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Abstract: This paper considers panel data models when the errors are first-order serially correlated as well as with stochastic 

regression parameters. The generalized least squares (GLS) estimators for these models have been derived and examined in 

this paper. Moreover, an alternative estimator for GLS estimators in small samples has been proposed, this estimator is called 

simple mean group (SMG). The efficiency comparisons for GLS and SMG estimators have been carried out. The Monte Carlo 

studies indicate that SMG estimator is more reliable in most situations than the GLS estimators, especially when the model 

includes one or more non-stochastic parameter. 
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1. Introduction 

In panel data models, the pooled least squares estimator is 

the best linear unbiased estimator (BLUE) under the classical 

assumptions as in the general linear regression model. These 

assumptions are discussed in [1, 2]. An important assumption 

for panel data models is that the individuals in the database 

are drawn from a population with a common regression 

parameter vector. In other words, the parameters of a 

classical panel data model must be non-stochastic. In 

particular, this assumption is not satisfied in most economic 

models, see, e.g., [3, 4]. In this paper, panel data models are 

studied when this assumption is relaxed. In this case, the 

model is called stochastic parameter regression (SPR) model. 

This model has been examined in several publications such 

as [5-13]. Some statistical and econometric publications refer 

to this model as Swamy’s model, e.g., [14-18]. 

In SPR model, Swamy [5] assumed that the individuals in 

the database are drawn from a population with a common 

regression parameter, which is a non-stochastic component, 

and a stochastic component, that will allow the parameters to 

differ from unit to unit. This model has been developed by 

many researchers, see, e.g., [19-21]. 

Generally, the SPR models have been applied in several 

fields, especially in finance and economics, and they 

constitute a unifying setup for many statistical problems. For 

example, Boot and Frankfurter [22] used the SPR model to 

examine the optimal mix of short and long-term debt for 

firms. Feige and Swamy [23] applied this model to estimate 

demand equations for liquid assets, while Boness and 

Frankfurter [24] used it to examine the concept of risk-

classes in finance. Recently, Westerlund and Narayan [25] 

used the stochastic parameter approach to predict the stock 

returns at the New York Stock Exchange. 

The main objective of this paper is to provide the 

researcher with some guidelines on how to select the 

appropriate estimator of panel data models when the 

parameters are stochastic and mixed-stochastic. To achieve 

this objective, the conventional estimators of these models in 

small samples are examined. Also, an alternative consistent 

estimator of these models has been proposed under an 

assumption that the errors are first-order serially correlated. 

The rest of the paper is organized as follows. Section 2 

provides generalized least squares (GLS) estimators in case 
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of the parameters of the model are stochastic. Section 3 

presents an appropriate estimator when the parameters are 

mixed-stochastic. In section 4, an alternative estimator of 

these models has been proposed. Section 5 contains the 

results of Monte Carlo simulation studies. Finally, section 6 

offers the concluding remarks. 

2. The Model with Stochastic Parameters 

Let there be observations for �	cross-sectional units over � time periods. Suppose the variable � for the �th unit at time �	 is specified as a linear function of �  strictly exogenous 

variables, �	
�, in the following form: 

�
� = ∑ �	
�	
��	�� + �
� = x
��
 + �
� , � = 1, … , �; � = 1,… , �,                                             (1) 

where �
�  denotes the random error term, x
�  is a 1 × � 

vector of exogenous variables, and �
 is the � × 1 vector of 

regression parameters. Stacking (1) over time: �
 = �
�
 + �
,                           (2) 

where �
 = ��
�, �
�, … , �
��� , 	�
 = �x
�� , x
�� , … , x
�� ��, �
 =��
�, … , �
���,	and �
 = ��
�, … , �
���.  
Model assumptions: 

Assumption 1: The errors have zero mean, i.e.,  ��
� =0;	∀	� = 	1, … , �. 
Assumption 2: The errors have a constant variance for 

each individual but they are cross-sectional heteroscedasticity 

as well as they are first-order serially correlated: �
� =$
�
,�%� + &
� ; |$
| < 1 , where $
 	for � = 1, … , �  are first-

order serial correlation coefficients and are fixed. Where  �&
�� = 0,  )�
,�%�&*�+ = 0;	∀	�, ,, and �. And 

 )&
�&*-+ = ./01� �2	� = 3; 	� = ,0 4�ℎ678�36 	�, , = 1, … , �; �, 3 = 1,… , �, 
it is assumed that in the initial time period the errors have the 

same properties as in subsequent periods. So, assume that:  ��
9� � = /01� 1 − $
�⁄ ;	∀	�. 
Assumption 3: The exogenous variables are non-stochastic 

(in repeated samples), and then assume independent with 

other variables in the model. And the value of 7<=>��
��
� =�;	∀	� = 1,… , �, where � < �, �. 

