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Abstract: Locomotive surveillance is the most active research topic and still faces big technical challenges in railway safety 

control system. An end-to-end locomotive tracking and continuous monitoring system is necessary for safety measures in 

satellite visible and low satellite visible environment. These smart systems aim to updates the information on location, exact 

detection, speed limitation and also rail track information. This paper contributes to develop an intelligent tracking and 

monitoring system based on Internet of Things (IoT) platform using Differential Global Positioning System (DGPS) for 

improved tracking accuracy of locomotive in both environments. Interacting Multiple Model (IMM) tracking algorithm based 

on Di-filter model is proposed for analysis that make it easy to pinpoint the location and its status of the locomotive. 
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1. Introduction 

Many real world applications managed in military and 

civilian require accurate tracking of moving targets acquired 

by sensors. In military applications, tracking is continuously 

updated the performance of target’s position and also 

tracking of enemy vehicles so that they are blocked and 

destroyed immediately [1]. In civilian applications target 

tracking is of much use in autonomous vehicles, home 

security etc. Accurate target tracking is used in many 

situations to accommodate the need for constant human help 

and thus it is simple to achieve much higher degree of 

intelligent, wireless and automatic [2]. There is loads of real 

time application for locomotive tracking and monitoring 

using satellite based navigation system with high level of 

speed and precision. These systems are more accurate, 

precise, efficient, low cost and less economic maintenance. 

But in poor satellite visible areas such as mountains, tunnel, 

valleys, deep cuttings etc. they are facing many service 

failure issues [3]. 

Land vehicle navigation technologies mainly depend on 

the Global Positioning System (GPS). The user platform 

mainly based on receiver which receives the radio signals 

from four or more satellites provides the position and 

velocity information. In spite of diverse application of GPS, 

the flexibility of service is still limited as the GPS based 

tracking accuracy is decreases when it passes through poor 

satellite visible areas such as tunnel, mountain, forest, slope, 

bridge, urban or canopy areas due to signal failure and 

attenuation [4, 6]. Different locations have affected by 

different atmosphere factors which vary with locations and 

these errors are corrected by Differential GPS. The most 

enhanced version of Global Positioning System is 

Differential Global positioning System (DGPS) [8]. It 

provides precise and improved location tracking accuracy 

than GPS. It increases the tracking accuracy of the target 

locations or the coordinates which are derived from the GPS 

receivers. For improvement in tracking accuracy and 

monitoring the integrity of GPS satellite radio transmissions, 

it provides differential correction to GPS receiver. With 

DGPS receivers, the position tracking accuracy is improved 

from 30m to better than 2m. 

The performance of a tracking system is depending on the 

performance of the state estimation algorithm employed. In 

tracking system, accurate state estimation of targets is 

required for reliable data association and correlation [11]. 
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The kinematic quantities such as position, velocity and 

acceleration are to be estimated. Kalman Filters are used in 

measurement model to reduce the errors due to noise in the 

observation and state process model to accurately predict the 

target’s estimation parameters. State estimation of potentially 

locomotive tracking in satellite visible and low visible often 

requires the use of filter models to account for varying target 

behavior in two different environments [14]. Efficient 

management of the Di-filter models for two different areas is 

critical to limiting algorithm computations while achieving 

the desired tracking performance. This requirement is 

achieved with the Interacting Multiple Model (IMM) 

algorithm. Di-filter models enable tracking system to better 

match changing target dynamics. In this paper, we propose 

Di-filter model management for the IMM algorithm that is 

governed by Markov chain that controls the switching 

behavior among the two models [15].  

The organization of the paper is as follows. Section (2) 

explains the surveillance integration model based on 

Differential GPS navigation system in which how data are 

communicated to central office. The Di-filter model based on 

Kalman filter concept is proposed with Interacting Multiple 

Model (IMM) algorithm is depicted in section (3). Section 

(3.1) describes the problem formulation to track the 

locomotive using Di-Filter design parameters. The 

explanation in Section (3.2) is about the selection of tracking 

performance model and how it depends on the measurement 

noise also explains the designed target (locomotive) state 

kinematics models for both environment Section (4) explains 

the problem formulation decision logic for Di-filter and its 

general steps to resolve noises. Section (5) explains 

simulation set up using Mat Lab. The results and analysis of 

the moving locomotive kinematics such as position and 

velocity estimation accuracy graph with related effects on 

noise inputs are explained. Finally section (6) depicts 

concluding remarks.  

