

International Journal of Science, Technology and Society
2013; 1(1): 9-18

Published online June 10, 2013 (http://www.sciencepublishinggroup.com/j/ijsts)

doi: 10.11648/j.ijsts.20130101.12

Teaching science through computation

Osman Yaşar

State University of New York, The College at Brockport, Brockport, New York, USA

Email address:
oyasar@brockport.edu

To cite this article:
Osman Yaşar. Teaching Science through Computation. International Journal of Science, Technology and Society. Vol. 1, No. 1, 2013,

pp. 9-18. doi: 10.11648/j.ijsts.20130101.12

Abstract: We present a computational pedagogy approach to teaching an interdisciplinary science course. Modeling and

simulation tools allow us to introduce a science topic from a simplistic framework and then move into details after learners

gain a level of interest to help them endure the hardships and frustration of deeper learning. More than 90% of students in

course surveys state that modeling improved their understanding of science concepts. Students appear to appreciate learning

not only the use of simulation tools to design and conduct science experiments, but also basic programming skills to simulate

a science experiment using a simple algebraic equation, new = old + change. A strong link is established between

computational and natural sciences. Students learn in a simplistic framework how laws of nature act as the source of change.

Keywords: Computational Modeling, Computer Simulations, Pedagogy

1. Introduction

One of the emerging results from recent reform efforts in

computing is the push for contextualization of computing

education [1-2]. This presents an opportunity to teach

computing in the context of natural sciences (or vice versa).

Basically, this also points out to bridging the boundaries

between computer science and natural sciences, as so

suggested by market forces.

The employment data from the National Science Board

[3], the Bureau of Labor Statistics [4], and other

organizations such as American Physics Institute (AIP) [5]

indicate that majority of science and engineering jobs have

been increasingly demanding knowledge of computing

resources and use of large databases and visualization tools.

AIP surveys of physics majors taken in regular intervals

after graduation indicate that the most important job skills

continue to be scientific problem solving, computer

programming, design and development, simulation and

modeling, math skills, teamwork, and technical writing.

All in all, we can say that today’s STEM jobs require

multidisciplinary content in math, computing and sciences.

Only a 3
rd

 of undergraduates tend to get a job directly related

to their education [3]. As a general conclusion, we can also

say that obtaining a broad education continues to be the key

to one’s employment chances and career advancement in

computing. Since only a fraction of physics bachelors in the

job sector practice their knowledge of physics, some

educators concluded that achieving deep mastery of physics

at the undergraduate level might not be as important to

students’ careers as problem solving and computational

skills [6]. Many science departments have, therefore, created

new interdisciplinary courses, concentrations, and tracks to

prepare their majors for computing jobs [7].

While the demand for computationally competent STEM

workers is an unprecedented opportunity, the pipeline

between institutions of higher education (IHE) and K-12

seems to be broken in terms of the quality and quantity of

students entering college [8-9]. The pipeline problem is so

deep that it cannot be fixed easily, at least not without

colleges’ participation in pre-college preparation [10-11].

The low interest and achievement in STEM have been

chronically present for some time. A recent study suggests

that student attitudes towards STEM become increasingly

negative as a country advances economically, which

suggests this phenomenon to be deeply cultural [12].

Learning science is demanding and it requires application,

discipline and delayed gratification; values that

contemporary culture does not seem to encourage. So,

innovative and engaging ways of teaching introductory

science and computing are necessary at both IHE and K-12

levels. Here, we describe an interdisciplinary course, namely

Introduction to Computational Math, Science and

Technology (C-MST), which meets the latest curricular

recommendations in both computing, mathematics, and

sciences to teach computational thinking skills to new

generations [13-15].

10 Osman Yaşar: Teaching Science through Computation

2. Computational Pedagogy

Computational modeling and simulations provide us with

a deductive pedagogical approach by enabling us to

introduce a topic from a simplistic framework and then

move deeper into details after learners gain a level of interest

to help them endure the hardships and frustration of deeper

learning. Once the learner grasps important facts

surrounding the topic, a reverse (inductive) process can be

facilitated through hypothetical and investigative

simulations that enable discovery and honing of relevant

principles and skills. Such a stepwise progression is

consistent with the pedagogical framework Flow [16] and

scaffolding strategy to balance skills with challenges (see

Fig. 1). Deductive and inductive learning approaches are

structurally illustrated in Fig. 2. Computational pedagogy

carries both strategies as part of its nature. It puts the learner

at the center of a constructivist experience that utilizes both

bottom-up (abstraction) and top-down approaches to

teaching.

Figure 1. Illustration of Optimal Flow in learning [16].

We know that ‘attention to details’ is important to master a

skill, but we all have a limited memory to store information.

The most pervasive strategy to improve memory

performance (and information retrieval for problem solving)

is organizing disparate pieces of information into

meaningful units [17]. Abstraction skills can help with that

by simplifying, categorizing, and registering key

information and knowledge for quicker retrieval and

processing. The act of abstraction is an inductive process by

which we sort out details and connect the dots to arrive at

more general patterns and conclusions. Abstraction is

essential for cognition – in learning new concepts, acquiring

language, and making inferences from data. We still do not

know how humans make strong generalizations and

construct powerful abstractions from such a sparse, noisy,

and ambiguous data that is in every way far too limited [18],

but it is obvious that a survival instinct (or something else

encoded into our genes) is propelling us to make practical

decisions in the face of uncertainties and distractions.