Assumption 4: The vector of regression parameters is 

specified as: �
 = �̅ + @
 , where �̅ = )�̅�, … , �̅�+� is a vector 

of non-stochastic parameter and @
 = �@
�, … , @
���	 is a 

vector of random variables with zero means and constant 

variance-covariances: 

 �@
� = 0;  )@
@*�+ = .A∗ �2	� = ,0 �2	� ≠ , 	�, , = 1, … , �, 

where A∗ = D�<EFG	�H; for > = 1, . . , �. And assume also that  )@
�*�+ = 0	∀	�	and	,. 
Using assumption 4, the model in (2) can be rewritten as: L = ��̅ + 6; 6 = M@ + �,                   (3) 

where L = ���� , ��� , … , �N� �� , � = ���� , ��� , … , �N� �� , � =���� , … , �N� �� , 	@ = �@�� , … , @N� �� , and M = D�<EF�
H;  for � = 1, … , �. Under assumptions 1 to 4, the BLUE of �̅ and 

the variance-covariance matrix of it are:  

�̅OPQRPS = ���T∗%���%���T∗%�L;  

U<7 V�̅OPQRPSW = ���T∗%���%� = X∑ YA∗ +	/01���
�Ω

%��
�%�[%�N
�� \%�,	                                  (4) 

where T∗ = ] + M�^N⨂A∗�M�, with  

] =
`
ab
/0c� Ω�� 0 ⋯ 00 /0e� Ω�� ⋱ ⋮⋮ ⋱ ⋱ 00 ⋯ 0 /0h� ΩNNi

jk, 

and 

A∗	 = l �N%� V∑ �
∗�
∗mN
�� − �N∑ �
∗N
�� ∑ �
∗mN
�� Wn −  

�N∑ /01���
�Ω

%��
�%�N
�� ,                             (5) 

where �
∗ = ��
�Ω

%��
�%��
�Ω

%��
 , with  

Ω

 = ��%o1e`
b 1 $
 $
� ⋯ $
�%�$
 1 $
 ⋯ $
�%�⋮ ⋮ ⋮ ⋱ ⋮$
�%� $
�%� $
�%p ⋯ 1 i

k. 

It is noted that the �̅OPQRPS  can be rewrite as a weighted 

average of GLS estimator for each cross-sectional unit: 

�̅OPQRPS = ∑ q
∗�
∗N
�� ,                          (6) 

where  

q
∗ = X∑ YA∗ + /01���
�Ω

%��
�%�[%�N
�� \%�  

X∑ YA∗ + /01���
�Ω

%��
�%�[%�N
�� \. 
To make the �̅OPQRPS 	estimator feasible, we suggest using 

the following consistent estimators for	$
and /01� : 

$r
 = ∑ st1ust1,uvcwuxe∑ st1,uvcewuxe ; 	/y01� = 0y1m0y1�%�,	                        (7) 

where �y
 = ��y
�, … , �y
��� = �
 − �
�O
	; 	�O
	 = ��
��
�%��
��
 , 

while &
̂ = �&
̂�, &
̂�, … , &
̂���; 	&
̂� = �y
�{1 − $r
�	 , and 
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&
̂� = �y
� − $r
�y
,�%�	for	� = 2,… , �. 
1
 

By replacing $
  by $r
  in Ω

  matrix, it gives consistent 

estimators of Ω

 , say Ω�

. Use of /y01� 	and Ω�

 to get consistent 

estimators of ]  and A∗ , say 	]r  and Ar∗ . By using consistent 

estimators (/y01� , Ω�

 , and	Ar∗), it gives a consistent estimator of T∗,	say TO∗ . And then use TO∗  to get a feasible estimator of �̅OPQRPS . 

Note that in non-stochastic parameter model, we assume 

that the errors are cross-sectional heteroskedasticity as well 

as they are first-order serially correlated. However, the 

individuals in the database are drawn from a population with 

a common regression parameter vector 	�̅ , i.e., �� = ⋯ =�N = �̅. Therefore the BLUE of �̅, under assumptions 1 to 3, 

is: 

�̅OQ�P = ���]%���%����]%�L�, 
this estimator has been termed pooled least squares (PLS) 

estimator. Using ]r  that defined above, it gives the feasible 

(FPLS) estimator of PLS. 

