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Abstract: Abstract. In present paper we investigate solvability of a new boundary value problem with derivatives on the 

boundary conditions for semi-linear systems of mixed hyperbolic-elliptic of Keldysh type equations in multivariate dimension 

with the changing time direction. Considered problem and system equations are new and belong to modern level of partial 

differential equations, moreover contain partition degenerating elliptic, degenerating hyperbolic, mixed and composite type 

differential equations. Applying methods of functional analysis, topological methods, “ ε -regularizing» and continuation by 

the parameter at the same time with aid of a prior estimates, under assumptions conditions on coefficients of equations of 

system, the existence and uniqueness of generalized and regular solutions of a boundary value problem are established in a 

weighted Sobolev’s space. In this work one of main idea, the identity of strong and weak solution is established. 

Keywords: Changing Time Direction, Weighted Sobolev’s Space, Equation of Mixed Type, Strong,  

Weak and Regular Solution, Forward-Backward Equations,  

System Equations of Mixed Hyperbolic-Elliptic Keldysh Type 

 

1. Introduction 

Note that, non-classical equations arises in applications 

in the field of hydro-gas dynamics, aerodynamics, plasma 

and some of modeling of physical process (for example, in 

[3], [5], [6], [7], [11], [19], etc. and the references given 

therein). Many authors investigated nonlinear and semi-

linear mixed type equations (for example, in [2], [7], [13], 

[16], etc. the references given therein). In the work [12] 

considered the Direchlet problem for elliptic-hyperbolic 

equation of Keldysh type, and in [6] existence smooth 

solution for a Keldysh type equation is proved. Note that a 

parabolic equation and mixed equation with changing time 

direction also has physical applications. The boundary 

value problems with such sewing conditions appear when 

modeling, for example, process of interaction between two 

reciprocal flows with mutual permeating, or when 

designing certain heat exchangers. Frankly speaking 

forward-backward equations (equations of changing time 

direction) arise in supersonic dynamics, boundary layer 

theory and plasma. Therefore the boundary value problems 

for equations of mixed hyperbolic-elliptic type with 

changing time direction and equation of parabolic type with 

changing time direction (forward-backward equations)(e.g. 

[14], [18], and the references given therein) resents 

attention as important object for all investigators. As it 

noted in the work [20] that for interesting, the non-classical 

model is defined as the model of mathematical physics, 

which is represented in the form of the equation or systems 

of partial differential equations that does not fit into one of 

the classical types as elliptic, parabolic, or hyperbolic. In 

particular, non-classical models are described by equations 

of mixed type (for example, the Tricomi equation), 

degenerate equations (for example, the Keldysh equation or 

the equations of Sobolev type (e.g., the Barenblatt-Zsolt-

Kachina equation), the equation of the mixed type with the 
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changing time direction and forward-backward equations. 

As it shown in the work [20], the theory of boundary value 

problems for degenerate equations and equations of mixed-

type, as it shown in the work (e.g. , [5], [8] ) the well-

posedness and the class of its correctness essentially depend 

on the coefficient of the first order derivative (younger 

member) of equations . The solvability a some of new kind 

of boundary value problems for linear system equations of 

mixed type with the changing time direction had been 

studied details in [19],[20], [21]. Frankly speaking great 

difficulties come into being in the investigation of systems 

of degenerate elliptic and hyperbolic equations. Note that 

solvability of different boundary value problems for 

nonlinear and semi-linear system equations of hyperbolic-

elliptic type including property of changing time direction 

and in case of multivariate dimension has not been 

extensively investigated. Now in this paper we will study 

such important problem. 