Shakespeare’s Hamlet is an example of a mindset (character)

exhausted into inaction from calculating all scenarios before

action.

The practicality and tendency to filter things out is even

built into the nature itself; its ambiguous quantum behavior

at the microscopic level is translated (abstracted) into

concrete outcomes at our macroscopic level. In a way, the

nature is helping us realize the benefits of abstraction by

hiding the atomic-level motion so we can see the macro

picture (forest) rather than being bogged down by the micro

picture (trees).

Computational modeling uses abstraction intensively, by

its simplification of the reality, to help eliminate unnecessary

details and focus on what is being researched or taught. In

research, it uses an inductive approach that employs

abstraction skills for simplifications. In teaching, modeling

supports a deductive approach that enables the learner to

grasp important facts surrounding a topic before being

exposed to the underlying details. Simulation adds another

level of benefit by providing a dynamic medium for the

researcher or the learner to conduct scientific experiments in

a friendly, playful, predictive, eventful, and interactive way

to test hypothetical scenarios without having to initially

know the underlying science concepts.

Figure 2. Structure and directional flow of ‘teaching and learning’ process

during deductive and inductive instructional pedagogies.

Modeling and simulation meet the specifications of

national reports such as [19-20] to teach computational

thinking skills. The Task Force in [19] suggests that at early

stages computational thinking education should involve

easy experimentation (learners must be able to quickly set

up and run a model using an intuitive user interface, with no

knowledge of programming or system commands) and high

interactivity (models need to evolve quickly and include

smooth visualizations for providing interactions and

feedback to users).

In our experience, tools such as Interactive Physics (IP)

can be used to create many fun things that engage students

into computing and sciences. After an initial

experimentation with modeling in the context of a science

simulation, students can be gradually introduced to the

simple principle of mathematical modeling (new = old +

change) which eventually (and quickly) leads the learner

into understanding several aspects of computational

 International Journal of Science, Technology and Society 2013; 1(1): 9-18 11

thinking as outlined below. In the process, students get a

chance to realize the virtue of decomposing a problem into

smaller chunks and to correlate the cost of computation and

the choice of tool to the needed accuracy. Students

experience firsthand the need for computer programming in

order to handle complexity and computational cost of

increasing data points as a result of decomposing a problem

into much smaller chunks. Linking computing to natural

sciences, through the computation of change, provides a

motivation for science majors to learn programming and for

computing majors to learn more about natural sciences.

3. Principle of Computational Modeling

Nature’s indirect communication with us seems to be a

pattern we see all around us. Rarely revealing a direct

relationship such as y = x
2
, the nature often talks to us in the

language of change; that is ‘if you change a thing (x) by this

much (dx), then another related thing (y) will change by that

much (dy).’ A simple example of such a relationship is

dy/dx= 2x; what is often called a derivative, the rate of

change, or a differential equation by mathematicians. We

consider it as a ‘behavioral relationship’ because it reveals

behavior.

We can often infer a direct relationship from a behavioral

relationship. The act of finding a direct relationship, such as

y=f(x), from a behavioral relationship, such as dy= 2x dx, is

called integration. Denoted symbolically by y = 2x dx,

mathematical integration follows simple rules, but the

problem is that finding an analytical answer is not always

possible; especially when there are multiple variables and

higher-order derivatives describing the behavioral

relationship. Examples are many; including those describing

climate change, hurricane dynamics, earthquake

propagation, population dynamics, ignition in an internal

combustion engine, spread of fire, and chemical and nuclear

reactions, to name a few. What we do under such conditions,

when we cannot infer a direct relationship mathematically, is

to employ numerical integration. Numerical integration can

be illustrated via a simple algebraic equation (new = old +

change) as described below.

Numerical integration constitutes a major principle of

computational modeling and simulations. To numerically

solve the above integration problem (dy= 2x dx), let’s

construct a table of (x, y) data set starting from (0, 0) and

using expressions ynew = yold + dy and xnew = xold + dx where

dx is an (independent) increment we get to choose. Table 1

illustrates the steps to construct such a table and Table 2

demonstrates the numerical steps involved for a case in

which dx=1 and 0 x 5. The key here is to first compute

the change (dy) using data from the old step (xn-1, yn-1) and

then move on to establish the new data set (xn, yn).

Table 1. A simple algebraic scheme to build an (X, Y) table.

X X1 =0 X2 =X1 + dx Xn =Xn-1 + dx

Y Y1 =0 Y2 =Y1 + 2 X1 dx Yn =Yn-1 + 2 Xn-1 dx

Table 2. Hands-on illustration of the algebraic scheme: 1) compute dY

using old data, and 2) get new data: Y=Y+dY and X=X+dX. Last column

shows the analytical (exact) solution.