In standard stochastic parameter model that presented by 

Swamy [5], he assumed that the errors are cross-sectional 

heteroscedasticity and they are serially independently. As for 

the parameters, he assumed the same conditions in 

assumption 4. Therefore, the BLUE of �̅, under Swamy’s [5] 

assumptions, is: 

�̅OPQR = ���T%���%���T%�L, 
where T = ���⨂^�� + M�^N⨂A 	�M� , with �� = 	D�<EF/
�H ; 

for � = 1, . . , �, /
� = U<7��
�, and 

A = l �N%� V∑ �
	�
�N
�� − �N∑ �
	N
�� ∑ �
�N
�� Wn −  

l�N∑ /
���
��
�%�N
�� n. 
To make the �̅OPQR	estimator feasible, Swamy [27] used the 

following unbiased and consistent estimator for /
�: 

/y
� = st1mst1�%�, 

where �y
  is defined in (7). Swamy [6, 7] showed that �̅OPQR 

estimator, under Swamy’s [5] assumptions, is consistent as 

both �, � → ∞ and is asymptotically efficient as � → ∞. 

It is worth noting that, just as in the error-components 

model, the estimates values of A∗ and A are not necessarily 

non-negative definite. So, expect to obtain the negative 

values of the estimated variances of �̅OPQRPS  and �̅OPQR . To 

avoid this problem, it can use the following consistent 

estimators for A∗ and A: 

Ar	 ∗�	 = �N%� V∑ �O
∗�O
∗mN
�� − �N∑ �O
∗N
�� ∑ �O
∗mN
�� W, 

Ar	 � = �N%� V∑ �O
	�O
�N
�� − �N∑ �O
	N
�� ∑ �O
�N
�� W. 

                                                             
1 The estimator of $
 	in (7) is consistent, but it is not unbiased. See [26] for other 

suitable consistent estimators of it that are often used in practice. 

Swamy [5] suggested use Ar	 �  if one finds the estimated 

variance of �̅OPQR is negative.
2
 Although that these estimators �	Ar	 ∗�	and Ar	 �	) are biased but they are non-negative definite 

and consistent when � → ∞, see [16, 28].  Moreover, these 

estimators may be suitable in case of moderate or large 

samples but they are not suitable for small samples.  

3. The Model with Mixed-Stochastic 

Parameters 

In this section, the GLS estimator for the model with 

mixed (stochastic and non-stochastic) parameters will be 

derived. In this case, the (mixed SPR) model can be written 

as: �
 = ��
��
 + ��
�� + �
 = �
�
 + �
,              (8) 

where �
 and �
	are defined in (2), �
 = ���
 , ��
� where ��
 
and ��
  are � × ��  and � × ��  matrices of observations on �� and ��	 explanatory variables, respectively. �
 =���
� , ����� , where ��
  is a �� × 1  vector of parameters 

assumed to be stochastic with mean �̅�  and variance-

covariance matrix A�� , and ��  is a �� × 1  vector of 

parameters assumed to be non-stochastic, where �� + �� =� . The model in (8) applies to each of �  cross-sections. 

Under suppose that 	��
 = �̅� + @�� , these �  individual 

equations can be combined as:  L = ��� + �,                                     (9) 

where 	L  is defined in (3), � = ���� , … , �N� �� , �� = )�̅�� , ���+� , 
and � = ���� , … , �N� ��, where �
 = ��
@�� + �
. 

Under Swamy’s [5] assumptions, this model has been 

examined by Swamy [27] and Rosenberg [30]. However, in 

this paper, this model under assumptions (1 to 4) will be 

examined, therefore the variance-covariance matrix of � is:  ��	��� = ] + M�c)^N⨂A�c 	+M�c� = Π,	 
where  

M�c = ���� 0 ⋯ 00 ��� ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ ��N�. 

The GLS estimator of �� is:  ��r�PQRPS = ���Π%���%���Π%�L =����Π%��� ���Π%������Π%��� ���Π%����%� ����Π%�L���Π%�L�,           (10) 

Where �� = ����� , … , ��N� �� and �� = ����� , … , ��N� ��.  
Since the mixed SPR model is a special case of the SPR 

model when the variances of certain parameters are assumed 

to be equal to zero, therefore it can get the feasible estimator 

                                                             
2 This suggestion was been used by Stata program, specifically in xtrchh and 

xtrchh2 Stata’s commands. See [14].  
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for ��r by the following algorithm: 

Step 1: Calculate Ar∗  as in (5), by using consistent 

estimators of /01�  and Ω

 	as given in (7). 

Step 2: Find the estimation of A��, say Ar��, by removing 

the rows and columns for non-stochastic parameter (that 

within ��vector) from Ar∗ matrix. 

Step 3: Find the estimation of Π, say Π�, by using Ar�� and 

consistent estimators in (7). 

