. 

Theorem 2: Suppose that the scalars 0( 1,2)
i

iα > =  are 

known. The closed-loop system (28) is asymptotically stable 

with any possible actuaor fault if there exist a matrix K with 

appropriate dimension and a symmetric positive-definite 

matrix P satisfying with the following LMI 
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1 2 3 4

1

2

3

4

* 0 0 0

0* * 0 0

* * * 0

* * * *

Ω Γ Γ Γ Γ 
 −Λ 
  <−Λ
 −Λ 
 −Λ 

      (29) 

where 

1 1
,

2 +2

X P K Y X

AX BGY

− −= = ⋅
Ω =

 

1

2

3

4

[ 2 2 ]

[ ]

[ ]

[ ]

T T T T T T

d K

T T T

d d

d

D X E X E X E

X Y G

A B

BD B GD

Γ =

Γ =
Γ =
Γ =

 

1

1 1

2 1 2

3 1 2

4

( , , , )

( , )

( , )

( , )

diag I I I I

diag I I

diag I I

diag I I

α α
α α

− −

Λ =

Λ =
Λ =
Λ =

 

Proof: Choose the same Lyapunov-Krasovskii candidate as 

(15) and define 
1( , ) ( ) ( )

T
V x t x t Px t= . Then calculate the 

derivative of 
1
( , )V x t  along the closed system (28) and yield 

( )

( )

1
, 2 ( ) ( )+2 ( ) ( )

+2 ( ) ( )+2 ( ) ( )

+2 ( ) ( + ) ( )

+2 ( ) + ( )

T T

T T

K

T

d d K b

T

d d a

V x t x t PAx t x t PBGKx t

x t PBDHE x t x t PDHEx t

x t P B GK B GDHE x t h

x t P A DHE x t h

=

−

−

ɺ

   (30) 

According to lemma 2, the following inequalities hold 

2 ( ) ( )

( ) ( )+ ( ) ( )

T

K

T T T T T

K K

x t PBDHE x t

x t PBDD B Px t x t E E x t≤
    (31) 

2 ( ) ( )

( ) ( )+ ( ) ( ),

T

T T T T

x t PDHEx t

x t PDD Px t x t E Ex t≤
     (32) 

1

2 2

2 ( ) ( )

( ) ( )+ ( ) ( )

T

d b

T T T T T

d d b b

x t PB GKx t h

x t PB B Px t x t h K G GKx t hα α−

−

≤ − −
  (33) 

1

1 1

2 ( ) ( )

( ) ( )+ ( ) ( )

T

d a

T T T

d d a a

x t PA x t h

x t PA A Px t x t h x t hα α−

−

≤ − −
   (34) 

2 ( ) ( )

( ) ( )+ ( ) ( )

T

d a

T T T T

a d d a

x t PDHE x t h

x t PDD Px t x t h E E x t h

−

≤ − −
   (35) 

2 ( ) ( )

( ) ( )+ ( ) ( )

T

d K b

T T T T T T

d d b K K b

x t PB GDHE x t h

x t PB GDD G B Px t x t h E E x t h

−

≤ − −
  (36) 

If defing 

1 1 +
T

d dQ I E Eα=  

2 2

T T T

K KQ K G GK E Eα= +  

According to (30)-(36), the derivative of ( ),V x t  can be 

calculated 

1 2

1

1

1

2

( , ) ( )[2 +2 + +

+2 + +

+2 +

+ ] ( )

T T T

T T T T

T T T

K K d d d d

T T T T

d d d d

V x t x t PA PBGK I K G GK

PDD P E E PBDD B P

E E E E PA A P

PB B P PB GDD G B P x t

α α

α
α

−

−

≤

+

+

ɺ

   (37) 

Then define 

1 2

1

1

1

2

2 +2 + +

+2 + +

+2 +

+

T T

T T T T

T T T

K K d d d d

T T T T

d d d d

PA PBGK I K G GK

PDD P E E PBDD B P

E E E E PA A P

PB B P PB GDD G B P

α α

α
α

−

−

∆ =

+

+

      (38) 

Similarly, basing on Lyapunov-Krasovskii stability theory, 

the closed-loop system (28) is asymptotically stable with 

0∆ < . Now let 
1
,X P Y KX

−= = , multiplying 1P−  on both 

sides of inequality (38), yield 

1

1 2 1

1

2

2 +2 +2 + +

+2 + + +

+

0

T T T T T

d d

T T T T T T

K K d d

T T T T T T

d d d d

AX BGY DD X E EX X E E X

X E E X X X Y G GY A A

B B BDD B B GDD G B

α α α
α

−

−

∆ =

+ +
<

i

   (39) 

Basing on lemma 1 (Schur complement), it can be found 

that inequality (39) is equivalent with (29), which completes 

the proof. 