As seen in Fig. 3 (and Table 2), the numerical solution

(dotted line) results in lower values (undershooting) in

comparison to the exact solution (solid line). The behavior

of y, in other words its rate of change (slope; as described by

dy/dx = 2x), depends on x. As we move along the x-axis, this

slope increases continuously, but in the numerical solution,

we assume it to be rather constant throughout each dx

interval; based either on the old value of x (slope=2xold) or

the new value of x (slope=2xnew). Because of this assumption,

we end up inaccurately computing the area under the solid

line (y=x
2
). The brown area (Y-U) underestimates and the

‘gray + brown’ area (Y-O) overestimates the solution,

depending on how we compute the slope. The dashed line

(associated with the ‘gray + brown’ area) in Fig. 3 represents

such an overshooting solution as a result of using a higher

slope (2xnew) instead of 2xold in the second column of Table 2.

Although we instruct students to use data from the old step

to compute the slope, some students end up using xnew and

some end up using xold unintentionally, perhaps as a result of

how carefully they program it in Excel. The instructor,

however, should be ready to explain the difference

(undershooting vs. overshooting) in results.

Figure 3. The numerical solution (dotted line) for dx=1 and the analytical

solution (solid line).

Comparison of numerical results for varying step sizes (dx)

could also help students understand the above point. More

importantly, it could lead them to discover a correlation

between accuracy and the integration size; that is, the

smaller the dx, the more accurate the answer. This can be

illustrated through plots and areas covered under the solid

curve (y=x
2
) in Figure 4. By using a smaller dx, one gets to

update the slope more often to more accurately predict the

12 Osman Yaşar: Teaching Science through Computation

real solution. While the dx=1.0 case (with green colored

area and associated dashed curve) shows to be a gross

approximation of the real solution, one could conclude that

the dx=0.1 case (‘red + blue + green’ area and dotted curve)

is pretty close to the real solution (solid line). If we did not

know the real solution, then, of course, we would not have

known how close to the real solution we were getting by

decreasing dx values. Here, testing our numerical method on

a known case gave us a chance to calibrate our

computational parameters.

We now know that we can use the above computational

methodology for problems that cannot be solved analytically.

We also know that the accuracy can be improved by

employing smaller integration steps; however this comes

with a price tag. While a human can calculate a few data

points by hand when dx is 1, or 0.5, the need for automation

(and accuracy) becomes obvious for smaller dx values such

as 0.1 or 0.05. Excel can be used to automate the calculation

and graph the y=f(x) curves, but for much smaller step sizes

(dx), such as 0.001, 0.0001, or 0.0000001, students will

discover that Excel cannot help process millions of data

points in those computationally intensive cases. The need

for finer and faster automation, via computer programming

(example shown in later sections), becomes evident as the

only way to obtain highly accurate results.

Figure 4. Numerical results (dashed lines) are compared to the analytic

solution (solid line) for several cases of different dx increments (dx= 1.0,

0.5, and 0.1).

In an after-school project initiated by the author, several

9
th

 graders from Brighton High School (NY) were able to

replicate Interactive Physics simulations using the numerical

integration method with Excel (and later with Python

programming language) to compute the algebraic formulas

for the position (xnew = xold + dx) and velocity (vnew= vold + dv)

as a function of time, where dx= v ∙ dt and dv= a∙ dt, and

a=F/m (acceleration=Force/mass). All that is needed, then,

to conduct these computations is the knowledge (a formula)

for the forces that cause change in x and v. Interactive

Physics offer an easy-to-use graphical interface to define

forces and their strengths without formulas or other

prerequisite knowledge. However, when using Excel or

Python, there is a need for a formula that describes the

external forces. For example, the force applied by a spring

onto an attached object is F= - k · x, where k is the stiffness

coefficient of the spring and x is the displacement of the

object from the equilibrium position. Another example is the

interplanetary gravitational force (F=G·M·m/x
2
; where G is

a Universal Constant, M and m are masses of the objects

separated by distance x), which governs the orbital motion of

a planet around the Sun. These two examples are given in

more details in later sections

4. Contextualized Computing Education

The College at Brockport, State University of New York

(SUNY Brockport), located in Upstate New York, is a

comprehensive liberal arts college with about 7,300

undergraduate students (56% female) and 1,300 graduate

students (67% female). In the past decade, the college has

supported numerous efforts to increase STEM enrollments,

enhance diversity, and promote the culture of research. In

the fall of 1998, it started the nation’s first undergraduate

program in computational science [7, 21-23] and in 2003 it

formed an institute with local school districts to promote an

integrated (computational) approach to math, science, and

technology (C-MST) education as a way to strengthen the

IHE-K12 pipeline [24-27]. The computational science (CPS)

faculty has developed more than thirty new courses,

including three General-Education courses such as CPS 101

Introduction to Computational Math, Science and

Technology, CPS 105 Games in Sciences, and CPS 302

Science, Technology, and Society.

CPS 101 teaches principles of computing in the context of

modeling and scientific simulations as detailed in this paper.

CPS 105 uses agent-based modeling to teach programming

concepts in the context of culturally popular and low

threshold applications such as games, while CPS 302

discusses scientific and computing concepts in the context of

historical evolution and personal lives of their inventors,

supported by demonstrations using again modeling tools.

