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Abstract: We present a computational pedagogy approach to teaching an interdisciplinary science course. Modeling and 

simulation tools allow us to introduce a science topic from a simplistic framework and then move into details after learners 

gain a level of interest to help them endure the hardships and frustration of deeper learning. More than 90% of students in 

course surveys state that modeling improved their understanding of science concepts. Students appear to appreciate learning 

not only the use of simulation tools to design and conduct science experiments, but also basic programming skills to simulate 

a science experiment using a simple algebraic equation, new = old + change. A strong link is established between 

computational and natural sciences. Students learn in a simplistic framework how laws of nature act as the source of change. 
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1. Introduction 

One of the emerging results from recent reform efforts in 

computing is the push for contextualization of computing 

education [1-2]. This presents an opportunity to teach 

computing in the context of natural sciences (or vice versa). 

Basically, this also points out to bridging the boundaries 

between computer science and natural sciences, as so 

suggested by market forces.  

The employment data from the National Science Board 

[3], the Bureau of Labor Statistics [4], and other 

organizations such as American Physics Institute (AIP) [5] 

indicate that majority of science and engineering jobs have 

been increasingly demanding knowledge of computing 

resources and use of large databases and visualization tools. 

AIP surveys of physics majors taken in regular intervals 

after graduation indicate that the most important job skills 

continue to be scientific problem solving, computer 

programming, design and development, simulation and 

modeling, math skills, teamwork, and technical writing.  

All in all, we can say that today’s STEM jobs require 

multidisciplinary content in math, computing and sciences. 

Only a 3
rd

 of undergraduates tend to get a job directly related 

to their education [3]. As a general conclusion, we can also 

say that obtaining a broad education continues to be the key 

to one’s employment chances and career advancement in 

computing. Since only a fraction of physics bachelors in the 

job sector practice their knowledge of physics, some 

educators concluded that achieving deep mastery of physics 

at the undergraduate level might not be as important to 

students’ careers as problem solving and computational 

skills [6]. Many science departments have, therefore, created 

new interdisciplinary courses, concentrations, and tracks to 

prepare their majors for computing jobs [7]. 

While the demand for computationally competent STEM 

workers is an unprecedented opportunity, the pipeline 

between institutions of higher education (IHE) and K-12 

seems to be broken in terms of the quality and quantity of 

students entering college [8-9]. The pipeline problem is so 

deep that it cannot be fixed easily, at least not without 

colleges’ participation in pre-college preparation [10-11]. 

The low interest and achievement in STEM have been 

chronically present for some time. A recent study suggests 

that student attitudes towards STEM become increasingly 

negative as a country advances economically, which 

suggests this phenomenon to be deeply cultural [12]. 

Learning science is demanding and it requires application, 

discipline and delayed gratification; values that 

contemporary culture does not seem to encourage. So, 

innovative and engaging ways of teaching introductory 

science and computing are necessary at both IHE and K-12 

levels. Here, we describe an interdisciplinary course, namely 

Introduction to Computational Math, Science and 

Technology (C-MST), which meets the latest curricular 

recommendations in both computing, mathematics, and 

sciences to teach computational thinking skills to new 

generations [13-15]. 
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2. Computational Pedagogy 

Computational modeling and simulations provide us with 

a deductive pedagogical approach by enabling us to 

introduce a topic from a simplistic framework and then 

move deeper into details after learners gain a level of interest 

to help them endure the hardships and frustration of deeper 

learning. Once the learner grasps important facts 

surrounding the topic, a reverse (inductive) process can be 

facilitated through hypothetical and investigative 

simulations that enable discovery and honing of relevant 

principles and skills. Such a stepwise progression is 

consistent with the pedagogical framework Flow [16] and 

scaffolding strategy to balance skills with challenges (see 

Fig. 1). Deductive and inductive learning approaches are 

structurally illustrated in Fig. 2. Computational pedagogy 

carries both strategies as part of its nature. It puts the learner 

at the center of a constructivist experience that utilizes both 

bottom-up (abstraction) and top-down approaches to 

teaching. 

 
Figure 1. Illustration of Optimal Flow in learning [16]. 

We know that ‘attention to details’ is important to master a 

skill, but we all have a limited memory to store information. 