Step 4: Finally, using Π� in (10) to get the feasible estimator 

for ��r. 
The main point in this algorithm is step 2, i.e., how 

determine the non-stochastic parameters in the model. It 

needs to a statistical test for randomness of parameters. In 

this paper, Swamy’s [5] test will be used. The basic idea of 

this test; since @
 	is fixed for every �, as given in assumption 

4, so it becomes possible to test of random variation 

indirectly by testing whether or not the non-stochastic 

parameters vectors �
  are all equal. That is, the null 

hypothesis is: �9:	�� = ⋯ = �N = �̅. 
The test statistic is: 

� = ∑ V�O
 − �̅OPW� �1m�1�t1e 	V�O
 − �̅OPWN
�� ,              (11) 

where 

�̅OP = l��)�r�⨂^�+%��n%� l��)�r�⨂^�+%�Ln, 
where �r� is the estimated matrix of ��. Swamy [5] showed 

that, under �9, the test statistic in (11) is asymptotically chi-

square distributed, with ��� − 1�  degrees of freedom, as � → ∞	and � is fixed.  

It can apply Swamy’s [5] test on Mixed SPR model as in 

SPR model. Beginning, suppose that mixed SPR model in (8) 

can be rewritten as:
3
 �
 = ��
��
 + ��
��
 + ��
�� + �
,              (12) 

where ��
 = ���
� , ��
� �� , where ��
  is a ℎ� × 1	 vector of 

stochastic parameters to be included in a test of some 

hypotheses, and ��
  is a ℎ� × 1	 vector of stochastic 

parameters, but these are to be excluded from the test;	��
 =���
� , ��
� ��,  where ��
  and ���  are � × ℎ�	 and � ×ℎ�	matrices, respectively, of observations on independent 

variables; and all other terms were defined when discussing 

equation (8). As previously noted, the Mixed SPR model can 

be rewritten as: L = ����� + ����� + ���� + � 

where 	L , �� , and �  are defined in (3), (10), and (9), 

respectively, �� = ���
� , … , ��N� �� , �� = ���
� , … , ��N� �� , and ���  and ���	are means of stochastic parameters ��
  and ��
 , 

respectively. 

In the Mixed SPR model, procedures are available to 

                                                             
3 See [2] for more information about this test. 

test the following hypothesis for randomness of 

parameters: �9:	��� = ⋯ = ��N = ���. 
This is analogous to the indirect test for randomness in the 

SPR model. In this case, there may be a subset of parameters 

which are initially assumed stochastic but which are to be 

tested for randomness. In this case, the test statistic that can 

be used to conduct the test is: 

∑ V�r�
 − ��r�W� �c1m �c1�t1e 	V�r�
 − ��r�WN
�� , 

where ��r� is the estimated vector of parameters assuming they 

are non-stochastic and �r�
  (for � = 1, . . , �) are the separate 

estimates of the parameters. If the null hypothesis is 

accepted, the parameters are non-stochastic and should be 

treated in the manner of the �� vector of parameters in (12). 

But if the null hypothesis is rejected, the parameters ��
 are 

treated as stochastic.  

4. An Alternative Estimator 

Generally, It is easy to verify that under assumptions 1 to 4 

the PLS and SPR are unbiased for �̅  and with variance-

covariance matrices: 

U<7 V�̅OPQRW = ��T∗���; 	�2 = )�′T−1�+−1�′T−1.  (13) 

U<7 V	�̅OQ�PW = ��T∗���;	�1 = )�′]−1�+−1�′]−1,  (14) 

The efficiency gains, from the use of SPRSC estimator, it 

can be summarized in the following equations: 

 �PQR = U<7 V�̅OPQRW − U<7 V�̅OPQRPSW= ��� − �9�T∗��� − �9��, 
 �Q�P = U<7 V�̅OQ�PW − U<7 V�̅OPQRPSW= ��� − �9�T∗��� − �9��, 

where �9 = ���T∗%���%���T∗%� . Since T, ]	 and T∗  are 

positive definite matrices, then  �Q�P  and  �PQR  matrices 

are positive semi-definite matrices. In other words, the 

SPRSC estimator is more efficient than PLS and SPR 

estimators. These efficiency gains are increasing when |$
|	 and/or G	�  are increasing. However, these efficiency 

gains may be not achieved in practice because T and T∗ are 

not consistently positive definite matrices, especially in small 

samples, as explained above. Therefore, in the following, an 

alternative estimator will be proposed that more suitable for 

the model than SPRSC estimator when the sample size is 

small. Moreover, the properties of this estimator will be 

studied. 
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When Swamy [27] proving that �̅OPQR is consistent,	he	showed that: 

plim	�→¤ �̅OPQR = ¥∑ ¦plim�→¤ 	A + plim�→¤ �1e� . plim�→¤ V�1m�1� W%�§%�N
�� ¨%�  

¥∑ ¦plim�→¤ 	A + plim�→¤ �1e� . plim�→¤ V�1m�1� W%�§%�N
�� ¨ ©�
 + plim�→¤ V�1m�1� W%� . plim�→¤ �1ms1� ª,  

using this conclusion and under the assuming that plim�→¤�%��
��
 	is finite and positive definite for all �, it can get: 

plim�→¤ �̅OPQR = �N∑ �
N
�� .                                                                              (15) 