While motivational and educational aspects of these courses

are important to draw students into computing and sciences,

it is also important that students go beyond a sugarcoating of

‘fun’ to the full engagement these courses offer. An

important question to answer would be if learners gain skills

that are transferable to other domains or do they merely learn

how to use specific computer programs to construct games

and fun simulations.

Below, we offer details of one of these courses (CPS 101)

that meet most of these desired outcomes, both in a fun and

an educational way. Course materials include class notes,

online modules posted at www.brockport.edu/cmst, and user

manuals for tools Interactive Physics (IP) and Python. Its

general structure below is followed by the weekly schedule

in Table 3.

 Design and modeling tools: Learn tools such as

Interactive Physics (IP) to create simulations.

 Principles of computational modeling: Learn

numerical integration by hand; use Excel to establish

a link between computational accuracy and cost;

then discuss use of programming to obtain more

accuracy, better control, and higher automation.

 Computer organization: Discuss factors impacting

computational efficiency, including processing

http://www.brockport.edu/cmst

 International Journal of Science, Technology and Society 2013; 1(1): 9-18 13

speed, storage capacity, communication bandwidth,

system software, and the hierarchy (and cost) of

information flow between registers, cash, memory,

and storage units.

 Programming: Learn programming and algorithmic

concepts via a text-based language, such as Python.

 Computational science applications: Conduct

science simulations by solving the same problem

using multiple tools (IP, Excel, and Python); discuss

trade-offs and why certain tools are utilized to solve

particular problems.

Table 3. Weekly schedule for CPS 101

Week 1: Conduct surveys to examine math & computing skills. Discuss

the role of modeling in scientific inquiry and industrial design

(watch videos and show examples). HW #1: Search the web and

write a short essay on the role of computational modeling.

Week 2: Discuss principles of computational modeling: new=old +

change. Discuss functional (i.e., y= x2) and behavioral (i.e., dy=

2x∙dx) relationships in tabular, formulated, and graphical forms.

Week 3: Discuss the rate of change and the difference between average &

instantaneous rates of change. Test #1 (functions, rate of change,

and forms of representation (tabular, formulated, and

graphical)).

Week 4: Conduct numerical integration by hand and Excel. Discuss the

role of integration step in reducing error & the role of computing

power to afford smaller steps. HW #2: Numerical integration by

hand & Excel.

Week 5: Computer Lab: Introduce Interactive Physics (IP) training. HW

#3: Design a creative IP project to demonstrate comfort level

with it.

Week 6: IP Labs: a) Harmonic motion: generate position and velocity

plots of a spring-driven object; b) Falling objects: examine

motion under gravity. HW #4: Create a swinging pendulum and

report observations.

Week 7: Discuss the role of hardware (storage, processing, and

communication) and software (data locality, memory usage,

system software, and programming) on performance and

accuracy. Introduce programming concepts using Python.

Conduct a Midterm Exam.

Week 8: Discuss programming examples in Python. HW#5 and Test #2 on

programming and on factors that affect computational

performance.

Week 9: Break

Week 10: Lab: Review use of multiple tools (IP, Excel, and Python). Redo

harmonic motion using new = old + change computations via

Excel and Python. Learn about Newton’s law of motion (F=m

dv/dt) as Force being the cause of change in velocity and

position. Compare IP, Excel and Python results.

Week 11: Lab: Trajectory of projectile: Use IP and Excel to study 2-D

motion. HW #6: Write a Python program that computes the

trajectory of a rock thrown upwards at an angle.

Week 12: Lab: Conservation of energy & momentum. Use IP to graph

potential and kinetic energies of objects. Examine effects of

friction.

Week 13: Lab: Orbital motion: Watch videos on orbital motion and space

explorations. Learn about gravitational force F=G·M·m/r2 as a

cause of change in position. Simulate orbital motion in 2-D using

Excel and then Python. HW #7 (Team project: Proof of Kepler’s

Laws).

Week 14: Lab: Team project: Design a project; discuss issues of

computational efficiency and cost using multiple tools (IP, Excel,

Python); and explain role and benefits of each tool.

Week 15: Re-visit HW #1 to improve the earlier essay.

Week 16: Conduct a review for Final Exam.

4.1. Programming with Interactive Physics

IP is used to model, simulate, and explore a wide range of

physical phenomena, including harmonic motion (springs

and pendulums), falling objects, trajectory of projectiles,

energy conservation, orbital motion, Kepler’s Laws,

Newton’s second law of motion, and electrostatic oscillator.

Through IP, students are able to conduct experiments and

investigate events without deeply knowing or memorizing

the laws of physics. Users are allowed to set up their own

physical world; add, remove, or modify external forces;

monitor position, velocity, energy, and elapsed time; and

also create control buttons to facilitate a simulation. Visual

images and data can be transferred to Excel for analysis or to

the Geometer’s Sketchpad (GSP) to measure angles,

distances, and areas needed for proofs or other calculations.