The most pervasive strategy to improve memory 

performance (and information retrieval for problem solving) 

is organizing disparate pieces of information into 

meaningful units [17]. Abstraction skills can help with that 

by simplifying, categorizing, and registering key 

information and knowledge for quicker retrieval and 

processing. The act of abstraction is an inductive process by 

which we sort out details and connect the dots to arrive at 

more general patterns and conclusions. Abstraction is 

essential for cognition – in learning new concepts, acquiring 

language, and making inferences from data. We still do not 

know how humans make strong generalizations and 

construct powerful abstractions from such a sparse, noisy, 

and ambiguous data that is in every way far too limited [18], 

but it is obvious that a survival instinct (or something else 

encoded into our genes) is propelling us to make practical 

decisions in the face of uncertainties and distractions. 

Shakespeare’s Hamlet is an example of a mindset (character) 

exhausted into inaction from calculating all scenarios before 

action.  

The practicality and tendency to filter things out is even 

built into the nature itself; its ambiguous quantum behavior 

at the microscopic level is translated (abstracted) into 

concrete outcomes at our macroscopic level. In a way, the 

nature is helping us realize the benefits of abstraction by 

hiding the atomic-level motion so we can see the macro 

picture (forest) rather than being bogged down by the micro 

picture (trees). 

Computational modeling uses abstraction intensively, by 

its simplification of the reality, to help eliminate unnecessary 

details and focus on what is being researched or taught. In 

research, it uses an inductive approach that employs 

abstraction skills for simplifications. In teaching, modeling 

supports a deductive approach that enables the learner to 

grasp important facts surrounding a topic before being 

exposed to the underlying details. Simulation adds another 

level of benefit by providing a dynamic medium for the 

researcher or the learner to conduct scientific experiments in 

a friendly, playful, predictive, eventful, and interactive way 

to test hypothetical scenarios without having to initially 

know the underlying science concepts. 

 
Figure 2. Structure and directional flow of ‘teaching and learning’ process 

during deductive and inductive instructional pedagogies. 

Modeling and simulation meet the specifications of 

national reports such as [19-20] to teach computational 

thinking skills. The Task Force in [19] suggests that at early 

stages computational thinking education should involve 

easy experimentation (learners must be able to quickly set 

up and run a model using an intuitive user interface, with no 

knowledge of programming or system commands) and high 

interactivity (models need to evolve quickly and include 

smooth visualizations for providing interactions and 

feedback to users).  

In our experience, tools such as Interactive Physics (IP) 

can be used to create many fun things that engage students 

into computing and sciences. After an initial 

experimentation with modeling in the context of a science 

simulation, students can be gradually introduced to the 

simple principle of mathematical modeling (new = old + 

change) which eventually (and quickly) leads the learner 

into understanding several aspects of computational 
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thinking as outlined below. In the process, students get a 

chance to realize the virtue of decomposing a problem into 

smaller chunks and to correlate the cost of computation and 

the choice of tool to the needed accuracy. Students 

experience firsthand the need for computer programming in 

order to handle complexity and computational cost of 

increasing data points as a result of decomposing a problem 

into much smaller chunks. Linking computing to natural 

sciences, through the computation of change, provides a 

motivation for science majors to learn programming and for 

computing majors to learn more about natural sciences. 

3. Principle of Computational Modeling 

Nature’s indirect communication with us seems to be a 

pattern we see all around us. Rarely revealing a direct 

relationship such as y = x
2
, the nature often talks to us in the 

language of change; that is ‘if you change a thing (x) by this 

much (dx), then another related thing (y) will change by that 

much (dy).’ A simple example of such a relationship is 

dy/dx= 2x; what is often called a derivative, the rate of 

change, or a differential equation by mathematicians. We 

consider it as a ‘behavioral relationship’ because it reveals 

behavior.  

We can often infer a direct relationship from a behavioral 

relationship. The act of finding a direct relationship, such as 

y=f(x), from a behavioral relationship, such as dy= 2x dx, is 

called integration. Denoted symbolically by y =  2x  dx, 

mathematical integration follows simple rules, but the 

problem is that finding an analytical answer is not always 

possible; especially when there are multiple variables and 

higher-order derivatives describing the behavioral 

relationship. Examples are many; including those describing 

climate change, hurricane dynamics, earthquake 

propagation, population dynamics, ignition in an internal 

combustion engine, spread of fire, and chemical and nuclear 

reactions, to name a few. What we do under such conditions, 

when we cannot infer a direct relationship mathematically, is 

to employ numerical integration. Numerical integration can 

be illustrated via a simple algebraic equation (new = old + 

change) as described below. 

Numerical integration constitutes a major principle of 

computational modeling and simulations. To numerically 

solve the above integration problem (dy= 2x dx), let’s 

construct a table of (x, y) data set starting from (0, 0) and 

using expressions ynew = yold + dy and xnew = xold + dx where 

dx is an (independent) increment we get to choose. Table 1 

illustrates the steps to construct such a table and Table 2 

demonstrates the numerical steps involved for a case in 

which dx=1 and 0  x  5. The key here is to first compute 

the change (dy) using data from the old step (xn-1, yn-1) and 

then move on to establish the new data set (xn, yn).  