 

2. Well-Posed Boundary Value Problem 

and Notation, Preliminaries 

Let G  be a bounded domain in the Euclidean space nR  of 

the point ( )1 ,..., nx x x= , including a part of hyper plane 

0
n

x =  and with sufficiently smooth boundary 2
,G C∂ ∈

{ }0 ,nG G x+ = >∩ { }0nG G x− = <∩ . The boundary of G +  

consists of a part of hyper -plane 0
n

x =  for 0
n

x >  and 

smooth surface G +∂ . Analogically, the boundary G −  consists 

of a part of hyper -plane 0
n

x =  for 0
n

x <  and smooth 

surface G −∂ .Assume that 

( ) ( ), ,   0;   , ,D G T T T S G T T= × − > = ∂ × −  where DΓ = ∂  

is a boundary of domain D . In the domain D  consider the 

system of equations:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

1 1 1

1 1 2 1 2

1 1

11 12 11 12 1 1

2 2 2

2 1 1 2

1 1

21 22 21 22 2

, , ,

, , , , ( ) , , ,

, , ,

, , , ,

i i

i i

n n

tt x i x i x

i i

t t

n n

tt x i x i x

i i

t t

L u k t u k x u a x t u a x t

b x t u b x t c x t u c x t c x u u f x t u

L u k t a x t u a x t

b x t u b x t c x t u c x t f x

ρ

ρ

υ υ

υ υ υ

υ υ υ υ

υ υ υ υ

= =

= =

= + ∆ + + +

+ + + + + =

= − ∆ + + +

+ + + + − =

∑ ∑

∑ ∑

( ), , ,t u υ












                                     (2.1) 

Where the 
x

∆ is Laplace operator  

2 2

2 2

1

...x

nx x

∂ ∂∆ = + +
∂ ∂

 

Everywhere we will assume that the coefficients of the 

systems of equations (2.1) are sufficiently smooth and the 

conditions 
( ) ( )1 0
i

tk t > for ( )0,  , ,t t T T≠ ∈ − 1,2,i =

( )1 0,nx c x > ( )2 0nx k x < , ( )10,  ,..., n

n nx x x x G R≠ = ∈ ∈  are 

satisfied. As well as is known that quadratic form of 

equations of system (2.1) changes, then this system contain 

partition degenerating elliptic, degenerating hyperbolic, 

mixed and composite type differential equations at the same 

time including changing direction time of variable in the 

domain D .  

Assume the ntations  

{( , ) : 0,  }
T n

x t x t T+
−Γ = ∈ Γ > = − , {( , ) : 0,  }

T n
x t x t T−

−Γ = ∈ Γ < = − , {( , ) : 0,  }
T n

x t x t T+Γ = ∈ Γ > = , 

{( , ) : 0,  }
T n

x t x t T−Γ = ∈ Γ < = [ , ]S G T T+ += ∂ × − , [ , ]S G T T− −= ∂ × − , { 0}
n

D D x+ = >∩ , { 0}
n

D D x− = <∩  

The boundary value problem: Find the solution of system 

equations (1.1) in the domain D , satisfying the conditions: 

0u
Γ

= , 0
T

tu −
−Γ

= , 0
T

tu +Γ
= ,                      (2.2) 

0υ
Γ

= , 0
T

tυ −
−Γ

= , 0
T

tυ +Γ
=                       (2.3) 

By the symbol LC  we denote a class of twice continuously 

differentiable functions in the closed domain D, satisfying 

the boundary conditions (2.2), (2.3), by 1,
( )LH D , 2,

( )LH D  in 

Sobolev’s space with weighted spaces obtained by the class 

LC  which is closed by the norm: 

1,

2 2 2 2

2( )
1

( ( ) )
iL

n

t xH D
iD

u u k x u u dD
=

= + +∑∫ , 

2,

2 2 2 2 2 2 2 2

2 2 2( )
1 1 1

( ( ) ( ) ( ) )
i i i iL

n n n

tt x x x t x tH D
i i iD

u u k x u k x u k x u u u dD
= = =

= + + + + +∑ ∑ ∑∫ , 

respectively.  