Screen shots of two separate IP simulations are shown in

Fig. 5 and 6. Figure 5 shows a box subject to an external

force by an attached spring. Control buttons allow the user to

change initial velocity (v0) and mass (m) of the box as well as

the stiffness coefficient (k) of the spring. Figure 6 shows

orbital tracks of three planets (Mercury, Venus, and Earth)

around the Sun. The planets are represented by small circles,

with appropriate masses and orbital velocities. For example,

the earth (of mass 5.9 x 10
24

 kg and orbital velocity of

6.65x10
4
 mph) is placed at 150x10

6
 km from the Sun (mass

of 1.89 x 10
30

 kg). Figure 6 is actually a screen dump from IP

into the Geometer’s SkecthPad (GSP) that measures

distances for the proof of Kepler’s laws, which states that for

each planet the square of its period (T
2
) is proportional to its

semi-major R
3
; or (T1/T2)

2
 = (R1/R2)

3
 for any two planets.

4.2. Programming with Excel

While IP is a good tool to expose students to many

concepts, computing education needs to move beyond just

using tools. Our experience indicates that students need to

eventually understand the underlying mechanism of

modeling and simulation and to flexibly master and apply

acquired knowledge rather than practice rote memorization

of scientific laws.

In CPS 101, students are required to model a natural

phenomenon by computer simulation using IP, and then

solve the same problem via Excel and later by writing a

computer code using a language such as Python.

To use Excel for generating position and velocity values

of an object subject to an external force, students need to

designate several columns in an Excel worksheet to these

variables as shown in Table 4 for the experiment in Fig. 5.

The direction of computation in Table 4 is from left to right:

first compute dx=vold ∙ dt using the velocity from the

previous step; update x=x+dx; compute dv=- (k/m) · xold ∙dt;

and finally update v=v+dv. The first row in each column

holds variable names and the 2
nd

 holds initial values (t=0 s, v

= 1 meters/s and x= 0 meters). The 3
rd

 row holds

expressions computed in the order indicated, where t, v, and

x are linked to their own values from the previous row. The

computed expressions can be copied and pasted to the rest of

14 Osman Yaşar: Teaching Science through Computation

the rows below until t reaches maximum time (T) desired.

This is where the limitations of Excel come into play. The

visible and scrollable screen might not accommodate the

desirable simulation range when the integration time step (dt)

is very small. If one chooses dt to be 0.000001 s, then one

needs 1,000,000 rows to do an Excel computation for 1 s.

Figure 5. Simple harmonic motion with Interactive Physics.

Figure 6. Orbital tracks of several planets around the Sun. Orbits and

periods are shown to prove Kepler’s 3rd Law.

In Fig. 5, we assume that there are no external forces (no

friction or air resistance) on the box other than the force

applied by a spring, which is characterized as F= - k · x,

where k is the stiffness coefficient of the spring and x is the

displacement of the box from the equilibrium position (x=0).

In this case, the acceleration becomes a= -(k/m) · x. The

chosen values for spring stiffness (k) and object’s mass (m)

are 1.0 Newton/meter and 1.0 kg. Figure 7 displays Excel

computations for comparison with those seen in the IP

window (Fig. 5). While the Excel results qualitatively match

the IP results, it is clear that the amplitude of both position (x)

and velocity (v) in Fig. 7 is growing at each cycle due to an

error resulted from numerical solution.

There are ways to minimize the numerical error. In

situations where change is very dramatic, we can either

lower the step size (dt) to smoothen the transition as we did

in the previous example or use newly calculated quantities

(xnew and vnew) as soon as they become available in the

computation of change. For example, in the harmonic

motion, as soon as the box moves by x amount, the spring

applies acceleration, proportional to – (k/m) x, to pull it back.

At the first step, this acceleration could be quite large

because of a highly stiff spring (large k), or a light box (small

m), or a high initial velocity (v) that causes a big jump

(dx=vold ∙dt) in position x. Despite such a large acceleration,

its influence will not be felt until x is updated in the next time

step. Therefore, much information will be missed (lost) if

the time step is too large to capture a big change. As a result,

not feeling the pulling force from the spring, the box will end

up moving further away from it at each cycle. The growing

amplitude in Figure 7 shows that. This growth is larger for

bigger time steps.

Table 4. Harmonic motion using Excel (dt= 0.1)

t+dt

(s)

dx= vold∙dt

x+dx

(m)

dv= a∙dt =

- (k/m) ∙ xold ∙ dt

v+dv

(m/s)

0

0

1

0.1 0.10 0.10 0.00 1.00

0.2 0.10 0.20 -0.01 0.99

0.3 0.10 0.30 -0.02 0.97

0.4 0.10 0.40 -0.03 0.94

0.5 0.09 0.49 -0.04 0.90

0.6 0.09 0.58 -0.05 0.85

0.7 0.09 0.67 -0.06 0.79

0.8 0.08 0.74 -0.07 0.73

0.9 0.07 0.82 -0.07 0.65

1 0.07 0.88 -0.08 0.57

Figure 7. Plot of position (x) and velocity (v) in Table 4

Smaller step size leads to more accuracy as seen in Fig. 7

(in comparison to the graphs in Fig. 5). While lowering the

step size (dt) by an order of magnitude has significantly

dampen the growing amplitude, it has not stopped it. As

mentioned before, another way of minimizing the numerical

error is to put into use newly calculated/updated quantities in

the formulas. For example, if we compute the acceleration

based on the updated position, such as a = - (k/m) · xnew, in

the fourth column in Table 4, then we will have captured

major changes in acceleration even during a step size as big

as 0.1. The orange curve in Fig. 8 illustrates that such a

 International Journal of Science, Technology and Society 2013; 1(1): 9-18 15

technique accomplishes as much accuracy as a computation

(light green curve) with a step size 10 times smaller (and ten

times more costly).