2. Sensor Accuracy Remote Access 

Surveillance Wireless Automatic 

Tracking Heuristic Innovation 

(SARASWATHI) Model 

This paper highlights the main suggestion to improve the 

performance of locomotive detection and continuous tracking 

by contributing originally two different segment 

environments (a) satellite visible environment (b) poor 

satellite visible environment. Hence an accurate and efficient 

continuous tracking capability at the core of such system is 

essential for building higher level Internet of Things (IoT) 

vision-based intelligence system. The major objective of 

ground based surveillance system is to track, detect and 

recognize the moving object in the allocated area. For 

continuous tracking and monitoring of locomotive movement 

in satellite visible and poor satellite visible environment, a 

sensor based wireless surveillance model is proposed. The 

on-board locomotive tracking model called “Sensor 

Accuracy Remote Access Surveillance Wireless Automatic 

Tracking Heuristic Innovation (SARASWATHI)” is designed 

with the satellite based navigation system called Differential 

GPS. This model measure the position, velocity and other 

current state values of the locomotive when it is travels in 

satellite visible and low satellite visible areas. Figure. 1 

describes the block diagram of surveillance heuristic model 

based on wireless sensor based Differential GPS technology. 

 

Figure 1. Block diagram of remote surveillance innovation model. 

Differential Global Positioning System (DGPS) is consider 

as one of the best accurate and precise satellite based 

navigation system. Its function is to identify specific location 

of the moving locomotive with improvements in the tracking 

accuracy to higher level. It operated with both roving 

receivers which calculate satellite position and stationary 
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receivers that use these measured position to compute signal 

timing along with increase in measurement tracking 

accuracy. The mobile receivers calculate the absolute 

positions with increased accuracy by altering their received 

satellite measurements in co-ordination with base station. 

Pre-processing is then carried out to convert the different 

input data from various satellites in to other prescribed 

readable format for Human Machine Interfacing (HMI) unit. 

The improved accuracy advancement offered by DGPS takes 

on greater significance in the 21st century. This is because 

the use of highly accurate positional information is collected 

from navigational aids like Automatic Identification system, 

Electronic Information and chart display system. 

3. Proposed Interacting Multiple Model 

(IMM) Algorithm for Di-Filter Model 

Di-filter model is designed with two tuned Kalman filter 

for satellite visible and satellite low visible environment 

model. In real-time application, tracking the locomotive in 

satellite visible and low satellite visible environment leads 

to variations in filter accuracy performance. Using Di-filter 

model built with two tuned Kalman filter is proposed here 

to track the locomotive trajectory easily. The low satellite 

visible tracking filter model degrades the tracking accuracy 

performance. Hence, we propose Interacting Multiple 

Model (IMM) algorithm for analysis. The filter bank is 

designed in such a way that one could be satellite visible 

filter model (X1) and the other could be based on poor 

satellite visible model (X2). The IMM algorithm is one such 

algorithm which combining state hypotheses from multiple 

filter models to get better state estimate of targets with 

varying dynamics [16]. The filter models used to form each 

state hypothesis are derived to match the behavior of 

targets. Figure 2 shows the flow diagram for an IMM 

algorithm with two filter models.  

 

Figure 2. A block diagram of the IMM algorithm with Di-filter model. 

IMM algorithm is recursive estimator having modular 

structure. Generally it consists of four major steps – 

interaction, mode-conditioned filtering, probability 

evaluation, combined state and covariance estimation. 

3.1. Proposed Di-Filter Algorithm and Design Parameters 

The state estimates for satellite visible (X1) and poor 

satellite visible filter (X2) model are mixed prior to state 

update using set of conditional model probabilities. The con-

ditional model probabilities PIJ are computed using the model 

probabilities from the previous update and state switching 

matrix selected a priori. The mixed state estimates are 

updated using each Kalman filter model. The likelihood (Aj ) 

for each filter model is computed during the state update 

from the innovations (Zi) and innovations covariance matrix 

[17]. The likelihood, prior model probabilities and state 

switching matrix are then used to update the filter model 

probabilities. The estimates from each Kalman filter model 

are combined like weighted sum using the updated model 

probabilities. The following steps outlined about how we are 

design IMM algorithm using Di-filter model. 