Table 1. A simple algebraic scheme to build an (X, Y) table. 

X X1 =0 X2 =X1 + dx Xn =Xn-1 + dx 

Y Y1 =0 Y2 =Y1 + 2  X1  dx Yn =Yn-1 + 2  Xn-1  dx 

Table 2. Hands-on illustration of the algebraic scheme: 1) compute dY 

using old data, and 2) get new data: Y=Y+dY and X=X+dX. Last column 

shows the analytical (exact) solution. 

 

As seen in Fig. 3 (and Table 2), the numerical solution 

(dotted line) results in lower values (undershooting) in 

comparison to the exact solution (solid line). The behavior 

of y, in other words its rate of change (slope; as described by 

dy/dx = 2x), depends on x. As we move along the x-axis, this 

slope increases continuously, but in the numerical solution, 

we assume it to be rather constant throughout each dx 

interval; based either on the old value of x (slope=2xold) or 

the new value of x (slope=2xnew). Because of this assumption, 

we end up inaccurately computing the area under the solid 

line (y=x
2
). The brown area (Y-U) underestimates and the 

‘gray + brown’ area (Y-O) overestimates the solution, 

depending on how we compute the slope. The dashed line 

(associated with the ‘gray + brown’ area) in Fig. 3 represents 

such an overshooting solution as a result of using a higher 

slope (2xnew) instead of 2xold in the second column of Table 2. 

Although we instruct students to use data from the old step 

to compute the slope, some students end up using xnew and 

some end up using xold unintentionally, perhaps as a result of 

how carefully they program it in Excel. The instructor, 

however, should be ready to explain the difference 

(undershooting vs. overshooting) in results. 

 
Figure 3. The numerical solution (dotted line) for dx=1 and the analytical 

solution (solid line). 

Comparison of numerical results for varying step sizes (dx) 

could also help students understand the above point. More 

importantly, it could lead them to discover a correlation 

between accuracy and the integration size; that is, the 

smaller the dx, the more accurate the answer. This can be 

illustrated through plots and areas covered under the solid 

curve (y=x
2
) in Figure 4. By using a smaller dx, one gets to 

update the slope more often to more accurately predict the 
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real solution. While the dx=1.0 case (with green colored 

area and associated dashed curve) shows to be a gross 

approximation of the real solution, one could conclude that 

the dx=0.1 case (‘red + blue + green’ area and dotted curve) 

is pretty close to the real solution (solid line). If we did not 

know the real solution, then, of course, we would not have 

known how close to the real solution we were getting by 

decreasing dx values. Here, testing our numerical method on 

a known case gave us a chance to calibrate our 

computational parameters.  

We now know that we can use the above computational 

methodology for problems that cannot be solved analytically. 

We also know that the accuracy can be improved by 

employing smaller integration steps; however this comes 

with a price tag. While a human can calculate a few data 

points by hand when dx is 1, or 0.5, the need for automation 

(and accuracy) becomes obvious for smaller dx values such 

as 0.1 or 0.05. Excel can be used to automate the calculation 

and graph the y=f(x) curves, but for much smaller step sizes 

(dx), such as 0.001, 0.0001, or 0.0000001, students will 

discover that Excel cannot help process millions of data 

points in those computationally intensive cases. The need 

for finer and faster automation, via computer programming 

(example shown in later sections), becomes evident as the 

only way to obtain highly accurate results. 

 
Figure 4. Numerical results (dashed lines) are compared to the analytic 

solution (solid line) for several cases of different dx increments (dx= 1.0, 

0.5, and 0.1). 

In an after-school project initiated by the author, several 

9
th

 graders from Brighton High School (NY) were able to 

replicate Interactive Physics simulations using the numerical 

integration method with Excel (and later with Python 

programming language) to compute the algebraic formulas 

for the position (xnew = xold + dx) and velocity (vnew= vold + dv) 

as a function of time, where dx= v ∙ dt and dv= a∙ dt, and 

a=F/m (acceleration=Force/mass). All that is needed, then, 

to conduct these computations is the knowledge (a formula) 