Similarly, assume that plim�→¤�%��
�Ω�

%��
 is finite and positive definite for all � and for |$
| < 1 to get: 

plim	�→¤ �̅OPQRPS = «¬­plim�→¤ 	Ar∗ + plim�→¤
/y01�� . plim�→¤ ®�
�Ω�

%��
� ¯%�°%�N


�� ±%� 

¥∑ ¦plim�→¤ 	Ar∗ + plim�→¤
�t²1e� . plim�→¤ V�1m³� 11vc�1� W%�§%�N
�� ¨ ©�
 + plim�→¤ V�1m³� 11vc�1� W%� . plim�→¤ �1m³� 11vcs1� ª = �N∑ �
N
�� .             (16) 

From (15), (16), and whereas �O
 is an unbiased estimator 

for	�
, therefore we will suggest the following estimator as an 

alternative estimator for SPR and SPRSC:  

�̅OP�´ = �N∑ �O
N
�� .                    (17) 

Note that this estimator is the simple average of ordinary 

least squares estimators (�O
), so it is defined in econometric 

literature
4
 as the simple mean group (SMG) estimator. The 

SMG estimator is also used by Pesaran and Smith [31] for 

estimation of dynamic panel data (DPD) models with 

stochastic parameters.
5

 It is easy to verify that SMG 

estimator is consistent of �̅ when both �, � → ∞. Moreover, 

statistical properties of SMG estimator will be explained in 

the following lemma:  

Lemma 1: 

If assumptions 1 to 4 are satisfied, then the SMG is 

unbiased estimator of �̅  and consistent estimator of the 

variance-covariance matrix of �̅OP�´  is: 

U<7µ V�̅OP�´W = �NAr∗ + �Ne∑ /y01���
��
�%��
�Ω�

�
��
��
�%�N
�� . (18) 

The next lemma explains the asymptotic variances (as � → ∞ with � fixed) properties of SPRSC, SPR, and SMG 

estimators.  

Lemma 2: 

If assumptions 1 to 4 are satisfied and plim�→¤�%��
��
 , plim�→¤�%��
�Ω�

%��
  are finite and positive 

definite for all � , then the estimated asymptotic variance-

covariance matrices of SPRSC, SPR, and SMG estimators 

                                                             
4 Such as [12, 17]. 

5 For more information about the estimation methods for DPD models, see, e.g., 

[29, 32-36]. 

are:  

plim�→¤U<7µ V�̅OPQRPSW = plim�→¤U<7µ V�̅OPQRW = 

plim�→¤U<7µ V�̅OP�´W = �N A	 �. 

Lemma 2 shows that the means and the variance-

covariance matrices of the limiting distributions of SPRSC, 

SPR, and SMG estimators are the same and are equal to �̅ 

and 
�N A	+ respectively even if the errors are correlated as in 

assumption 2. Therefore, it is not expected to increase the 

asymptotic efficiency of SPRSC about SPR and SMG. This 

does not mean that the SPRSC estimator cannot be more 

efficient than SPR and SMG in small samples when the 

errors are correlated as in assumption 2, this will be 

examined in the following Monte Carlo simulation. 

5. The Simulation Studies 

In this section, two Monte Carlo simulation studies will be 

conducted. In first, examine the problem of negative variance 

estimates and the power of Swamy’s test in different models 

(non-stochastic, stochastic, and mixed-stochastic) when the 

sample size is small and moderate. While in the second, 

make comparisons between the behavior of the pooled least 

squares (�̅OQ�P ), simple mean group (�̅OP�´ ), and stochastic 

parameter ( �̅OPQR, �̅OPQRPS ,  and ��r�PQRPS ) estimators in small 

samples. The programs to set up the Monte Carlo simulation 

studies, written in R language, are available upon request.
6
 

Monte Carlo experiments were carried out, in the two 

studies, based on the following data generating process: 

                                                             
6 For information about how to create Monte Carlo studies using R, see [37].  
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�
� = �9
 + ��
��
� + �
� = x
��̅ + x
�@
 + �
� , � = 1, … , �; 	� = 1,… , �,         (19) 

where x
� = �1, ��
�	�, �̅ = )�̅9, �̅�	+�, and @
 = �@9
, @�
	��.  
5.1. First Study: Negative Variance Estimates and the 

Power of Test 

In this study, the model in (19) was generated as in the 

second simulation study below but after replacing the 

following: $ = 0,	G	� =5, ¶ =	10000, and � = � = 5, 10, 20, 

25, and 50. The simulation results are summarized in figures 

1 and 2. Specifically, Figure 1 presents the percent of 

negative variance (PNV) estimates of Ar. While the results for 

the power of Swamy’s test are presented in Figure 2. 