Introduce, the space ( )2

kW D Sobolev’s with the 

norm(e.g.[1],[15]):  

( )2

22 2

,
,kW D K D

kD

u u D u dxdt
α

α ≤

= = ∑∫

0

0 0 0
 ... ,   ... ,   ,   .n

n n i

i

D D D D D
t x

α ααα α α ∂ ∂= + + = = =
∂ ∂
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Since 2
( ) 0k x ≠ for 0

n
x ≠ , by the Sobolev’s embedding 

Theorem (in [1], [15]) the functions from the spaces 

2,
( )

L
H D  will satisfy the boundary conditions (2.2), (2.3). 

 

3. The Existence Generalized Solution of 

Problem (2.1)- (2.3) 

Before describing our theorem on existence, we take as 

decaying systems equations for (2.1) in the following form: 

( ) ( ) ( ) ( ) ( ) ( )11(1)

3 1 2 1 11 11 1 1

1

, , , ,
i

n

tt i x t

i

L u k t u k x u a u b u c u c x u u f x t u
ρ υ

=
= + ∆ + + + + =∑                                      (3.1)

( ) ( ) ( )22(2)

4 1 2 22 22 2

1

( ) , , ,
i

n

tt i x t

i

L k t a b c f x t u
ρυ υ υ υ υ υ υ υ υ

=
= − ∆ + + + − =∑ .                                                       (3.2) 

Now we able pose to formulate a definition of the 

generalized solution for the system equations under 

consideration. 

Definition 3.1. The functions ( , )u x t and ( ,x tυ ) are 

generalized solutions of the problems (3.1), (2.2) and (3.2), 

(2.3), if for any functions ( ) ( )
1 11 2,

( , )
c

u x t H D L Dρ +∈ ∩  ,

( )
2

1

2 2( , ) ( )x t W D L Dρυ +∈ ∩ respectively, and for ( ),x t Wφ ∈
the following identities holds:  

( ) ( ) ( )( )

( ) ( )

(1) (1)

1 1 11 1 2

1

1 1

11 1 2 1 2

1 1

, ( ) ( )

( ) ( 2 )

i

i i i i i i i

n

t t t t t x

i iD D D

n n

i x x x x i x x x

i iD D

B u k t u dD b k t u dD k x u dD
x

c a k u dD a k u dD

φ φ φ φ

φ φ

=

= =

∂= − + − −
∂

   + − − − −   
   

∑∫ ∫ ∫

∑ ∑∫ ∫
 

( ) 1

1 1

D D

c x u u dD f dD
ρ φ φ+ =∫ ∫                                                                   (3.3) 

( ) ( )
( ) ( ) 2

(2) (2)

2 1 22 1

1

2 2

22 2 2 2

1 1

, ( ) ( )

,

i i

i i

n

t t t t x x

iD D D

n n

i x i x

i iD D D D

B k t dD b k t dD dD

c a dD a dD dD f dD
ρ

υ φ υ φ υ φ υ φ

υφ υφ υ υφ φ

=

= =

= − + − −

 + − − − = 
 

∑∫ ∫ ∫

∑ ∑∫ ∫ ∫ ∫
                                              (3.4) 

where 

( ){ }2: ,   0,   0
T T

t t
W C Dφ φ φ φ φ+ −

−Γ Γ Γ
= ∈ = = = .    (3.5) 

respectively, holds true the following theorem. 

Theorem 3.1 (existence of generalized solution of problem 

(3.1), (2.2) and (3.2), (2.3)).Suppose that  

(i) ( ) ( )(1)

11 1

1
, 0 ,

2
tb x t k t δ− ≤ − < ( ) ( ) ( ) .,    0

2

1
, )2(

122 Dtxtktxb t ∈∀<−≤− δ  

(ii) 11 0  fornx c >   0,c ,0 11t ≥≠nx  ( ) ,,..., 1 Gxxx n ∈=  

[ ]TTt ,−∈   (Or ( )11 1 11 1 0t tc cα α− − ≥ )   