for the forces that cause change in x and v. Interactive 

Physics offer an easy-to-use graphical interface to define 

forces and their strengths without formulas or other 

prerequisite knowledge. However, when using Excel or 

Python, there is a need for a formula that describes the 

external forces. For example, the force applied by a spring 

onto an attached object is F= - k · x, where k is the stiffness 

coefficient of the spring and x is the displacement of the 

object from the equilibrium position. Another example is the 

interplanetary gravitational force (F=G·M·m/x
2
; where G is 

a Universal Constant, M and m are masses of the objects 

separated by distance x), which governs the orbital motion of 

a planet around the Sun. These two examples are given in 

more details in later sections 

4. Contextualized Computing Education 

The College at Brockport, State University of New York 

(SUNY Brockport), located in Upstate New York, is a 

comprehensive liberal arts college with about 7,300 

undergraduate students (56% female) and 1,300 graduate 

students (67% female). In the past decade, the college has 

supported numerous efforts to increase STEM enrollments, 

enhance diversity, and promote the culture of research. In 

the fall of 1998, it started the nation’s first undergraduate 

program in computational science [7, 21-23] and in 2003 it 

formed an institute with local school districts to promote an 

integrated (computational) approach to math, science, and 

technology (C-MST) education as a way to strengthen the 

IHE-K12 pipeline [24-27]. The computational science (CPS) 

faculty has developed more than thirty new courses, 

including three General-Education courses such as CPS 101 

Introduction to Computational Math, Science and 

Technology, CPS 105 Games in Sciences, and CPS 302 

Science, Technology, and Society.  

CPS 101 teaches principles of computing in the context of 

modeling and scientific simulations as detailed in this paper. 

CPS 105 uses agent-based modeling to teach programming 

concepts in the context of culturally popular and low 

threshold applications such as games, while CPS 302 

discusses scientific and computing concepts in the context of 

historical evolution and personal lives of their inventors, 

supported by demonstrations using again modeling tools. 

While motivational and educational aspects of these courses 

are important to draw students into computing and sciences, 

it is also important that students go beyond a sugarcoating of 

‘fun’ to the full engagement these courses offer. An 

important question to answer would be if learners gain skills 

that are transferable to other domains or do they merely learn 

how to use specific computer programs to construct games 

and fun simulations.  

Below, we offer details of one of these courses (CPS 101) 

that meet most of these desired outcomes, both in a fun and 

an educational way. Course materials include class notes, 

online modules posted at www.brockport.edu/cmst, and user 

manuals for tools Interactive Physics (IP) and Python. Its 

general structure below is followed by the weekly schedule 

in Table 3.  

 Design and modeling tools: Learn tools such as 

Interactive Physics (IP) to create simulations. 

 Principles of computational modeling: Learn 

numerical integration by hand; use Excel to establish 

a link between computational accuracy and cost; 

then discuss use of programming to obtain more 

accuracy, better control, and higher automation. 

 Computer organization: Discuss factors impacting 

computational efficiency, including processing 

http://www.brockport.edu/cmst
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speed, storage capacity, communication bandwidth, 

system software, and the hierarchy (and cost) of 

information flow between registers, cash, memory, 

and storage units. 

 Programming: Learn programming and algorithmic 

concepts via a text-based language, such as Python. 

 Computational science applications: Conduct 

science simulations by solving the same problem 

using multiple tools (IP, Excel, and Python); discuss 

trade-offs and why certain tools are utilized to solve 

particular problems.  

Table 3. Weekly schedule for CPS 101 

Week 1: Conduct surveys to examine math & computing skills. Discuss 

the role of modeling in scientific inquiry and industrial design 

(watch videos and show examples). HW #1: Search the web and 

write a short essay on the role of computational modeling. 

Week 2: Discuss principles of computational modeling: new=old + 

change. Discuss functional (i.e., y= x2) and behavioral (i.e., dy= 

2x∙dx) relationships in tabular, formulated, and graphical forms. 

Week 3: Discuss the rate of change and the difference between average & 

instantaneous rates of change. Test #1 (functions, rate of change, 

and forms of representation (tabular, formulated, and 

graphical)). 

Week 4: Conduct numerical integration by hand and Excel. Discuss the 

role of integration step in reducing error & the role of computing 

power to afford smaller steps. HW #2: Numerical integration by 

hand & Excel. 

Week 5: Computer Lab: Introduce Interactive Physics (IP) training. HW 

#3: Design a creative IP project to demonstrate comfort level 

with it. 

Week 6: IP Labs: a) Harmonic motion: generate position and velocity 

plots of a spring-driven object; b) Falling objects: examine 

motion under gravity. HW #4: Create a swinging pendulum and 

report observations. 

Week 7: Discuss the role of hardware (storage, processing, and 

communication) and software (data locality, memory usage, 

system software, and programming) on performance and 

accuracy. Introduce programming concepts using Python. 