Figure 8. Comparison of the numerical solution for position (x) using two

different step sizes (dt=0.1 and 0.01) and two slightly different ways of

computing the change in velocity

In two-dimension, the above equations can be expanded

as:

xnew = xold + vx·dt;vx,new= vx,old + ax·dt; ax = (x/r) · a,

ynew = yold + vy·dt;vy,new= vy,old + ay·dt; ay = (y/r) · a,

r
2
 = x

2
 + y

2
; andv

2
= (vx)

2
 + (vy)

2
.

Figure 9. Orbital tracking of the Earth using Excel.

Using these equations along with interplanetary

acceleration between Earth and the Sun (a =F/m =

G·M/r
2
=1.26x10

14
 N·km

2
/kg ∙ 1/r

2
; where G is a Universal

Constant and M and m are masses of Sun and Earth), one

could get the orbital track for the Earth as seen in Fig. 9. At

t=0, we assume the Earth’s orbital velocity to be vx=0 and

vy= 29.79 km/s and its position to be y=0 and x= 150x10
6
 km.

What is shown in Fig. 9 may not be the most accurate track,

but qualitatively it is representative of a planet’s orbit. Some

planets have more elliptically looking orbits (see Fig. 6).

The Excel calculations in Fig. 9 are given for dt = 5 days,

and smaller time steps (i.e., dt=1 day) could produce more

accurate tracks. Again, that is where the limitations of Excel

come into play, just like the million data points mentioned

above. With computer programming, these limitations can

be overcome. While doing these computations, students

realize higher resolution and automation need use of a

programming language.

4.3. Programming with Python

In the past we used Fortran and C++in CPS 101, but we

have recently switched to Python. The switch to Python was

based on three major reasons, including relative easiness and

quickness with learning of Python as a computer language,

its simple and short constructs, and less error-prone coding.

Python is a general-purpose, object-oriented, high-level

programming language, which comes with extensive

standard libraries and it supports the integration with other

languages and tools. It is increasingly used in scientific

computing, web development, and database operations.

Python can be learned in a couple of weeks for basic

operations; it is open-source and platform-independent, and

it can be installed on almost any computers free of charge.

An introduction to basic syntax, input/output functions,

repetition structures (loops), and algorithmic thinking is

adequate to carry out programming assignments necessary

for computing a mathematical or logical expression

repetitively, recursively, and iteratively. Students can write

simple loops to compute and generate data points for a

number of problems listed in the course syllabus including

falling objects, trajectory of projectile, harmonic motion,

and orbital motion. A few lines of computer programming,

as shown below without the exact syntax, can accomplish

the above calculations with less effort and much higher

accuracy.

while t <=T: # this sign preceeds comments

print x, v, t # position, velocity, time

a = F/m # compute acceleration

v = v + a × dt # update velocity

x= x + v × dt # update position

t = t + dt # update time & end loop if t >T

5. Results and Discussion

We used a mix-methods approach [28-29] to examine the

student reaction to the interdisciplinary teaching of the CPS

101 course. Table 5 shows some of the findings from student

surveys in consecutive years (2011, 2012, and half of 2013).

Although it is difficult to infer meaningful results from our

sample size (20-40 students per year), we can see some

trends as a result of triangulating our survey results with

classroom observations.

Launched in 1998, the CPS 101 was taught by the author

to a classroom full of students until 2007 when a new faculty

was hired to teach it. The new instructor’s tendency to teach

it merely as a programming course in C++, along with high

level mathematics, brought enrollments in this introductory

level course down to single digits in 2009. In 2010, through

support from an NSF grant, the content was gradually

Orbital tracking with Excel

-2
0

0
.0

-1
5

0
.0

-1
0

0
.0

-5
0

.0
0

.0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

-200.0 -150.0 -100.0 -50.0 0.0 50.0 100.0 150.0 200.0

M
il

li
o

n
s

Millions

x (km)

y
 (

k
m

)

16 Osman Yaşar: Teaching Science through Computation

shifted back from ‘differential equations and computer

programming’ to its original content of basic problem

solving as described here. These changes, along with

classroom instruction by a former K-12 teacher, brought the

enrollments back again to more satisfactory levels,

vindicating the computational thinking approach to

introductory computing and science education that is being

currently advocated at the national level [1, 13, 15, 19, 30].

Table 5. Survey results from CPS 101

Survey Questions (Q)

Responses are in percentages (%).

CPS 101

2011 2012 2013

1. Would you recommend this course? 97 94 100

2. Do you like to take an advanced course? 44 63 92

3. Did modeling improve your learning? 68 82 92

4. Did you like project-based learning? 90 94 100

5. Did you have the necessary background? 60 75 85

6. Were your skills a match for challenges? 78 82 85

7. Did you ever feel frustrated? 32 25 15

8. Will new skills help you in later classes? 96 56 100

9. Did you change your major afterwards? 10 13 15

Currently, CPS 101 has a broad appeal, drawing students

from many departments, including non-STEM majors.