1. Model set consisting of possible target (locomotive) 

tracking mode such as constant position model, constant 

velocity model and constant acceleration model. 

2. Process noise variances for the adopted models with 

different regimes of target (locomotive) motion is tracked 

using low-level process noise covariance matrix for satellite 

visible model and high-level process noise for low satellite 

visible model. 

3. Mode transition probabilities to switch from one mode 

to another. 

The equations governing the IMM algorithm for an ‘N’ 

number of filter models are outlined in equation (9). The 

process then begins with the computed quantities from the 

previous filter iteration. Initialization procedures are required 

to obtain the state estimate, covariance, and initial 

probabilities for each filter model.  

3.2. Proposed Design Methodology for State Kinematics 

Models for Both Environments 

In this research work, the problem formulation is 

concentrate on the type of locomotive motion in satellite 

visible and poor satellite visible environment. The 

locomotive is constrained to move in straight line with 

constant velocity. Let X (k) is locomotive position and X’ (k) 

is locomotive velocity are consider fruitfully. Let V (k) be the 

measurement noise observed during kinematics calculation 

process. By consider, the locomotive is moving with constant 

speed X” k) = 0. The systems states consider are position, 

velocity and acceleration. The state parameters are [X, Y, Z] 

where X= Position, Y= Velocity, Z= Acceleration.  

Tracking state model 

Let us consider the state tracking and measurement model 

for locomotive position and velocity only. The tracking 

kinematic parameter are along X and Y co-ordinates with the 

time interval from n to n+1. Let us consider X (k), Y (k) are 

locomotive position tracking values in two direction and X
1
 

(k), Y
1
 (k) are locomotive velocity tracking parameters 

respectively. 

X (k+1) = A X (k) + B u (k)                 (1) 
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Where A = system transition matrix and B= process noise 

gain matrix 

A= 

���
��1	 δt δt� 2
 δt� 3
0 1 δt δt� 2
0 0 1 δt0 0 0 1 ���

��
 B=	

���
��			
δt� 3
δt� 2
δt1 ���

��
 

∂t is a sampling interval 

X (k+1) = A X (k) + B u (k) 

���
� x(k + 1)x′(k + 1)y(k + 1)y′(k + 1)���

�	=	A	 ���
� 	x(k)	x′(k)	y(k)	y′(k)���

�	+ B	���
�� u�(k)u��′(k)u�(k)u��(k)���

��
 

If the time interval is from i to i-1, then the tracking state 

model equation becomes 

X (k) = A X (k-1) + B u (k-1)                (2) 

A and B matrices remains same. Where E {u (k)}= 0 and 

Variance{u (k) } = M, 

Where M = Target model noise co-variance matrix. 

Measurement Model 

The output equation is given by 

Y (k) = C X (k) + V (k)                     (3) 

Where C is sensor output 

C=	
���
��1	 δt δt� 2
 δt� 3
0 1 δt δt� 2
0 0 1 δt0 0 0 1 ���

��
 If δt=0 C = �1	 0 0 00 1 0 00 0 1 00 0 0 1� 

���
��	Y�	(k)	Y�′(k)Y�(k)Y�′(k) ���

�� = �1	 0 0 00 1 0 00 0 1 00 0 0 1�	���
� 	x(k)	x′(k)	y(k)	y′(k)���

� + ��
��v�(k)v�(k)v�(k)v�(k)��

�� 
E {v (k)} = 0, Variance {v (k)} = N Where N is 

Measurement noise co-variance matrix. 

Prediction updates 

Filter predicts the state and variance at time i+1 based on 

information at time i. This is also known as time updates. 

The equations are responsible for projecting forward the 

current state and error covariance estimates to obtain the 

priori estimates for the next time step. 

(1) State Prediction:	X#	(i + 1 i
 ) = A	X#	(i i
 ) 

(2) Prediction Covariance: 	P& (i + 1 i
 ) = A	P&	(i i
 ) A
T 

+ M (i)  

Measurement updates 

Kalman filter updates the state and variance using 

combination of the predicted state and the observation Y 

(i+1). These equations are responsible for the feedback which 

incorporates new measurement in to priori estimate to obtain 

an improved posteriori estimate. 

