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Abstract: Hybrid systems are dynamical systems consisting of interacting discrete event and continuous state subsystems. A 

controlled hybrid automaton is a hybrid automaton whose continuous-state dynamics are described by inhomogeneous 

differential equations. This paper presents a sufficient condition for the existence of global non-terminating solutions in 

controlled hybrid automata. The condition is based on a recursive algorithm that can always terminate after a finite number of 

iterations to a limit set of states, i.e. the fixed point of the recursion. If the fixed point is non-empty, then there exists a 

measurable control under which the hybrid automaton generates a global non-terminating solution. The more important is that 

this result can also be used to infer the existence of global solutions to compositions of controlled hybrid automata, thereby 

providing a foundation for the analysis of large scale hybrid systems. The controlled hybrid automata model can be used for 

robotics system modeling and control. By solving the global non-terminating solution to controlled hybrid automata, the biped 

robots can be guaranteed to keep the walking gait without falling down. 
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1. Introduction 

Hybrid systems are dynamical systems consisting of 

interacting discrete event and continuous state subsystems. 

The first important hybrid system model was the model 

proposed by Hans Witsenhausen in 1966 [16], known as the 

autonomous hybrid systems. Switched systems [2] proposed 

by Brockett provide a more convenient description than 

Witsenhausen’s model. Branicky’s framework [1] is the most 

general on of the preceding models because it allows 

continuous control signals in the vector spaces and discrete 

control systems in the guard condition sets. A controlled 

hybrid automaton, a subset of Branicky’s model, is a hybrid 

automaton, whose underlying continuous dynamics are 

modelled by inhomogeneous ordinary differential equations. 

More advanced hybrid systems were introduced in recent 

research work, such as stochastic hybrid systems [13]. 

There are several different problems proposed in the 

hybrid research area. This section discusses three 

fundamental analysis problems: the verification problem, the 

stability problem and the existence problem, respectively. 

The verification problem asks if a hybrid system design is 

correct, i.e. if the hybrid system satisfies certain properties. 

The simplest verification problem is a reachability question, 

which is to ask whether or not some bad states are reachable 

from the initial state of the system. The stability problem 

looks for the conditions under which the equilibrium point of 

a hybrid system is stable. The existence problem tries to find 

the conditions under which the solution to a hybrid system 

exists. Before one verifies if the system's solution satisfies 

certain conditions, it is important to make sure whether or not 

the solution exists at all, and if so, whether there are many 

possible solutions satisfying the system's dynamics. The 

existence problem, therefore, is the foundation of the 

verification and stability problems. 

The main result of this paper is a sufficient condition for 

the existence of global non-terminating solutions in 

controlled hybrid automata. A global non-terminating 

solution to a controlled hybrid automaton is a hybrid 

trajectory with an infinite number of switching instants in an 

infinite time interval. The condition is based on a recursive 

algorithm that terminates after a finite number of iterations to 

a set of states. If this set is non-empty, then there exists a 

measurable control under which the hybrid automaton 

generates a global non-terminating solution. The more 
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important is that this result can also be used to infer the 

existence of global solutions to compositions of controlled 

hybrid automata, thereby providing a foundation for the 

analysis of large scale hybrid systems. 

The application of the main results is in biped-robot 

modeling and control. In recent publications [12, 15] in 

robotics, it was projected that robotics leads social innovation 

in the future, moreover, software/hardware initiatives will be 

main focuses for robotics. The author has previous work in 

hardware design in robotic arm [3] and mobile robot tracking 

[10]. This paper provides main contribution in gait control of 

different types of robots [4, 5, 6, 9, 14]. Especially, in biped 

robotic applications, the existence of a non-terminating 

solution would be able to guarantee the robot keep walking 

without falling down. 