Remark 3: From the above result, it can be found that the 

stabilization criterion is dependent with ,
K

D E  which 

represents the state feedback controller perturtation in a 

system. It’s also delay-independent. 

If taking the sensor failure into account, use the same fault 

model as case 1. Accordingly the closed-loop system equation 

can be written as 

( ) [ ] ( )

( ) ( )

( ) ( )

K

d d K b

d d a

x t A BKS BDHE S DHE x t

B KS B DHE S x t h

A DHE x t h

= + + +
+ + −
+ + −

ɺ

   (40) 

Then the stabilization criterion can be given with corollary 

2. 

Corollary 2: Consider any admissible sensor fault. Suppose 

that positive scalars 0( 1,2)
i

iβ > =  are known. The 

closed-loop system (40) is asymptotically stable if there exist 

the matrix K with appropriate dimension and symmetric 

positive-definite matrix P satisfying the following LMI 
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1 2 3 4

1

2

3

4

* 0 0 0

0* * 0 0

* * * 0

* * * *

 Ω Γ Γ Γ Γ
 −Λ 
  <−Λ
 

−Λ 
 −Λ 

ɶ ɶ ɶ ɶ ɶ

ɶ

ɶ

ɶ

ɶ

     (41) 

Where 
1
,X P

−=  1
K Y X

−= ⋅ , 2 +2AX BYSΩ =ɶ  

1

2

3

4

[ 2 ]

[ ]

[ ]

[ ]

T T T T T T T T T

d K K

T T

d d

d

D X E X E X E X S E

X Y S

A B

BD B D

Γ =

Γ =

Γ =

Γ =

ɶ

ɶ

ɶ

ɶ

 

1

1 1

2 1 2

3 1 2

4

( , , , , )

( , )

( , )

( , )

diag I I I I I

diag I I

diag I I

diag I I

β β
β β

− −

Λ =

Λ =

Λ =

Λ =

ɶ

ɶ

ɶ

ɶ

 

Remark 4: From the corollary 2, it can also be verified that 

the inequality structure under actuator faults is consistent with 

sensor’s if the numbers of sensors and actuators are the same 

in a system. 

If a special feedback controller with 0K∆ =  is considered, 

it can be written by ( ) ( )u t Kx t= . Then the control law that 

maintains the system (1) asymptotically stable is given by 

corollary 3. 

Corollary 3: Suppose a sensor fault matrix S and positive 

scalar 0( 1,2)
i

iζ > =  are known. The system (1) with control 

law ( ) ( )u t Kx t=  has robust asymptotic stability if there exist 

matrix K with appropriate dimension and symmetric 

positive-definite matrix P satisfying the following LMI 

1

1

1

2

1

2

2

* 0 0 0 0 0 0

* * 0 0 0 0 0

* * * 0 0 0 0
0

* * * * 0 0 0

* * * * * 0 0

* * * * * * 0

* * * * * * *

T T T T T T

d d dX Y S D X E X E A B

I

I

I

ζ
ζ

ζ
ζ

−

−

 Σ
 

− 
 −
 

−  < − 
 −
 − 
 − 

                         (42) 

where 1
2 +2 ,AX BYS K YX

−Σ = = . 

Referring to the derived experience, the stabilization 

condition under actuator fault cases can also be derived. 

For above stabilization conditions, we can obtain the 

solutions by calculating LMIs with the help of Matlab 

software. 

3. Application Example 

Taking a Heat Zone I of a beam reheating furnace for 

example with technological parameters shown in Table 2. 

Table 2. Technological parameters. 

Furnace parameters Description 

Flat burner power 260kw 

Flat burner number 6 

Billet component QBe2 

Beam step velocity 0.01 /m s  

Initial temperature 350°C 

Billet regulation (Length*Width*Height) 5000× 430 ×210 (mm) 

Heat zone I dimension (Length*Width*Height) 7000×5700×1600 (mm) 

Then the state space model of Heat Zone I is given by 

1 1 1

1 1 1

( ) ( ) ( ),

( ) ( ) ( )

heat heat heat

heat heat heat

x t A x t B u t

y t C x t D u t

= +
 = +

ɺ

 

Using data collected in the control process, the basic 

parameter values of 
1heatA , 

1heatB , 
1heatC  and 

1heatD  can be 

identified 

[ ] [ ]
1 1

1 1

1.5625 0.3608 1
, ,

1 0 0

0 3.698 , 0

heat heat

heat heat

A B

C D

− −   
= =   
   

= =
 

If considering the time delay and all the possible 

uncertainty caused by gas flow fluctuation or the billet 

capacity change in a system, then the state equation can be 

written by 

1 1 1 1 1

1 1

( ) ( ( )) ( ) ( ( ))