Figure 1 indicates that the values of PNV are not appearing 

when � = � ≥ 10 if the parameters are stochastic. However, 

if one or more of the parameters is non-stochastic, the values 

of PNV are close to zero when � = � ≥ 50. Moreover, the 

values of PNV are increasing when the value of /0	  is 

increased. 

Figure 2 indicates that when the parameters are stochastic 

the power of test is very high (close to one) when � = � ≥20 . However, if one or more of the parameters is non-

stochastic, the power of test is still low even if � = � ≥ 50. 

Moreover, the power of test is increasing when the value of /0	  is decreased. 

From figures 1 and 2, conclude that if the sample size (� 

and/or �) less than 20, the efficiency of stochastic parameter 

estimators ( �̅OPQR , �̅OPQRPS ,  and ��r�PQRPS ) is very affected. 

Therefore, the efficiency of these estimators in small samples 

will be examined. 

5.2. Second Study: The Performance of Estimators in Small 

Samples  

In this study, the model in (19) was generated as follows: 

1. The values of the independent variable, ��
� , were 

generated as independent normally distributed random 

variable with mean 5 and standard deviation 10. The 

values of ��
�  were allowed to differ for each cross-

sectional unit. However, once generated for all N cross-

sectional units the values were held fixed over all 

Monte Carlo trials. 

2. The parameters, �9
  and ��
 , were generated as in 

assumption 4: �
 = ��9
 , ��
�� = �̅ + @
 ,	 where the 

vector of �̅ = �5, 5�� , and @
  were generated as 

multivariate normal distributed with mean zero vector 

and a variance-covariance matrix A∗ = D�<EFG	�H; > =0, 1. The values of G		  were chosen to be fixed for all > 

and equal to 0 or 25. Note that when G		 = 0 , the 

parameters are non-stochastic. 

3. The errors, �
� , were generated as in assumption 

2: 	�
� = $�
,�%� + &
� , where the values of &
 =�&
�, … , &
���	∀	� = 1, 2, … , �  were generated as 

multivariate normal distributed with mean zero vector 

and a constant variance-covariance matrix /0�^� for all �. The values of /0 	and $ were chosen to be:	/0 equal 

to 1 or 10, and $  equal to 0.35 or 0.95. The initial 

values of �
�  are generated as �
� = &
� ¹1 − $�	⁄ ∀	� = 1, 2, … , � . The errors were 

allowed to differ for each cross-sectional unit on a 

given Monte Carlo trial and were allowed to differ 

between trials. The errors are independent with all 

independent variable.  

4. The values of � = 5 and �	were chosen to be 4, 6, ..., 

or 20 to represent small samples for the number of the 

cross-sectional units and time dimension.  

5. The number of replications ( ¶ ) is 5000 for each 

experiment, and all the results of all separate 

experiments are obtained by precisely the same series 

of random numbers. 

To compare the small samples performance for the 

different estimators, the three different types of regression 

parameters (non-stochastic, stochastic, and mixed-stochastic) 

have been designed in this simulation study. To raise the 

efficiency of the comparison between these estimators, the 

relative efficiency ratio (RER) for each estimator has been 

calculated. The RER of any estimator, for a Monte Carlo 

experiment, is calculated by: 

RERV�̅O	�¼�W = ½. U<7µ V�̅O	�¼�W ½. U<7µ V�̅O	�¾�W¿ ; 	> = 0, 1,  

where 

½. U<7µ V�̅O	�À�W = �� 	∑ U<7µ V�̅O	�À�WÁ�Á�� , for < = 6, Â, 

where the subscript 6 indicates the estimator that it calculated 

the ratio, while Â indicates the appropriate estimator in each 

model in this simulation study. For example, The RER value 

of FPLS estimate of �̅9 when the all regression parameters 

are stochastic is calculated as: 

Step 1: Calculate the mean of variance for ¶ Monte Carlo 

trials for FPLS and SPRSC estimators:  

½. U<7µ V�̅O9�ÃQ�P�W = �� 	∑ U<7µ V�̅O9�ÃQ�P�WÁ�Á�� , 

½. U<7µ V�̅O9�PQRPS�W = �� 	∑ U<7µ V�̅O9�PQRPS�WÁ�Á�� , 

where U<7µ V�̅O9�Q�P�W and U<7µ V�̅O9�PQRPS�W are obtained using 

feasible formulas for (13) and (4), respectively.  