(1) State estimate: X#	(i + 1 i + 1
 	) =	X&(i + 1 i
 ) + K [Yi -

CX#	(i + 1 i
 )	] 
(2) Estimation Covariance: P#	 ( i + 1 i + 1
 ) = [I-

KC]	P#(i + 1 i
 ) 

Gain matrix 

To minimize the conditional mean-squared estimation 

error with respect to the Kalman gain. 

Kalman gain: K = P# (i + 1 i
 ) C
T
 [C		P	'(i + 1 i
 ) C

T 
+ N]

-1 

3.3. Adopted Algorithm for Analysis of Kalman Filter 

Model 

The Kalman filter is a recursive predictive filter that is 

based on the use of state space techniques and recursive 

algorithms. It is estimated the state of dynamic system. This 

dynamic system can be disturbed by some noise, mostly 

assumed as white noise. The tracking accuracy is determined 

by the movement of locomotive in straight line. To perform 

this, algorithm is build with set of nominal design 

parameters. 

Function Value [X prediction, P prediction ] = Predict ( X, P, A, 

M) 

X prediction = A* X; 

P prediction = A*P*A
1
 + M; 

Function Value [Difference, T] = Dynamic ( X prediction, P 

prediction, Y, C, N) 

Difference = Y-C* X prediction; 

T = N+C * P prediction *C
1
 

Function Value [ X KUSHI, PKUSHI] = Dynamic @ update (X 

prediction, P prediction, Diff, T, C) 

K= P prediction *H
1
*T

1
 

X KUSHI = X prediction +K*Difference 

P KUSHI = P prediction – K*T*K
1
 

Nominal Parameters used in algorithm 

A). Sensor Location: S1 = [0, 0, 0] and S2 = [60, 0, 0] B) 

Positional Measurement error -X direction= 0.0001 m, C). 

Sampling interval–1 sec D) Initial track reading - 0.8 E) 

Process Noise Covariance = 0.8 * Measurement error 

covariance F) Initial State Estimate Covariance- Position 

Variance = 0.1 [X, Y] Velocity Covariance = 0.0001 [X, Y] 

3.4. Problem Analysis of DI-Filter Using Model Matching 

Technique 

In this section, we presented a procedure for finding stable 

transfer function which in turn increase the tracking 

accuracy. Let us consider satellite visible model (X1) with A 

(Z) is an i-th degree polynomial for stable controllable and 

observable transfer function. Similarly for low satellite 

visible model (X2) with B (Z) is an j-th degree polynomial 

for stable controllable and observable transfer function. 
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Figure 3. depicts the block diagram of model matching 

control system. 

 

Figure 3. Block diagram of model matching control system. 

Under certain conditions, it is possible to design such 

system by use of polynomial equation approach with desired 

stable transfer function act exactly like the model. For the 

closed loop system, the transfer function of the di-filter 

model is noted as, 

Y (Z) / U (Z) = Polynomial of satellite low visible model 

B (Z) / Polynomial of satellite 

Visible model A (Z) 

Where A (Z) is an i-th degree polynomial for satellite 

visible model and B (Z) is an j-th degree polynomial for low 

satellite visible model. We assume that there is no common 

factor between the two models. Under certain conditions it is 

possible to design model system by use of the polynomial 

equation approach. Since we consider the transfer function of 

the control system exactly like the model, we call such model 

matching control system. 

In the design process, we choose the resulting system 

transfer function as 

H1 (Z) = H (Z) / A (Z) for satellite visible model and H2 (Z) 

= H (Z) / B (Z) for satellite low visible environment. 

As Y (Z) / R (Z) = K Model = BJ (Z) / A I (Z)           (4) 

We assume that the plant B (Z) / A (Z) is completely state 

controllable and completely observable function F (Z) with 

stable polynomial of (n-1) th degree. Using Di-ophantine 

equation, 

P (Z) A (Z) + q (Z) B (Z) = F (Z) B (Z) H1 (Z)           (5) 

Where p (Z) and q (Z) are polynomial of (n-1) degrees. 