Majority of surveyed students liked project-based learning,

which involved design of a game or a science experiment. A

significant portion of students thought that modeling

improved their understanding of science concepts. This

portion grew every year as the shift from programming to

modeling occurred. While the attendance rate in the lecture

session was around 70%, it jumped to 90% in the computer

lab. Students seemed highly engaged in lab activities and

involved in practicing different computational tools.

Classroom observations and attendance records indicate

significant improvement from 2011 to the current year in

student participation in hands-on lab activities.

A sizable number of students (40% in 2011, 25% in 2012,

and 15% in 2013) said they did not initially have the

necessary background and skills. The level of frustration (32%

in 2011, 25% in 2012, and 15% in 2013) reflects this. When

asked about how they overcame this deficiency, they cited

professor’s help, additional practice, project-based learning,

and scaffolding. The gradual shift from heavy programming

and differential equations in 2010 to the use of design-based

tools (such as IP) and more applied mathematics in 2013

also seems to lead to more engagement and confidence.

However, this gain comes with a price, at least for now until

there is a better vertical integration between similar courses

in terms of using the same tools.

When programming and differential equations were main

tools of the instruction, despite their difficulties students saw

more value in learning them to further their education than

the design tools. The feeling that the tools they learned

would be utilized in future classes went down from 96% in

2011 to 56% in 2012. Because of our concern about transfer

of skills and vertical integration to more advanced courses,

in 2013 we reached a more balanced use of design and

programming tools. We also better explained the pros and

cons of different tools used. Some of the answers to “What

did you like (or dislike) most about this class?” included the

following: “I most enjoyed the experience of using different

modeling and programming software,” “Learning and doing

examples on a number of different programs,” and “I like

how you program something, using the code, and you can

usually see the outcome.” Additional time may need to pass

before the same tools are used in other advanced courses to

create a feeling of continuity. Also, because CPS 101 teaches

the principles employed by computational modeling tools;

its emphasis on fundamentals goes way beyond just using a

particular tool. Students may realize the benefits of learning

such fundamentals much later when they encounter new

modeling tools in their courses or work environment. In the

latest surveys, all respondents stated that newly learned

skills would be beneficial in their education and work.

Another front that we examined our computational

approach to STEM education was K-12. This was done in

the form of a C-MST professional development (PD) for

secondary school math, science, and technology (MST)

teachers in two partnering school districts (Rochester City

School District and Brighton Central School District). The

content of a 3-tier (beginner, intermediate, and expert level)

teacher training and its overall impact on teacher retention

and student achievement is being published elsewhere in

[27], but here we will briefly mention the surveys on student

engagement as a result of technology-enhanced instruction

in the classroom. Majority of the 200 trained MST teachers

surveyed by external evaluators from 2005 to 2010 reported

encouraging results on infusing technology into classroom

instruction. While it initially involved use of laptops for

presentations, graphing calculators for math instruction, and

electronic smart boards for interactive lessons, these surveys

indicated that it took 3 years (or 200 hours of training) for a

teacher to feel comfortable with modeling tools such as IP.

This is consistent with findings of a report by the Urban

Institute in 2005 that a minimum of 160 PD hours are needed

to effect changes in the classroom environment. 60% of the

beginner-level teachers in 2003 reported occasional use of

modeling in their classrooms. In a 2010 survey of 40

expert-level teachers (who had three years of prior training),

78% of them reported that they regularly used modeling

software in their classrooms and 92% of them indicated use

of smart boards. 90% of those who used modeling software,

graphing calculators, and smart boards in their lessons

agreed that use of technology increased student engagement

and made math and science concepts more comprehensible.

Student reaction to modeling (versus traditional techniques)

was found to be quite favorable in both mathematics (97%)

and science (77%) classes. While science classes utilized

technology less due to limited access and lack of science

modeling examples, in instances where it was utilized, it

actually led to a deeper understanding of science topics than

it did for mathematics topics (83% vs. 76%).

 International Journal of Science, Technology and Society 2013; 1(1): 9-18 17

6. Conclusion

We believe that the practice of teaching introductory

computing courses in the context of natural sciences (or vice

versa) offers benefits to a wide group of students. While

science majors get to use simulation tools and computer

programming to solve science problems, math and computer

science majors get to establish a link to natural laws through

computation of change.

By using multiple tools (IP, Excel, and Python) to solve

the same problem, students get a chance to weigh

advantages of each tool and conclude firsthand that more

accurate and faster computation of new =old + change for a

large number of data points require computer programming.

In the context of applications, it is easy for students to

understand why they need to learn computer programming.

Steep learning curves, limited technology access, time

constraints and rigid curriculum frameworks are hard to

overcome, especially at the K-12 level. While integration of

computational modeling and inquiry into mathematics and

science courses has been slowed down by the above factors,

the new K-12 math and science standards and the upcoming

AP course to teach computational thinking skills might

accelerate such integration in a systematic way.

Acknowledgements

This work was supported by the National Science

Foundation (NSF) funds via Grants #0226962, #0942569,

and #1136332. We would like to thank to faculty and

teachers whose efforts contributed to the development,

teaching, and assessment of the reported courses and

materials. Special thanks to Pınar Yaşar who introduced the

author to the Shakespearean world of human thought.