This paper is organized as follows: Section 2 introduces 

the definition of controlled hybrid automata and illustrates 

the modeling method for a kinematic robotic leg. Section 3 

presents the recursive algorithm for the non-terminating 

solution to controlled hybrid automata. If given a hybrid 

system in which multiple cycles support non-terminating 

solutions with known fixed point of the recursive algorithm, 

then the composition of these cycles will also have non-

terminating solutions provided that the fixed points of 

individual cycles have a non-empty intersection. In Section 4, 

the compositional result is illustrated in a biped walking 

robot to ensure the robot keep walking without falling down. 

2. Controlled Hybrid Automata 

A hybrid automaton is a finite state machine with a set of 

real-valued variables. The state of a hybrid automaton 

consists of a continuous-valued vector and a discrete-valued 

vector. The continuous evolution is determined by an 

ordinary differential equation or a differential inclusion and 

the discrete evolution is controlled by a logical predicate, 

called the guard. A hybrid automaton consists of a finite set 

{ }1 2, , , nX x x x= ⋯  of real-valued variables and a labeled 

directed graph ( , ).Q E  Q is a set of vertices and E  is a set of 

directed arcs or edges between vertices. Vertices represent the 

discrete states or modes of a hybrid automaton. A hybrid state 

( , )q x consists of a discrete mode q Q∈ and a particular 

value x  of the continuous variables in .X In each discrete 

mode, the real-valued continuous variables evolve according 

to a flow condition described by a differential equation 

( ) ( ( ), ( ))ix t f x t u t=ɺ  or a differential inclusion 

( ) ( ( ), ( ))ix t f x t u t∈ɺ . The hybrid automaton whose flow 

conditions are in the differential equation forms is called a 

controlled hybrid automaton. A solution χ  to a hybrid 

automaton H consists of three components, hybrid time 

trajectoryτ , continuous variable x, discrete state q. These 

components satisfy three conditions: 

1. Initial condition: ( (0), (0)) ( ),x q Init q∈ where ( )Init q is 

the initial discrete states; 

2. Continuous evolution: in each time interval where a 

discrete transition does not occur, the continuous 

variable x satisfies the invariant condition Inv(q) and the 

flow condition ( ) ( ( ), ( ))ix t f x t u t=ɺ ; 

3. Discrete evolution: when a discrete transition occurs, 

the continuous state x satisfies a transition condition 

( , '),G q q that enables the discrete transitions. If the 

discrete transition is an autonomous jump, then the 

continuous state satisfies the reset condition. The reset 

condition is a function mapping from a direct arc

( , )i jq q  to a value of .
nℜ  

A solution χ  sometimes is called an execution to a hybrid 

automaton. 

Example: A one leg walking robot is used to illustrate how 

to construct hybrid automaton models of physical systems. 

The leg is parameterized by the variables ( , , )q x l θ=  as 

shown in Figure 1. These variables correspond to the lateral 

position of the body, the length of the leg and the angular 

displacement of the leg, respectively. 

 

Figure 1. The kinematic leg [8]. 

Assuming that the height of the body off the ground 

remains fixed, so when the leg is lifted off the ground, the 

body will not fall down. Assume the inputs for the system are 

the velocities 1u l= ɺ  and 1u θ= ɺ . When the angular 

displacement of the leg arrives at the boundary condition

1θ θ= , the length of the leg is shortened by an impulsive 

input forcing the foot off the ground. The angular position θ
will be controlled to arrive at the boundary 2.θ θ=  While 

this is happening, the leg is lengthened so it lands on the 

ground when the boundary condition is met. This system may 

be represented by hybrid automaton in Figure 2, where the 

discrete state OFF denotes the state when the foot is off the 

ground, and ON denotes the state when the foot is on the 

ground. { },ON OFF
S  and { },OFF ON

S  are the guards for the 

transitions between two states. 
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Figure 2. The controlled hybrid automaton model for the kinematic leg. 