Conduct a Midterm Exam. 

Week 8: Discuss programming examples in Python. HW#5 and Test #2 on 

programming and on factors that affect computational 

performance. 

Week 9: Break 

Week 10: Lab: Review use of multiple tools (IP, Excel, and Python). Redo 

harmonic motion using new = old + change computations via 

Excel and Python. Learn about Newton’s law of motion (F=m  

dv/dt) as Force being the cause of change in velocity and 

position. Compare IP, Excel and Python results. 

Week 11: Lab: Trajectory of projectile: Use IP and Excel to study 2-D 

motion. HW #6: Write a Python program that computes the 

trajectory of a rock thrown upwards at an angle. 

Week 12: Lab: Conservation of energy & momentum. Use IP to graph 

potential and kinetic energies of objects. Examine effects of 

friction. 

Week 13: Lab: Orbital motion: Watch videos on orbital motion and space 

explorations. Learn about gravitational force F=G·M·m/r2 as a 

cause of change in position. Simulate orbital motion in 2-D using 

Excel and then Python. HW #7 (Team project: Proof of Kepler’s 

Laws). 

Week 14: Lab: Team project: Design a project; discuss issues of 

computational efficiency and cost using multiple tools (IP, Excel, 

Python); and explain role and benefits of each tool. 

Week 15: Re-visit HW #1 to improve the earlier essay. 

Week 16: Conduct a review for Final Exam. 

4.1. Programming with Interactive Physics 

IP is used to model, simulate, and explore a wide range of 

physical phenomena, including harmonic motion (springs 

and pendulums), falling objects, trajectory of projectiles, 

energy conservation, orbital motion, Kepler’s Laws, 

Newton’s second law of motion, and electrostatic oscillator. 

Through IP, students are able to conduct experiments and 

investigate events without deeply knowing or memorizing 

the laws of physics. Users are allowed to set up their own 

physical world; add, remove, or modify external forces; 

monitor position, velocity, energy, and elapsed time; and 

also create control buttons to facilitate a simulation. Visual 

images and data can be transferred to Excel for analysis or to 

the Geometer’s Sketchpad (GSP) to measure angles, 

distances, and areas needed for proofs or other calculations. 

Screen shots of two separate IP simulations are shown in 

Fig. 5 and 6. Figure 5 shows a box subject to an external 

force by an attached spring. Control buttons allow the user to 

change initial velocity (v0) and mass (m) of the box as well as 

the stiffness coefficient (k) of the spring. Figure 6 shows 

orbital tracks of three planets (Mercury, Venus, and Earth) 

around the Sun. The planets are represented by small circles, 

with appropriate masses and orbital velocities. For example, 

the earth (of mass 5.9 x 10
24

 kg and orbital velocity of 

6.65x10
4
 mph) is placed at 150x10

6
 km from the Sun (mass 

of 1.89 x 10
30

 kg). Figure 6 is actually a screen dump from IP 

into the Geometer’s SkecthPad (GSP) that measures 

distances for the proof of Kepler’s laws, which states that for 

each planet the square of its period (T
2
) is proportional to its 

semi-major R
3
; or (T1/T2)

2
 = (R1/R2)

3
 for any two planets. 

4.2. Programming with Excel 

While IP is a good tool to expose students to many 

concepts, computing education needs to move beyond just 

using tools. Our experience indicates that students need to 

eventually understand the underlying mechanism of 

modeling and simulation and to flexibly master and apply 

acquired knowledge rather than practice rote memorization 

of scientific laws.  

In CPS 101, students are required to model a natural 

phenomenon by computer simulation using IP, and then 

solve the same problem via Excel and later by writing a 

computer code using a language such as Python.  

To use Excel for generating position and velocity values 

of an object subject to an external force, students need to 

designate several columns in an Excel worksheet to these 

variables as shown in Table 4 for the experiment in Fig. 5. 

The direction of computation in Table 4 is from left to right: 

first compute dx=vold ∙ dt using the velocity from the 

previous step; update x=x+dx; compute dv=- (k/m) · xold ∙dt; 

and finally update v=v+dv. The first row in each column 

holds variable names and the 2
nd

 holds initial values (t=0 s, v 

= 1 meters/s and x= 0 meters). The 3
rd

 row holds 

expressions computed in the order indicated, where t, v, and 

x are linked to their own values from the previous row. The 

computed expressions can be copied and pasted to the rest of 
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the rows below until t reaches maximum time (T) desired. 