From the block diagram, it is analyzed the controllable and 

stable system resultant output as 

U (Z) = - [p (Z)/F (Z)* U (Z) – U (Z) + q (Z) / F (Z) *Y (Z)] +V (Z) 

P (Z)/F (Z)* U (Z) + q (Z) / F (Z) *Y (Z) = V (Z)                                                             (6) 

Since U (Z) = A (Z) / B (Z) * Y (Z), We have p (Z)/F (Z)* A (Z) / B (Z) * Y (Z) + q (Z) / F (Z) *Y (Z) = V (Z) 

Y (Z) / V (Z) = F (Z) B (Z) / p (Z) A (Z) + q (Z) B (Z) = F (Z) B (Z) / F (Z) B (Z) H1 (Z) = 1/ H1 (Z) 

V (Z) = K Model H1 (Z) R (Z), Y (Z)/ R (Z) = Y (Z) V (Z) / V (Z) R (Z) = K Model H 1 (Z) / H 1 (Z) = K Model 

V (Z)/ R (Z) = K Model H1 (Z)                                                                                (7) 

The significance of above equation is said to be improvement in stability of the system model. 

First order homogeneous Markov chain, 

Q{ K j (p+1) / K i (p) } = Q i                                                                                 (8) 

¥ i, j ∑ K Where ‘K’ is a set of possible model. The model switching carried out using Markov process with known 

transition probabilities. The set of modes may consist of several target models. 

4. Performance Analysis of Di-Filter Decision Logic 

Design parameters for the Di-filter based on IMM algorithm are selected to control filter operating characteristics such as 

gain, measurement noise and response to operating modes such as satellite visible environment model (X1) and poor satellite 

visible model (X2). The required design parameters for the filtering methods defined in the performance comparison are the 

IMM state target matrix and the filter model values. 

Step1. The interaction of Model  

The initial conditions for the filters for all ¥ i, j ∑ K 
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               (9) 

Step 2 – Probability testing process 

Mixing Probabilities --  

Initial mode probabilities corresponding to satellite visible and poor satellite visible mode can be taken as 0.8 and 0.2 Mode 

transition probability  p)* = + 0.8 0.20.62 0.33/ Where P12 is chosen 0.2 assuming that satellite visible model starts with a low probability. Assume 

expected dwell time in a mode is 4 sec. 

Step-3 Mode conditioned filtering 

The states and covariance estimates using the standard prediction and updates steps for each mode matched filter. The 

equations are  

 

 

Likelihood functions for mode matched filter is given by 

 

Step-4 Over all state and covariance estimate values 

Average mode probabilities obtained are used as weighting factor to combine the updated state and covariance. 

 

The above steps make it possible to calculate the tracking 

accuracy of locomotive in both satellite visible and low 

satellite visible environments with multiple point targets 

simultaneously without any a priori performance about the 

target (locomotive) movement. 

5. Simulation Results and Discussion 

We considered the state estimation problem of locomotive 

movement in two environments such as satellite visible and 

low satellite visible environment. Simulations were executed 

to compare the performance of IMM algorithms with the Di-

filter (Kalman) model for tracking locomotive in two 

different environments. Di-filter kinematic models were used 

to track the locomotive in two different environments with 

the help of constant velocity and position model and by then 

comparing the performance of two different model using 

IMM algorithm. It is assumed that the locomotive moves 

straight in the satellite visible area and its initial positions and 

velocities were differently note for each case. The single-
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target track of the locomotive in satellite visible is assumed 

to have been previously initialized and that track 

maintenance in poor satellite visible is also the goal of the 

IMM algorithms. Mixing Di-filter model states and co-

variances in the IMM algorithm allows for prompt reaction to 

changing locomotive motion in the environment modes. 

However, this mixing will also affect the individual filter 

model gains. 

Case 1. Tracking trajectory of locomotive 

Figure 4 shows the trajectory of locomotive is consider for 

satellite visible environment mode and low satellite visible 

environment mode. The locomotive trajectory is drawn from 

initial point in satellite visible areas to final point in low 

satellite visible area. Data is generated using 2
rd 

order 

kinematic model with process noise velocity increments. 

Total 25 scans (k=25) generated with sampling interval of T= 

1 sec. The velocity reading of 5 m/s for distance of 300m 

along X-direction and 225m along Y-direction with scan of 

k=8 are noted in satellite visible model. Similarly the 

velocity reading of 7 m/s for distance of 600m along X-

direction and 225m along Y-direction with scan of k=15 are 

noted in satellite low visible model induce locomotive 

motion. 

 

Figure 4. Trajectory of locomotive. 

Conceptually, Interact Multiple Model filter algorithm 

based on Di- filter models, one at each extreme of the 

trajectory spectrum and the algorithm would select the proper 

balance between the two filters. 