Step 2: Find the RER value: RERV�̅O9�ÃQ�P�W =½. U<7µ V�̅O9�ÃQ�P�W ½. U<7µ V�̅O9�PQRPS�W¿ .  

The simulation results are summarized in figures 3 to 6. 

Specifically, Figure 3 presents the natural logarithm of the 

RER (LRER) values of intercept and slope estimates for 

FPLS, SPR, and SMG estimators when the all regression 

parameters are stochastic (stochastic parameter model). 

While the results in case of the all regression parameters are 

non-stochastic (non-stochastic parameter model) are 

presented in Figure 4. This Figure displays the LRER values 

of intercept and slope estimates for SPR, SPRSC, and SMG 

estimators. Finally, figures 5 and 6 present the log (RER) 

values of intercept and slope estimates for FPLS, SPR, 
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SPRSC, MSPRSC, and SMG estimators when the vector of 

regression parameters contains both stochastic and non-

stochastic parameter (mixed-stochastic parameter model). 

Specifically, Figure 5 displays the results when the intercept 

parameter is stochastic and the slope parameter is non-

stochastic, we refer to this model as Mixed-stochastic type-I 

model. Figure 6 displays the inverse case; when the intercept 

parameter is non-stochastic and the slope parameter is 

stochastic, also we refer to this model as Mixed-stochastic 

type-II model. The different formulas of variances of 

estimators that used in this study are summarized in Table 1. 

Table 1. The formulas of variances that used in the simulation study. 

Model type No. Figure Appropriate estimator Other estimators The formula of variance 

Stochastic 3 

SPRSC  Equation (4) 

 FPLS Equation (13) 

 SPR Equation (14) 
 SMG Equation (18) 

Non-stochastic 4 

FPLS  )��]r%��+%� 
 SPR )��TO%��+%���TO%�]rTO%��)��TO%��+%� 

 SPRSC )��TO∗%��+%���TO∗%�]rTO∗%��)��TO∗%��+%� 

 SMG 
�
Ne∑ /y01���
��
�%��
�Ω�

�
��
��
�%�N


��   

Mixed-stochastic 

type-I 

type-II 

5 
6 

MSPRSC  )��Ä�%��+%� 

 FPLS )��]r%��+%���]r%�Ä�	]r%��)��]r%��+%� 

 SPR )��TO%��+%���TO%�Π�	TO%��)��TO%��+%� 

 SPRSC )��TO∗%��+%���TO∗%�Ä�	TO∗%��)��TO∗%��+%� 

 SMG 
�
N Ar�� �

�
Ne∑ /y01���
��
�%��
�Ω�

�
��
��
�%�N


��   

 
Figure 3 indicates that the values of LRER for SPR and 

SMG are very close and almost equal zero for all simulation 

situations (for every value of /0 and $), this means that the 

efficiency of SPR and SMG is close to the efficiency of 

SPRSC estimator even if /0 � 10  and $ � .95 , then SPR 

and SMG are good alternatives estimators for SPRSC in 

stochastic parameter models. But FPLS is inefficient 

estimator (highest LRER) for this model even if /0 � 1 and 

$ � .35. 

Figure 4 indicates that SPR and SPRSC estimators are 

greater in LRER than SMG for every value of /0 and $, this 

means that SMG estimator is more efficient than SPR and 

SPRSC estimators and it is a good alternative estimator for 

FPLS in non-stochastic parameter models.  

Figures 5 and 6 indicate that FPLS is inefficient estimator 

(highest LRER) for this model for every value of /0 and $. 

Also, SPR and SPRSC estimators are greater in LRER than 

SMG in most situations, especially the parameter is non-

stochastic. Then SMG estimator is more efficient than SPR 

and SPRSC estimators and it is a good alternative estimator 

for MSPRSC in mixed-stochastic parameter models.  

6. Conclusion 

In this paper, GLS (FPLS, SPR, SPRSC, and MSPRSC) 

and SMG estimators of panel data models are examined 

when the errors are first-order serially correlated and the 

regression parameters are stochastic, non-stochastic, or 

mixed-stochastic. Efficiency comparisons for these 

estimators indicate that the SMG and stochastic parameter 

estimators (SPR, SPRSC, and MSPRSC) are equivalent when 

�  sufficiently large. Moreover, the performance of all 

estimators above has been investigated by Monte Carlo 

simulations. The Monte Carlo results suggest that, in non-

stochastic parameter model, the SMG estimator is more 

efficient than SPR and SPRSC estimators and then it is a 

good alternative estimator for FPLS. In stochastic parameter 

model, the FPLS estimator is not suitable for this model but 

SPR and SMG are good alternatives estimators for SPRSC in 

this model. While in mixed-stochastic parameter model, the 

SMG only is a good alternative estimator for MSPRSC. 