This is where the limitations of Excel come into play. The 

visible and scrollable screen might not accommodate the 

desirable simulation range when the integration time step (dt) 

is very small. If one chooses dt to be 0.000001 s, then one 

needs 1,000,000 rows to do an Excel computation for 1 s.  

 
Figure 5. Simple harmonic motion with Interactive Physics. 

 
Figure 6. Orbital tracks of several planets around the Sun. Orbits and 

periods are shown to prove Kepler’s 3rd Law. 

In Fig. 5, we assume that there are no external forces (no 

friction or air resistance) on the box other than the force 

applied by a spring, which is characterized as F= - k · x, 

where k is the stiffness coefficient of the spring and x is the 

displacement of the box from the equilibrium position (x=0). 

In this case, the acceleration becomes a= -(k/m) · x. The 

chosen values for spring stiffness (k) and object’s mass (m) 

are 1.0 Newton/meter and 1.0 kg. Figure 7 displays Excel 

computations for comparison with those seen in the IP 

window (Fig. 5). While the Excel results qualitatively match 

the IP results, it is clear that the amplitude of both position (x) 

and velocity (v) in Fig. 7 is growing at each cycle due to an 

error resulted from numerical solution.  

There are ways to minimize the numerical error. In 

situations where change is very dramatic, we can either 

lower the step size (dt) to smoothen the transition as we did 

in the previous example or use newly calculated quantities 

(xnew and vnew) as soon as they become available in the 

computation of change. For example, in the harmonic 

motion, as soon as the box moves by x amount, the spring 

applies acceleration, proportional to – (k/m)  x, to pull it back. 

At the first step, this acceleration could be quite large 

because of a highly stiff spring (large k), or a light box (small 

m), or a high initial velocity (v) that causes a big jump 

(dx=vold ∙dt) in position x. Despite such a large acceleration, 

its influence will not be felt until x is updated in the next time 

step. Therefore, much information will be missed (lost) if 

the time step is too large to capture a big change. As a result, 

not feeling the pulling force from the spring, the box will end 

up moving further away from it at each cycle. The growing 

amplitude in Figure 7 shows that. This growth is larger for 

bigger time steps. 

Table 4. Harmonic motion using Excel (dt= 0.1) 

t+dt 

(s) 

dx= vold∙dt 

 

x+dx 

(m) 

dv= a∙dt = 

- (k/m) ∙ xold  ∙ dt 

v+dv 

(m/s) 

0 
 

0 
 

1 

0.1 0.10 0.10 0.00 1.00 

0.2 0.10 0.20 -0.01 0.99 

0.3 0.10 0.30 -0.02 0.97 

0.4 0.10 0.40 -0.03 0.94 

0.5 0.09 0.49 -0.04 0.90 

0.6 0.09 0.58 -0.05 0.85 

0.7 0.09 0.67 -0.06 0.79 

0.8 0.08 0.74 -0.07 0.73 

0.9 0.07 0.82 -0.07 0.65 

1 0.07 0.88 -0.08 0.57 

 

 
Figure 7. Plot of position (x) and velocity (v) in Table 4 

Smaller step size leads to more accuracy as seen in Fig. 7 

(in comparison to the graphs in Fig. 5). While lowering the 

step size (dt) by an order of magnitude has significantly 

dampen the growing amplitude, it has not stopped it. As 

mentioned before, another way of minimizing the numerical 

error is to put into use newly calculated/updated quantities in 

the formulas. For example, if we compute the acceleration 

based on the updated position, such as a = - (k/m) · xnew, in 

the fourth column in Table 4, then we will have captured 

major changes in acceleration even during a step size as big 

as 0.1. The orange curve in Fig. 8 illustrates that such a 
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technique accomplishes as much accuracy as a computation 

(light green curve) with a step size 10 times smaller (and ten 

times more costly). 

 
Figure 8. Comparison of the numerical solution for position (x) using two 

different step sizes (dt=0.1 and 0.01) and two slightly different ways of 

computing the change in velocity 

In two-dimension, the above equations can be expanded 

as:  

xnew = xold + vx·dt;vx,new= vx,old + ax·dt; ax = (x/r) · a, 

ynew = yold + vy·dt;vy,new= vy,old + ay·dt; ay = (y/r) · a, 

r
2
 = x

2
 + y

2
; andv

2
= (vx)

2
 + (vy)

2
. 

 
Figure 9. Orbital tracking of the Earth using Excel. 