(iii) 22 1 22 1 0,t tc cα α− − ≥ ( ),x t D∀ ∈ , 

(iv) 
( )( ) ( ) ( )

2
1 2

1 2 2 2 2

1

;   
i n

n

i x x

i

a k M k x k M k x
=

− ≤ ≤∑ ; 

(v) 1 1,ρ > −
2

2
1

2n
ρ− < <

−
(vi)

( )1

11 1 2

1

( )
i i i

n

i x x x

i

c a k
=

− −∑ >0, 

( ),x t D∀ ∈ ;  (vii)
( )2

2 22

1

( , ) ( , ) 0, ( , ) .
n

i

i

a x t b x t x t D
=

+ ≥ ∈∑  

Assume that the functions ( ) ( ) ( )1 2 2, , , , , , ,f x t u f x t u L Dυ υ ∈  

are continuous respect to u, υ  and 

( ) 1

2
1 1 2 1 1

, , , , 2
L

D

f x t u C C u dD
ρ

υ ρ ρ
∗

∗ ∗ ∗≤ + < +∫  , 

( ) 2

2
2 3 4 2 2, , , , 2

L
D

f x t u C C dD
ρ

υ υ ρ ρ
∗

∗ ∗ ∗≤ + < +∫ (where 1 2,C C∗ ∗
,

3 4,C C∗ ∗
are constants), then, there exists a generalized solution 

of the problem (3.1),(2.2) and (3.2),(2.3)

( ) ( )
1 11 2,

( , )
c

u x t H D L Dρ +∈ ∩  ,   ( )
2

1

2 2( , ) ( )x t W D L Dρυ +∈ ∩

respectively, 

Proof. For prove of theorem existence we will apply the 

method of Faedo-Galerkin chosen a complete system of 

orthonormal bases ( ){ },i x tφ  in space ( )2L D  and 

( ) ( )2,i x t C Dφ ∈  which satisfy the conditions (3.5). 

According to (e.g., [10]) the functions ( ),i x tφ  must satisfy 

the ordinary differential equation 

( ) ( ) ( ), ,   in i i

n i tx t tx M x t Dφ ψ= − −                 (3.6) 

and the solution of (3.6) which satisfies the following 

conditions: 

( ), 0i

t x Tψ − = for 0nx < ; ( ), 0i

t x Tψ =  for 

( )10,   ,...,n nx x x x> = ∈ Ω ( ), 0i x tψ
Γ

=           (3.7) 

Furthermore, we will seek approximate solutions in the 

forms: 

( ) ( )
1

, ,
n

m i

im

i

u x t c x tψ
=

=∑ , ( ) ( )'

1

, ,
n

m i

im

i

x t c x tυ ψ
=

=∑ , 
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where the constants im
c and 

'

im
c will be determined from the 

nonlinearly algebraic equations 

( ) ( ) ( ) ( )2 2
1 1, ,

m i i

L D L D
B u fφ φ∗=                     (3.8) 

( ) ( ) ( ) ( )2 2
2 2, ,

m i i

L D L D
B fυ φ φ∗=                       (3.9) 

It is easy to see that the integral identity has meaning. Here 

we use the ideas from [10, chapter 1, 4], to prove the 

existence of generalized solutions to the problems (3.1),(2.2) 

and (3.2) ,(2.3). We exploit the Faedo-Galerkin method, a 

priori estimates and compactness arguments. Our study is 

motivated by proof of solvability identity of (3.8),(3.9) 

follows from the conditions (i) – (vii) and from Lemma 1.3 

(e.g., [10, chapter 1, p. 25]) and taking into account estimates 

on the approximate solution which will be obtained in future. 