In this case, the state of kinematic leg on the ground is the 

set of points 

{ }3 : cos ,S q l hθ= ∈ℜ =  

where h is the fixed height. The equations of motions are 

given by 

1 2

0 0

1 0 ,

0 1

x
d

l u u
dt

θ

     
     = +     
          

 

when the foot is off the ground and 

2

cos

tan ,

1

l

x
d

l l u
dt

θ
θ

θ

 −  
   =   
     
 

 

when the foot is in contact with the ground. The guard sets 

are 

{ } { }
{ } { }

3
1,

3
2,

( ( , , ) : ,

( ( , , ) : .

ON OFF

OFF ON

S q x l

S q x l

θ θ θ

θ θ θ

= = ∈ ℜ =

= = ∈ ℜ =
 

When the value of q is in the set of { },ON OFF
S , the leg will 

lift off the ground and vice versa. In order to have the robot 

keeps hopping, we need to have a non-terminating or non-

blocking solution between the two discrete states (ON/OFF). 

Next section, we will present the solution to the non-

terminating solution to controlled hybrid automata. 

3. Non-terminating Solutions to 

Controlled Hybrid Automata 

If we consider a controlled hybrid automaton given in 

Figure 3, for a set K of X, we define the precondition set of 

K under event ( ),i j  by the equation 

Pre ( ) Pre ( ).

f

f

x K

K x

∈

= ∩  In fact, the precondition set consists 

all states x in X such that any final state ( ),fx j  can be 

reached from ( , )x i . Given the trace (i.e. loop) of N events, 

 

Figure 3. Controlled hybrid automaton. 

( ) ( ) ( ) ( )0 1 1 2 1 0, , , , , , , ,N N Ni i i i i i i iα −= ⋯  

and assume that is logically accepted by the hybrid 

automaton. We define the recursion by the equations ( )
1

0 0

mod( )
1 mod( 1) PreN j

j jN j

G

G −
+ − −

 Γ =

Γ = Γ

∩
                 (1) 
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for j=0, 1, … 

Lemma 1 [11]: If NΓ is non-empty, then for any 1
0 ,fx G∈

there exists a 0fT ≥ and a trajectory q Q X∈ × , such that for 

any initial state 0 0 ,q Q∈ q  solves the hybrid automaton, q  

has the traceα , and ( ) .f fx T x=  

Lemma 2 [11]: If Nx ∉ Γ , then there exists at least on 

point in 1
0G  that is not reachable from x0 under a trajectory q 

with traceα . 

Lemma 3 [11]: 2N NΓ = Γ . 

Proposition 1: If 
*Γ  is non-empty, then there exists a 

trajectory q Q X∈ × , such that for any initial state 0 0 ,q Q∈

q  solves the hybrid automaton, q  has the trace
*α , and 

there exists a sequence of switching instants { }
0

j
j

τ
∞

=
 such 

that ( ) .jx τ ∈ Γ  

Proof: from Lemma 3, we know that * .NΓ = Γ  Any initial 

state 0 0q Q∈ can be reached by any point in 1
0G based on 

Lemma 2. Therefore, a point in the 
*Γ  can be reached along 

the trajectory q, therefore, the trajectory q solves the hybrid 

automaton with the trace .α  

Remarks: The recursive algorithm has two advantages: 

1. Because the sequence { }
0

jN
j

∞

=
Γ  converses to a fixed 

point 
*Γ  after one integration, we can compute the 

fixed point without more than one cycle to reduce the 

computational complexity. 

2. Moreover, this backward reachability algorithm ensures 

the compositional analysis of hybrid automata. 

Composition in this paper means that the fixed point of 

the two or more individual strings can be used to 

compute the fixed point of the composed strings as 

shown in Proposition 2. 

Proposition 2: Given a hybrid automaton shown in Figure 

4 and letα  and β  be two traces 

( ) ( ) ( )
( ) ( ) ( )

0 1 1 2 1 0

0 1 1 2 1 0

, , , , , ,

, , , , , ,

N

M

i i i i i i

j j j j i i

α

β
−

−

=

=

⋯

⋯
 

with 0 0i j= . Then the string αβ is logically accepted by the 

hybrid automaton and 
* * *

.αβ α βΓ = Γ Γ∩  

 

Figure 4. A cascaded controlled hybrid automaton. 