( ) ( ) ( )

d d

d

heat heat heat heat heat

a heat heat b

x t A A t x t A A t

x t h B u t B u t h

= + ∆ + + ∆

⋅ − + + −

ɺ

 

where 
1
( )heatA t∆ , 

1
( )

dheatA t∆  are parameter uncertainties 

which are assumed to comply with (2), and we employ the 

following matrix 
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1

-0.25 0.15 0.20 0.15
, ,

0.15 0 0.15 0.20dheatA D
   

= =   
   

 

1 1 1

0.15 0.10 1 0.1 0.1
, ,

0.10 0.15 0 0.1 0.1d dheat heat heatE B E
     

= = =     
     

 

In the present work, there are two thermocouples in heat 

zone I. Taking the sensor faults into consideration, it’s found 

that most fault cases are loss of effectiveness with 0 1
i

s< < . 

With the help of Matlab software, we can solve the LMIs and 

obtain the solutions under different controller modes with 

sensor failure. 

Consider the following sensor working states: 

0
(1,1)S diag=  which represents both of two sensors are 

normal; then two states under sensor loss of effectiveness with 

1
(0.65,0.70)S diag=  and 

2
(0.90,0.95)S diag= . 

(i). Non-fragile state feedback controller with K∆
satisfying with case 1 

For a controller used in a beam reheat furnace, some 

components will get aging because of working long hours. 

Suppose there is a controller perturtation in heat zoneI with 

[0.05 0.05]diagδ = . And let the given scalars be 

0.25( 1,2)
i

iλ = = . After solving the LMIs composed by

0 1 2
, ,S S S satisfying with (14), the following results can be 

obtained 

0.2612 -1.1015 16.1521 15.9687
,

1.1015 0.2239 15.9687 16.1521
X Y

−   
= =   − −   

 

Thus 

6.5373 6.5153

7.8067 4.9289
K

− 
=  − 

 

0.0469 0.4456

0.4456 0.0526
P

− − 
=  − − 

 

(ii). Non-fragile state feedback controller with K∆
satisfying with case 2 

In view of the system equation (28), suppose there is a jump 

change caused by noise interference in power supply circuits. 

And the interference signal is represented by D  and 
KholdE

under case 2. 

And let the scalars be 0.20( 1,2)
i

iα = = , after solving the 

LMIs composed by 
0 1 2
, ,S S S  satisfying with (41), yield 

0.3885 -2.3526 15.7216 18.1282
,

2.3526 0.4652 18.1282 15.7216
X Y

−   
= =   − −   

 

Then 

0.0815 0.4123 5.4618 3.7018
,

0.4123 0.0646 5.3273 3.8957
P K

− − −   
= =   − − −   

 

(iii). Memoryless state feedbank controller 

Consider the control law with 0K∆ = . Assuming 

0.15( 1, 2),
i

iζ = =  after solving the LMIs composed by 

0 1 2
, ,S S S  satisfying with (42), we have 

0.1280 -4.1225
,

-4.1225 0.2249
X

 
=  
 

3.1295 6.5600

6.5600 5.7280
Y

− 
=  − 

 

Thus 

0.0132 0.2422 1.6299 0.7085
,

0.2422 0.0075 1.4738 1.5455
P K

− − −   
= =   − − −   

 

From the above results, it can be drawn that the model system 

of heat zoneI in the reheating furnace can maitain robust 

asymptotically stability and non-fragility under above sensor 

working cases: 
0 1 2
, ,S S S  and assuming controller perturtation. 

The above results are only specific solutions for system (1) 

under different state feedback controllers with sensor loss of 

effectiveness. The sulotions under other cases can also be 

solved by LMI toolbox. 

4. Conclusion 

In the present work, design of non-fragile fault-tolerant 

controller is investigated for a linear uncertain systems with 

time-delays. Two cases of controller perturtation are taken into 

account due to component aging and noise disturbance 

possibly exist in engineering systems. Considering sensor or 

actuator fault conditions, the stablity criteria in LMI are 

derived separately under above two cases basing on Lyapunov 

stability theory. The non-fragile fault-tolerant controllers can 

be given by the feasible solutions of the stablity criteria. A 

numerical example is given to demonstrate the computation 

process for the algorithm. It also verifies the effectiveness of 

the proposed approach. However, the results are obtained 

under specific conditions, namely sensor loss of effetiveness, 

given system uncertainties and norm-bounded controller 

perturtation. Thus, there is still further research work to be 

done, such as the upper bound of FTC controller perturbation 

and the admissible scope of sensor failure. 
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