Therefore, we may now state that to obtain a prior estimation 

for the approximate solution of problems (3.1), (2.2) and 

(3.2),(2.3) , and multiply the identity of (3.8 ) (or (3.9) by im
c ,  

( or 
'

im
c ) and summing over of i  from 1 to m , respectively, 

then we get 

( ) ( ) ( )
1 1

1 1
1

2 21 1

2 2
1 12

2 2
2 2

1 1 1 1 1 1 1

1 1

1 1
( ) ( ) .

2 2

m m m
H D

L D L D

D D

m u c u c u f dD f dD
ρ ρ

ρ ρ

ρ ρ α α
ρ ρ+ −

+ +
+ −

+ +
∗ + −+ ++ + ≤ +

+ + ∫ ∫            (3.10)

( ) ( ) ( )
2 2

1
2

2 22 2

2 2 2
2 2

2 1 2 1 2

2 2

1 1
( ) ( )

2 2

m m m
W D

L D L D

D D

m f dD f dD
ρ ρ

ρ ρ
υ υ υ α α

ρ ρ+ −
+ +

+ −

+ +∗ + −+ + ≤ +
+ + ∫ ∫                                (3.11) 

where ( )1 1ntx Mα = − −  and constant 1 2,m m∗ ∗
 are independent 

of functions ( ),mu x t  , ( ),m x tυ and m. Consequently, there 

exists two subsequences (we denote it again by ( ),mu x t

( ), )m x tυ and the functions ( ) ( )
1 11 2,

( , )
c

u x t H D L Dρ +∈ ∩  and 

( )
2

1

2 2( , ) ( )x t W D L Dρυ +∈ ∩  such that  

mu u→ weakly in ( )1H D  , mυ υ→  weakly in ( )1

2W D  (3.12) 

mu u→ weakly in ( )
1 2L Dρ + , mυ υ→  weakly in ( )

2 2L Dρ +  (3.13) 

It follows from (3.12), one can pass to the limit in the 

linear terms left side in (3.8),(3.9). Now, we need to show 

that, in (3.8), (3.9) terms of nonlinearity can be omitted to 

pass a limit. For this aim we take 2n i

m m

x xw k u=  and it is easy 

to see that ( ) ( )1

2,mw x t W D∈ . As usually, in this situation the  

imbedding theorems play very an important role, but in the 

present case we deal with weighted spaces [14] roughly 

speaking in this case directly standard passing to limit for 

degenerating weighted function in (3.8) and (3.9) is very 

difficult. From the representation of functions ,
mw we get 

2

2

2

1
,   1,2,..., ,

2

i

n i

xm m m

x x

k
w k u u i n

k
= + =  2 .m m

t tw k u=  Hence, 

( )1
2

2

m

W D
w M≤ for any m , 2

M is constant. According to 

Sobolev’s embedding theorem(e.g., [1], [15]) there exists the 

functions ( )1

2,w W Dυ ∈  and subsequences (which we again 

denote by ( ),mu x t  , ( ),m x tυ ) such that mw w→ strongly 

almost everywhere (a.e.) in ( )2L D , mυ υ→  strongly almost 

everywhere ( a.e.) in ( )2L D .Consequently, 2

mk u w→ a.e. 

in D  for any m and mυ υ→ a.e. in D. Since ( )2k x  

vanishes only on the hyper-plane 0nx = , then 
2

m w
w

k
→

a.e. Then we conclude that mu u→ a.e. in D  and 

1 1
1 1

1 1

1 1 1 1sgn sgnm mc c u u c c u u
ρ ρ

ρ ρ→  a.e. in D . 

Hence, taking into account (3.10), (3.11) and by virtue of 

the compactness of imbedding ( )1

2W D  in ( )2L D  , and 

moreover by Lemma 1.3 (e.g., [10, chapter1, p. 25]) 

guarantees  

21 1m m
ρ ρυ υ υ υ→ weakly in 

( )
2

2

2

1

.L Dρ
ρ

+
+

 

Hence, { }1

1

m mc u u
ρ

→ 1

1c u u
ρ

 weakly in 
( )

1

1

2

1

L Dρ
ρ

+
+

. 