Using these equations along with interplanetary 

acceleration between Earth and the Sun (a =F/m = 

G·M/r
2
=1.26x10

14
 N·km

2
/kg ∙ 1/r

2
; where G is a Universal 

Constant and M and m are masses of Sun and Earth), one 

could get the orbital track for the Earth as seen in Fig. 9. At 

t=0, we assume the Earth’s orbital velocity to be vx=0 and 

vy= 29.79 km/s and its position to be y=0 and x= 150x10
6
 km. 

What is shown in Fig. 9 may not be the most accurate track, 

but qualitatively it is representative of a planet’s orbit. Some 

planets have more elliptically looking orbits (see Fig. 6). 

The Excel calculations in Fig. 9 are given for dt = 5 days, 

and smaller time steps (i.e., dt=1 day) could produce more 

accurate tracks. Again, that is where the limitations of Excel 

come into play, just like the million data points mentioned 

above. With computer programming, these limitations can 

be overcome. While doing these computations, students 

realize higher resolution and automation need use of a 

programming language. 

4.3. Programming with Python 

In the past we used Fortran and C++in CPS 101, but we 

have recently switched to Python. The switch to Python was 

based on three major reasons, including relative easiness and 

quickness with learning of Python as a computer language, 

its simple and short constructs, and less error-prone coding. 

Python is a general-purpose, object-oriented, high-level 

programming language, which comes with extensive 

standard libraries and it supports the integration with other 

languages and tools. It is increasingly used in scientific 

computing, web development, and database operations. 

Python can be learned in a couple of weeks for basic 

operations; it is open-source and platform-independent, and 

it can be installed on almost any computers free of charge. 

An introduction to basic syntax, input/output functions, 

repetition structures (loops), and algorithmic thinking is 

adequate to carry out programming assignments necessary 

for computing a mathematical or logical expression 

repetitively, recursively, and iteratively. Students can write 

simple loops to compute and generate data points for a 

number of problems listed in the course syllabus including 

falling objects, trajectory of projectile, harmonic motion, 

and orbital motion. A few lines of computer programming, 

as shown below without the exact syntax, can accomplish 

the above calculations with less effort and much higher 

accuracy. 

while t <=T: # this sign preceeds comments 

print x, v, t # position, velocity, time 

a = F/m # compute acceleration 

v = v + a × dt # update velocity 

x= x + v × dt # update position 

t = t + dt # update time & end loop if t >T 

5. Results and Discussion 

We used a mix-methods approach [28-29] to examine the 

student reaction to the interdisciplinary teaching of the CPS 

101 course. Table 5 shows some of the findings from student 

surveys in consecutive years (2011, 2012, and half of 2013). 

Although it is difficult to infer meaningful results from our 

sample size (20-40 students per year), we can see some 

trends as a result of triangulating our survey results with 

classroom observations. 

Launched in 1998, the CPS 101 was taught by the author 

to a classroom full of students until 2007 when a new faculty 

was hired to teach it. The new instructor’s tendency to teach 

it merely as a programming course in C++, along with high 

level mathematics, brought enrollments in this introductory 

level course down to single digits in 2009. In 2010, through 

support from an NSF grant, the content was gradually 
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shifted back from ‘differential equations and computer 

programming’ to its original content of basic problem 

solving as described here. These changes, along with 

classroom instruction by a former K-12 teacher, brought the 

enrollments back again to more satisfactory levels, 

vindicating the computational thinking approach to 

introductory computing and science education that is being 

currently advocated at the national level [1, 13, 15, 19, 30]. 

Table 5. Survey results from CPS 101 

Survey Questions (Q) 

Responses are in percentages (%). 

CPS 101 

2011 2012 2013 

1. Would you recommend this course? 97 94 100 

2. Do you like to take an advanced course? 44 63 92 

3. Did modeling improve your learning? 68 82 92 

4. Did you like project-based learning? 90 94 100 

5. Did you have the necessary background? 60 75 85 

6. Were your skills a match for challenges? 78 82 85 

7. Did you ever feel frustrated? 32 25 15 

8. Will new skills help you in later classes? 96 56 100 

9. Did you change your major afterwards? 10 13 15 

Currently, CPS 101 has a broad appeal, drawing students 

from many departments, including non-STEM majors. 

Majority of surveyed students liked project-based learning, 

which involved design of a game or a science experiment. A 

significant portion of students thought that modeling 

improved their understanding of science concepts. This 

portion grew every year as the shift from programming to 

modeling occurred. While the attendance rate in the lecture 

session was around 70%, it jumped to 90% in the computer 

lab. Students seemed highly engaged in lab activities and 

involved in practicing different computational tools. 

Classroom observations and attendance records indicate 

significant improvement from 2011 to the current year in 

student participation in hands-on lab activities. 