Consequently, it concludes that the SMG estimator is suitable 

to the three models, especially in small samples and the 

model includes one or more non-stochastic parameter. 
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Figure 1. The percent of negative variance estimates in different models. 
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Figure 2. The power of Swamy’s test for parameter homogeneity in different models. 
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Figure 3. The relative efficiency for different estimators in stochastic parameter models. 
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Figure 4. The relative efficiency for different estimators in non-stochastic parameter models. 
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Figure 5. The relative efficiency for different estimators in mixed-stochastic parameter type-I models. 
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Figure 6. The relative efficiency for different estimators in mixed-stochastic parameter type-II models. 

Appendix 

A. 1 Proof of Lemma 1  

a. Show that  V�̅OP�´W = �̅: 
By substituting �O
 � ��
��
�%��
��
 into (17), it can get:  

�̅OP�´ � �
N∑ ��
��
�%��
��
N


�� � �
N∑ ��
��
�%��
���
�
 � �
�N


�� � �
N∑ Ç�
 � ��
��
�%��
��
ÈN


�� .           (20) 

Taking the expectation for (20) and using assumption 1, it can get: 

 V�̅OP�´W � 	 �N∑ �
N

�� � �̅. 

b. Derive the variance-covariance matrix of �̅OP�´ : 
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Under assumption 4: �
 = �̅ + @
. By adding �O
 to the both sides: �O
 = �̅ + @
 + É
,                                                                                          (21) 

where É
 = �O
 − �
 = ��
��
�%��
��
. From (21), it can get: 

�N∑ �O
N
�� = �̅ + �N∑ @
N
�� 
 + �N∑ É
N
�� , 

�̅OP�´ = �� + @� + É�,                                                                             (22) 

where @̅ = �N∑ @
N
��  and É̅, = �N∑ É
N
�� . From (22) and using assumptions 1 to 4, it can get: 

U<7 V�Ê��½�W = U<7�@̅� + U<7)É̅+ = �N A + �Ne∑ /&�2 ��
��
�%��
�Ω

�
��
��
�%�N
�� . 

By using consistent estimators of A,/&�2 ,	and Ω

  that defined above, it can get: 

U<7µ V�̅OP�´W = �N Ar∗ + �Ne∑ /y01���
��
�%��
�Ω�

�
��
��
�%�N
�� .                                         (23) 

A. 2 Proof of Lemma 2:  

Since plim�→¤�%��
��
 and plim�→¤�%��
�Ω�

%��
are finite and positive definite for all �, therefore:  

plim�→¤ �O
 = plim�→¤ �O
∗ = �
 , plim�→¤ $r
	 = $
 , plim�→¤/t&�2 = /&�2 , and plim�→¤ Ω�

 =Ω

 ,                     (24) 

and then: 

plim�→¤ ��/t&�2 �)�
�Ër

%��
+%� = plim�→¤ ��/t&�2 ���
��
�%��
�Ër

�
��
��
�%� = 0.                                            (25) 

Using (24) and (25) in (5), it can get: 

plim�→¤ Ar∗ = �N%� V∑ �
	�
�N
�� − �N∑ �
	N
�� ∑ �
�N
�� W = A�.                                                             (26) 

Using (24)-(26) in (23) and (4), it can get: 

plim�→¤U<7µ V�̅OP�´W = 	 �N plim�→¤Ar∗ + �Ne∑ plim�→¤ ��/t&�2 ���
��
�%��
�Ër

�
��
��
�%�N
�� = �N A�,                               (27) 

plim�→¤U<7µ V�̅OPQRPSW = plim�→¤)��Λ�∗%��+%� = Y∑ A�%�N
�� [%� = �N A�.                                                   (28) 

Similarly, using the results in (24)-(26) in case of SPR estimator: 

plim�→¤U<7µ V�̅OPQRW = plim�→¤ l)��Λ�%��+%���Λ�%�Λ�∗	Λ�%��)��Λ�%��+%�n = �N A�.                                         (29) 

From (27)-(29), it concludes that: 

plim�→¤U<7µ V�̅OPQRPSW = ÂÍ�Î�→¤ U<7µ V�̅OPQRW = plim�→¤U<7µ V�̅OP�´W = �N A�. 
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