Thus, we able to pass to the limit the nonlinear terms of 

left in (3.8) (3.9) By virtue of the continuity of ),,,(1 υutxf  

and ),,,(2 υutxf  functions respect to components, we have  

.,.),,,(),,,( 11 eautxfutxf mm υυ →  

...),,,(),,,( 22 eautxfutxf mm υυ →  

It follows from the same Lemma 1.3 (e.g., [10, chapter1, p. 

25]) that  

),,,(),,,( 11 υυ utxfutxf mm →   weakly in
)(

1

2

1

1
DL

+
+

ρ
ρ , 

),,,(),,,( 22 υυ utxfutxf mm →  weakly in 
)(

1

2

2

2
DL

+
+

ρ
ρ . 

Thus, we able pose to pass to the limit in terms of 

nonlinearities of the right in (3.8) and (3.9).This completes 

the proof of Theorem 3.1, if we prove the solvability of 

systems (3.8) and (3.9). We put 
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( ) ( ) ( ) ( )( )

( ) ( )
1

1

1

'

1 1

1 1 1

,..., , ,..., ,

, , , .

m

m

m m m
m i i i i i i j i

im im im im im

i i iD D D

c c c A c A c A c

A c c L dD c c dD f x t c c dD

ρ

φ ψ φ φ ψ φ φ ψ
= = =

= =

= − − −∑ ∑ ∑∫ ∫ ∫
 

( ) ( ) ( ) ( )( )
( ) ( )

1

' ' ' ' 1 ' '

1

' ' ' ' '

2 2

1 1 1

,..., , ,..., ,

, , , .

m

m

m m m
m i i i i i i j i

im im im im im

i i iD D D

c c c A c A c A c

A c c L dD c c dD f x t c c dD

ρ

φ ψ φ φ ψ φ φ ψ∗

= = =

= =

= − − −∑ ∑ ∑∫ ∫ ∫
 

To establish solvability of (8.8) and (8.9) with respect c  ,
'c we employ the Lemma4.3 (e.g.,[10, chapter1, p. 66],which 

is also known as Sharp Angle Lemma),it suffices to prove 

that ( )nA c , ( )'nA c are continuous functions and 

( )( ) 2

0 1 0 1, ,   0,   0A c c p c p p p≥ − > ≥ ,

( )( ) 2
' ' '

0 1 0 1
, ,   0,   0A c c p c p p p∗ ∗ ∗ ∗≥ − > ≥ The term 

connected with ( ) 1p
B λ λ λ= , after integration by parts, 

analogous to the one carried out in the proof of the lemma, 

gives nonnegative quantity. 

4. The Uniqueness of Solution of 

Problems (3.1), (2.2) and (3.2), (2.3) 

Theorem 4.1 Suppose that the conditions (i) – (vii) of 

Theorem 3.1 are fulfilled and moreover, we assume that 

( )1 0c x > for ( )12 ;    0nx c xε< − ≡ for 2 2
n

xε ε− < <  and if 

the norms ( ) 1

2
1 1 2 1 1

, , , , 2,
L

D

f x t u C C u dD
ρ

υ ρ ρ
∗

∗ ∗ ∗≤ + < +∫

( ) 2

2
2 3 4

, , , ,
L

D

f x t u C C dD
ρ

υ υ
∗

∗ ∗≤ + ∫ 2 2
2ρ ρ∗ < +

( )2
2

,
L D

f < +∞ ( )2
1

,
L D

f < +∞ sufficiently small, then

2 2
2ρ ρ∗ < + there exists a unique generalized solution 

problems (3.1),(2.2) ((3.2),(2.3)) 

( ) ( )
1 11 2,

( , )
c

u x t H D L Dρ +∈ ∩ ( ( )
2

1

2 2( , ) ( )x t W D L Dρυ +∈ ∩
respectively. 