A sizable number of students (40% in 2011, 25% in 2012, 

and 15% in 2013) said they did not initially have the 

necessary background and skills. The level of frustration (32% 

in 2011, 25% in 2012, and 15% in 2013) reflects this. When 

asked about how they overcame this deficiency, they cited 

professor’s help, additional practice, project-based learning, 

and scaffolding. The gradual shift from heavy programming 

and differential equations in 2010 to the use of design-based 

tools (such as IP) and more applied mathematics in 2013 

also seems to lead to more engagement and confidence. 

However, this gain comes with a price, at least for now until 

there is a better vertical integration between similar courses 

in terms of using the same tools.  

When programming and differential equations were main 

tools of the instruction, despite their difficulties students saw 

more value in learning them to further their education than 

the design tools. The feeling that the tools they learned 

would be utilized in future classes went down from 96% in 

2011 to 56% in 2012. Because of our concern about transfer 

of skills and vertical integration to more advanced courses, 

in 2013 we reached a more balanced use of design and 

programming tools. We also better explained the pros and 

cons of different tools used. Some of the answers to “What 

did you like (or dislike) most about this class?” included the 

following: “I most enjoyed the experience of using different 

modeling and programming software,” “Learning and doing 

examples on a number of different programs,” and “I like 

how you program something, using the code, and you can 

usually see the outcome.” Additional time may need to pass 

before the same tools are used in other advanced courses to 

create a feeling of continuity. Also, because CPS 101 teaches 

the principles employed by computational modeling tools; 

its emphasis on fundamentals goes way beyond just using a 

particular tool. Students may realize the benefits of learning 

such fundamentals much later when they encounter new 

modeling tools in their courses or work environment. In the 

latest surveys, all respondents stated that newly learned 

skills would be beneficial in their education and work. 

Another front that we examined our computational 

approach to STEM education was K-12. This was done in 

the form of a C-MST professional development (PD) for 

secondary school math, science, and technology (MST) 

teachers in two partnering school districts (Rochester City 

School District and Brighton Central School District). The 

content of a 3-tier (beginner, intermediate, and expert level) 

teacher training and its overall impact on teacher retention 

and student achievement is being published elsewhere in 

[27], but here we will briefly mention the surveys on student 

engagement as a result of technology-enhanced instruction 

in the classroom. Majority of the 200 trained MST teachers 

surveyed by external evaluators from 2005 to 2010 reported 

encouraging results on infusing technology into classroom 

instruction. While it initially involved use of laptops for 

presentations, graphing calculators for math instruction, and 

electronic smart boards for interactive lessons, these surveys 

indicated that it took 3 years (or 200 hours of training) for a 

teacher to feel comfortable with modeling tools such as IP. 

This is consistent with findings of a report by the Urban 

Institute in 2005 that a minimum of 160 PD hours are needed 

to effect changes in the classroom environment. 60% of the 

beginner-level teachers in 2003 reported occasional use of 

modeling in their classrooms. In a 2010 survey of 40 

expert-level teachers (who had three years of prior training), 

78% of them reported that they regularly used modeling 

software in their classrooms and 92% of them indicated use 

of smart boards. 90% of those who used modeling software, 

graphing calculators, and smart boards in their lessons 

agreed that use of technology increased student engagement 

and made math and science concepts more comprehensible. 

Student reaction to modeling (versus traditional techniques) 

was found to be quite favorable in both mathematics (97%) 

and science (77%) classes. While science classes utilized 

technology less due to limited access and lack of science 

modeling examples, in instances where it was utilized, it 

actually led to a deeper understanding of science topics than 

it did for mathematics topics (83% vs. 76%).  
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6. Conclusion 

We believe that the practice of teaching introductory 

computing courses in the context of natural sciences (or vice 

versa) offers benefits to a wide group of students. While 

science majors get to use simulation tools and computer 

programming to solve science problems, math and computer 

science majors get to establish a link to natural laws through 

computation of change.  

By using multiple tools (IP, Excel, and Python) to solve 

the same problem, students get a chance to weigh 

advantages of each tool and conclude firsthand that more 

accurate and faster computation of new =old + change for a 

large number of data points require computer programming. 

In the context of applications, it is easy for students to 

understand why they need to learn computer programming.  

Steep learning curves, limited technology access, time 

constraints and rigid curriculum frameworks are hard to 

overcome, especially at the K-12 level. While integration of 

computational modeling and inquiry into mathematics and 

science courses has been slowed down by the above factors, 

the new K-12 math and science standards and the upcoming 

AP course to teach computational thinking skills might 

accelerate such integration in a systematic way. 
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