Case 2 Estimated tracking accuracy 

Figure 5 describes the position tracking of locomotive in 

two different environments. The simulation results for each 

filter model are obtained from Kalman filter simulations with 

50 samples. The Root Mean Square (RMS) errors for 

position and velocity are computed from the filtered track 

state estimate of each filter model. IMM algorithm truthfully 

reflects the discrepancies in locomotive tracking by way of 

increased standard deviations and RMS errors in tracking 

mode. Each Kalman Filter shows nominal RMS error but the 

corresponding increase in standard deviation in satellite 

visible mode is not reflected. This inconsistency in Kalman 

Filter leads to erroneous data fusion for processes based on 

covariance of state estimates. 

 

Figure 5. Comparison of estimator tracking accuracy for position tracking. 

Case 3 Probability tracking model concept 

Figure 6 indicates the tracking performance of 

locomotive based on probabilistic IMM model. These 

model probability calculations are affected by the process 

noise selection for each filter. The selection of process 

noise parameters for filters requires bridge between the 

satellite visible and low satellite visible models to achieve 

the best model interaction. The sharp increase in target 

mode probability at k=9 and subsequent fall at k=15 

indicates rapid detection of the locomotive by IMM. The 

blue and orange curves in Figure 6 show that moderate 

changes to the state tracking matrix will affect small 

changes to the filter performance. The largest effects are 

seen during the low satellite visible mode when the total 

error is dominated by state noise. In general, the 

performance of the IMM appears to be relatively 

insensitive to the selection of the state tracking matrix. 

 

Figure 6. Tracking performance based on probabilistic model. 

Case 4 Estimation errors during tracking  

Figure 7 and Figure 8 describe the effect of measurement 

noise and onset probability on transition modes. Smaller 

value of measurement noise covariance matrix R yields better 

accuracy in the maneuvering phase of the locomotive motion 

in satellite visible as well as low satellite visible 

environment. Decrease in estimation errors in satellite visible 

areas is much more rapid in IMM than in Kalman Filter. With 

lower value of tracking onset probability p1=0.1, the better 
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accuracy with R=10. Similarly with higher onset probability 

p2=0.04, then accuracy yield to decrease in value. With lower 

value of tracking onset probability p12=0.02, IMM algorithm 

is slow in adapting from satellite visible to low satellite 

visible mode. This delay on part of IMM in detecting the 

onset of tracking is reflected in increased RMS error.  

 

Figure 7. RSS errors Vs tracking matrix. 

The IMM algorithm based model produce RMS errors 

in velocity calculations also are affected by the process 

noise for each filter. The selection of process noise along 

with measurement noise parameters for filters within the 

IMM algorithm based model requires balance between the 

high Q [State track matrix], P [Probability track matrix] 

and R [Measurement noise covariance matrix] as well as 

low errors to achieve the best model interaction. When the 

difference between process noises in the Di-filter 

(Kalman) tracking models is too large, the probability of 

the filter model will be low during target locomotive. The 

effect of this is decrease in performance on targeting 

locomotive when filter with higher process noise is used. 

It is conclude that the suggested IMM algorithm has 

almost equal position and velocity estimation tracking 

accuracy for all scenarios. 

 

Figure 8. Effect of Probability on period. 

Design parameters consider in simulation 

Table 1 show the real data which are referred in simulation. 

Table 1. Simulation Data. 

Case Velocity Position 

 V x V y P x P y 

1. Satellite Visible      

Control Parameters  0.2 -0.2 0.4 - 0.4 

U(k)= 0.7913, J= 0.5      

2. Satellite Low Visible     

Control Parameters 0.5 -0.6 0.6 -0.5 

U(k)= -0.2087, J= 1.8     

6. Conclusion 

In this paper, Di-filter model based tracking algorithm 

called Interacting Multiple Model (IMM) algorithm is 

designed to track the locomotive’s kinematics updates in 

satellite visible and low satellite visible areas. The suggested 

algorithm reduced the root mean square error in velocity and 

position measurements. The designed parameters show a 

smaller estimation tracking error of 0.02% when locomotive 

in satellite visible mode and comparable estimation tracking 

errors of 0.17% when locomotive in poor satellite visible 

mode when compared with other existing model. It is 

conclude that the suggested IMM algorithm has almost equal 

position and velocity estimation accuracy for all scenarios. 
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