Proof. By the inequality of (3.10) we can write 

( ) ( )

2 2 2 2 2

1 1 1 1 1 1 1

1

2 22 2 2

2 1 1 1 1

1 1 1

( ) ( ) ( )

1 1
( )

2 2

i

i

n

t t x

iD D D

n

t t x t t

iD D D

P f dD f dD u M u u dD

u M u u dD c x u dD c x u dD
ρ ρ

α α δ ε α

δ ε α α α
ρ ρ

+ − +

− + −

+ − +

=

+ +− + −

=

 = + ≥ + − + 
 

 + + − + − −  + + 

∑∫ ∫ ∫

∑∫ ∫ ∫
 

where, ( ) ( )(1) (1) (1) (1)

1 11 1 1 1 2 11 1 1 1min 2 ( ) ( ) 2 ,  min 2 ( ) ( ) 2 .t t t t
D D

b k t k t b k t k tδ α δ α
+ −

= − − − = − − − . 

Let ( ) ( )1 2, , ,u x t u x t  be two solutions of problem (3.1),(3.2) from the space  ( ) ( )
1 11 2, c

H D L Dρ +∩  

set 1 2
u u u≡ − , then we get 

( ) ( )2 2 2 2

1 1 2 1

1 1
i i

n n

t t x t t x

i iD D

P u M u dD u M u dD

ε ε

δ ε α δ ε α
+ −

+ −

= =

   ≥ + − − + + −   
   

∑ ∑∫ ∫  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 21 1
3 1 3 11 1 .

q q
t tL D L D L D L D L D L D

J u u g u u g
ε ρ ε ε ε ρ ε ε

δ ρ δ ρ+ + + − − −≤ + + +  

where
1

1 1 1
1,

2 qρ
+ + = ( )1

1 2 1 2 ,   0 1g u u u u
ρθ θ θ= + + < <  and 3

0δ >  is constant. Hence, using multiplicatively inequality 

from the work (e.g., [9, chapter1, p.28]), and by the Sobolev’s embedding Theorem (e.g., [1],[15]) , we obtain  

( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

1 1
2 2 6 2 2 2 6 2

2 2 2 2

1 1 2 1

1 1

2 2

3 1
1 .

i i

n n
t

t t x t t x

i iD D

t

W D L D W D L D

u M u e dD u M u dD

u g e u g

ε ε

ε ε ε ε

λ

µ

δ ε α δ ε α

βδ ρ

+ −

+ + − −

+ −

= =

   + − − + + − ≤   
   

 ≤ + +
  

∑ ∑∫ ∫
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Now, let’s to estimate the function ( )1

1 2 1 2 ,g u u u u
ρθ θ= + + 0 1θ< <  in space ( )6L D and we get 

( ) ( ){ } ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1
2 2 2 2

11

1 1

1 1
2 2 2

2 2

1 1 2 1

13 26
23

3 1 1

1 1

2 2
2

1 1 2 1

min min , ,min ,

2 1
1 3 1

2

1 1
max ,

min , min ,

t t W D W D

n

W D W

t t

M M u u

n
P

n

u u
M M

ε ε

ε

ρρ

ρ ρ

δ ε α δ ε α

δ ρ ρ

δ ε α δ ε α

+ −

+

++

+ +

 − − − ⋅ + ≤         

− 
≤ + + ⋅ ×    − 

 
    × ⋅ +    − − −             
 

( )2

2
.