References

[1] Guzdial, Mark. (2009). Teaching computing to everyone.
Communications of the ACM,Vol. 52, No. 5, 1-3.

[2] Computing Curricula.(2005). A Cooperative Project of the
Association for Computing Machinery, the Association for
Information Sciences, and the IEEE Computer Society.
http://www.computer.org/portal/web/education/Curricula.

[3] S & E Indicators. National Science Board. 1996 and 2010.
http://www.nsf.gov/statistics/.

[4] BLS Report. (2010). The Bureau of Labor Statistics.
Occupational Employment Statistics.
http://www.bls.gov/oes/.

[5] AIP Survey. (2010). Important Knowledge & Skills Used on
the Job. American Institute of Physics.
http://www.bls.gov/oes/2010/may/stem.htm.

[6] Landau, R. (2006). Computational Physics: A Better Model
for Physics Education? IEEE Comp. in Sci & Eng., 8 (5),
22-30.

[7] Swanson Survey. (2010). A Survey of Computational Science
Education. By C. Swanson. The Krell Institute,

http://www2.krellinst.org/services/technology/CSE_survey/.

[8] NAP Report. (2007). Rising Above The Gathering Storm.
Washington, D.C.: The National Academy Press.
http://www.nap.edu/.

[9] NAP Report. (2010). Rising Above The Gathering Storm,
Revisited: Washington, D.C.: The National Academy Press.
http://www.nap.edu/.

[10] National Science Foundation, Math and Science Partnership
(MSP) Program. http://www.nsf.gov.

[11] Cuny, J. (2011). Transforming Computer Science Education
in High School. IEEE Computer, 44 (6), 107-109.

[12] Sjøberg, S. and Schreiner, C. (2005). How do learners in
different cultures relate to science and technology? Results
and perspectives from the project ROSE.Asia Pacific Forum
on Science Learning &Teaching, 6, 1-16.

[13] The College Board. (2011). AP CS Principles Course.
http://www.csprinciples.org. Also see June 2012 issue of
ACM Inroads.

[14] NGSS (Next Generation Science Standards). (2013).
http://www.nextgenscience.org/.

[15] Wing, J. M. (2006). Computational Thinking,
Communications of the ACM, Vol. 49, No. 3, 33-35.

[16] Csikszentmihalyi, M. (1990). Flow: The Psychology of
Optimal Experience. New York: Harper Collins.

[17] NAP Report. (2000). How People Learn: Brain, Mind, and
School. Washington. D.C: The National Academies Press.
http://www.nap.edu/.

[18] Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N.
D. (2011). How to Grow a Mind: Statistics, Structure, and
Abstraction. Science, 331, 1279-1285.

[19] NSF Report. (2008). Fostering Learning in the Networked
World. National Science Foundation.
http://www.nsf.gov/pubs/2008/nsf08204/nsf08204.pdf.

[20] NSTA Report (2008). Technology in the Secondary Science
Classroom. National Science Teachers Association. (Eds)
Bell, L. R., Gess-Newsome, J., and Luft, J. Washington, DC.

[21] Yaşar, O., Rajasethupathy, K., Tuzun, R., McCoy, A. and
Harkin, J. (2000). A New Perspective on Computational
Science Education, IEEE Comp. in Sci & Eng, 5 (2), 74-79.

[22] Yaşar, O. (2001). Computational Science Education:
Standards, Learning Outcomes and Assessment. Lecture
Notes in Computer Science, 2073, 1159-1169.

[23] Yaşar, O. and Landau, R. (2003). Elements of Computational
Science & Eng. Education, SIAM Review, 45, 787-805.

[24] Yaşar, O. (2004). C-MST Pedagogical Approach to Math and
Science Education. Lecture Notes in Comp Sci, 3045,
807-816.

[25] Yaşar, O., Little, L., Tuzun, R. Rajasethupathy, K., Maliekal,
J. and Tahar, M. (2006). Computational Math, Science, and
Technology, Lecture Notes in Comp Science, 3992, 169-176.

[26] Yaşar, O., Maliekal, J., Little, L. J. and Jones, D. (2006).
Computational Technology Approach to Math and Science
Education. IEEE Comp. in Sci & Eng., 8 (3), 76-81.

http://www.bls.gov/oes/2010/may/stem.htm
http://www.nsf.gov/

18 Osman Yaşar: Teaching Science through Computation

[27] Yaşar, O., Maliekal, J., Little, L. and Veronesi, P. (2013). An
interdisciplinary approach to professional development for
secondary school math, science, and technology teachers.
Submitted to J. Computers in Mathematics and Science
Teaching.

[28] Creswell, J. W. (2012). Educational Research: Planning,
Conducting and Evaluating Quantitative and Qualitative
Research. 4th Ed. Pearson Education, Inc.

[29] Fincher, S. and Petre, M. (2005). Computer Science
Education Research. Taylor&Francis e-Library: London and
New York.

[30] Goode, J. and Margolis, J. (2011). Exploring computer
science: A case study of school reform. Transactions on
Computing Education. 11(2).