Proof: First, the left inclusion 
* * *
αβ α βΓ ⊇ Γ Γ∩ needs to 

be proven. By the definition of the recursion for trace 0
α  in 

Eq. (1), 

( )
1

0 0

mod( )
1 mod( 1) Pre

N n
n nN n

G

G

α

α α−
+ − −

 Γ =


Γ = Γ
∩

 

For 0, , 1.n N= −⋯ By Lemma 3, we know * .N
α

αΓ = Γ  By 

the definition of the recursion for trace 0
α  in Eq. (1), 

( )
1
00

mod( )
1 mod( 1) Pre

N

M m
mm M m

F

F

β α

β β−
+ − −

 Γ = Γ


Γ = Γ

∩

∩
 

For 0, , 1.m M= −⋯ After the recursive computation, 

*
,N M

α β
αβΓ Γ = Γ∩  which includes 

* *
.α βΓ Γ∩  

Second, the right inclusion 
* * *
αβ α βΓ ⊆ Γ Γ∩  needs to be 

proven. This inclusion direction is trivial due to the definition 

of the precondition set. Any point in the fixed point of the 

trace αβ will be able to reach to the final state in under the 

individual trace α and β . Hence we proved that the equality 

* * *
αβ α βΓ = Γ Γ∩ holds. 

In the next section, a biped walking robot is used to 

illustrate the main contribution of the paper, i.e. the 

preceding proposition for compositional analysis. 

4. Application to a Biped Walking Robot 

This section uses the biped walking robotic system as an 

example to illustrate the main results on the existence of non-

terminating solutions for controlled hybrid automata. The 

biped robot in this thesis is modified from the simplest 

special case of the passive-dynamic models in [3]. Two rigid 

legs are connected by a frictionless hinge at the hip. A point-
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mass is at the hip and infinitesimal point-masses at the feet. 

The walking cartoon of the point-foot model is shown in 

Figure 5. 

 

Figure 5. The walking pattern of the rigid-leg biped robot [7]. 

The walking dynamics of the biped robot contains three 

modes: the double legs support the body, the right leg 

supports the body, and the left leg supports the body. Each 

state is described by a differential equation. The system is 

parameterized by the ( ), ,q θ θ= ɺ , where ( ), .R Lθ θ θ=  

When the right leg supports the body, the equations of 

motion are given by 

31

42

23

2
4 3 1 2 1 1 2

,
sin( )

sin( ) cos( )sin( )

qq

qqd

qqdt

q q q q q q q

  
  
   =   
  
 − − + −   

 

which are derived from the nonlinear inverted pendulum 

equations 

2

sin
.

sin( ) cos sin( )

RR

L R R L R R L

d

dt

θθ
θ θ θ θ θ θ θ

  
=   

− − − −    

ɺɺ

ɺɺ ɺ
 

Similarly, when the left leg supports the body, the 

equations of the motion are given by 

31

42

2
3 4 2 1 2 2 1

4 1

,
sin( ) cos( )sin( )

sin( )

qq

qqd

qdt q q q q q q

q q

  
  
   =
   − − + −
  
    

 

which are derived from the nonlinear inverted pendulum 

equations 

2

sin
.

sin( ) cos sin( )

LL

R L L R L L R

d

dt

θθ
θ θ θ θ θ θ θ

  
=   

− − − −    

ɺɺ

ɺɺ ɺ
 

When the double legs support the body, the equations of 

the motion are given by 

1 1

2 2

.
q ud

q udt

   
=   

   
 

The walking robot dynamic can be modelled as a 

controlled hybrid automaton shown in Figure 6. 
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Figure 6. Controlled hybrid automaton model for the biped walking robot. 

When the right leg supports the body, the equations of motion are given by. After mathematical derivation, the 

minimum symmetric walking period is obtained as 3.8121.τ =  The guard conditions are given as follows: 

{ }

1 1 2 1 3 1 4 1 1

1 1 2 1 1

1
| ( ) ( ), ( ) ( ) ( )

1

| ( ) ( ),

right
double

double
right

e
G q q k q k q k q k q k

e

G q q k q k k

τ

ττ τ τ τ τ

τ τ

 + = = − = = 
−  

= = − ∈ Ζ

 

and 

{ }

1 2 2 2 3 2 4 2 1 2

1 2 2 2 2

1
| ( ) ( ), ( ) ( ) ( )

1

| ( ) ( ), .

left
double

double
left

e
F q q k q k q k q k q k

e

F q q k q k k

τ

ττ τ τ τ τ

τ τ

 + = = − = = 
−  

= = − ∈ Ζ
 

If defining the trace α  as that the state variables 

change from the double support mode to the right support 

mode and then back to the double support mode. This 

means that the right leg is always the support leg and the 

left leg is the swing leg. The walking gait is the left leg 

swings forward and backward and the right leg supports 

the body. Similarly, the trace β  is that the state variables 

change from the double support mode to the left support 

mode and then back to the double support mode. This 

walking gait is that the right leg swings forward and 

backward and the left leg supports the body. 

If defining the biped robot walking gait as trace αβ
which means either the right leg or the left leg becomes a 

support leg and the other leg is the swing leg. The 

backward recursion is used to compute the fixed points of 

tracesα , β and αβ  respectively. It is not hard to find that 

*
,

right
doubleGαΓ = *

,
right

doubleFβΓ =  and 

*
1 1 2 1 3 1 4 1 1 1

3 2 4 2 1 21 1 2

1 1 2 1 3 1 4 1 1 1

3 2 4 2 1 21 1

1
{ | ( ) ( ), ( ) ( ) ( ),

1

1
( ) ( ) ( ), 2 , 2 1, }

1

1
{ | ( ) ( ), ( ) ( ) ( ),

1

1
( ) ( ) ( ), 2

1

e
q q k q k q k q k q k

e

e
q k q k q k k n k n n

e

e
q q k q k q k q k q k

e

e
q k q k q k k n

e

τ

αβ τ

τ

τ

τ

τ

τ

τ

τ τ τ τ τ

τ τ τ

τ τ τ τ τ

τ τ τ

+Γ = = − = =
−

+= = = = + ∈ Ζ
−

+= − = =
−

+= = = +
−

∪

21, 2 , }.k n n= ∈ Ζ

This illustrates the main result in Proposition 2, the 

intersection of 
* *
α βΓ Γ∩  is the same as 

*
,αβΓ which 

implies that the biped walking gat can be analyzed by two 

independent walking gaits (left to ground, and right to 

ground), respectively. The angle vs. time, angular velocity vs. 

time, and phase portraits during the four walking steps are 

shown in Figures 7-9, and the one step of the biped walking 

robot is shown in Figure 10. 

 

Figure 7. Angles vs. time for the biped robot. 
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Figure 8. Angular velocities vs. time for the biped robot. 

 

Figure 9. Phase portrait of the walking biped robot. 

 

Figure 10. The biped robot one step walking gait animation. 

5. Conclusion 

The main result of this thesis is a sufficient condition for 

the existence of nonterminating solutions to a controlled 

hybrid automaton. The sufficient condition is based on a 

recursive algorithm that computes an inner approximation of 

the backward reachability sets. In this paper, the algorithm 

guarantees to terminate in a finite number of iterations. If the 

fixed-point of the recursive algorithm is non-empty, then we 

know there exists a control supporting the specified cycle. If 

we are given a hybrid system in which multiple cycles 

support non-terminating solutions with known fixed points, 

then the composition of these cycles will also have non-

terminating solutions provided that the fixed points have a 

non-empty intersection. In this paper, the compositional 

result is illustrated in a biped walking robot to ensure the 

robot keep walking without falling down. Controller 

synthesis and optimal controller design are potential future 

research directions. 
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