D ε
−

 
  

 

Hence, if the inequality holds true: 

( ) ( ){ } ( ) ( )

( ) ( ) ( )

1 1

11

6

1 1 2 1 3 1

1 1

1 2 23 2

23
1

1 1 2 1

2 1
min min , ,min , 1

2

1 1
3 1 max ,

min , min ,

n

t t

t t

n
M M

n

P
M M

ρ ρ
ρρ

δ ε α δ ε α δ ρ

ρ
δ ε α δ ε α

+ +
++

− 
− − − > + ×         − 

 
    × + ⋅ ⋅        − − −             
 

 

then, we obtain contrary proposition. This implies that, 0u ≡
and 1 2

u u≡ .If the conditions of the Theorem 3.2 are satisfied, 

then there exists a unique solution in the space 

( )1

2 2 2
W D Dε ε

+ −
∪  (or in ( )1 2 2

H D Dε ε
+ −
∪ ). In the case where 

2
n

x ε= −  and 2
n

x ε=  we have trace inequality 

( ) ( )1 2
1H D L D

u m f
ε

∗≤ , 

where, the constant m>0, which is obtained in Theorem 

4.1.By virtue of the conditions of restriction on ( )1c x  , we 

have ( ) 1

1 0c x u u
ρ ≡  in the domain ( )2 2

\D D D Dε ε
− +=ɶ ∪ . 

Thus, there exists a unique generalized solution ( , )u x t  of 

problems (3.1), (2.2) in the space ( ) ( )
1 11 2, c

H D L Dρ +∩ . Let 

( ) ( )1 2, , ,x t x tυ υ  be two solutions of problem (3.2), (2.3) in 

the space ( )
2

1

2 2( , ) ( )x t W D L Dρυ +∈ ∩ and set 1 2υ υ υ≡ −   

then by according standard Approaches we have  

    (4.1) 

( )2 2

1 1 2 2 ( )

t

t

t

D T

dD J d
ρ ρυ υ υ υ υ τ τ

−

− ≡∫ ∫ .  

By Holder’s inequality we have 

2 2

2
2

1 2 ( ) ( )
( ) ( )

( ) ( ) ( , ) ( , ) .
r

n

tL G L G
L G L G

J t C x t x t
ρ ρυ υ υ υ∗≤ +

Since
2 2

2

1 2
( ) ( )

,
nL G L G

c
ρ ρυ υ ∗∗+ ≤ for 2n rρ ≤ , then we get 

2 2( ) ( )
( ) ( , ) ( , ) .tL G L G

J t c x t x tυ υ∗≤ ∇ Hence , taking into 

account inequality (4.1),it follows 

( )2

2

2

2 2

( )

( , ) .
L G

t

t

t

D T L G

x t dD C dυ υ υ τ
−

∇ + ≤ ∇∫ ∫ Finally, by 

Gromwell’s lemma, we conclude that 1 2 1 2
0, .υ υ υ υ υ≡ − = =  

Remark4.1. If instead of smallest of
( ) ( )2

2 ,ia x t be satisfied 

the condition ( ) ( ) ( )
2

2

2 2,ia x t M k x≤ then from the Theorem 

3.1 it follows that for any function ( ) ( )2 2, , ,f x t u L Dυ ∈ , 

there exists unique generalized solution of problem (3.2), 

(2.3) from the space ( )
21 2

( , ) ( )x t H D L Dρυ +∈ ∩ . 

5. Strong (Regular) Solution of Problems 

(3.1), (2.2) and (3.2), (2.3) 

Theorem 5.1.Suppose that the following conditions are 

fulfilled: 

(i) ( ) ( ) ( )(2)

22 1

1
2 , 0    , ;

2
t

b x t k t x t Dδ− ≤ − < ∀ ∈   

(ii) 2

2
1

2n
ρ− < <

−
 , (iii) 22 1 22 1

0;
t t

c cα α− − ≥   

(iv)
( )2

2 22

1

( , ) ( , ) 0, ( , ) .
n

i

i

a x t b x t x t D
=

+ ≥ ∈∑ Then for any 

function and

( )∫∫ ∫∫ −≤−−+∇+ =∗

tt t D

t

D D

t

tt

G

t dDdDfdDdxtk υυυυυ
ε

υεδυδυ ρρ
2211

2

2

1

2

1

2

1

22

1

22

4

1
)(])()([

2

1

( ) ( ) ( )DLutxfutxf t 222 ,,,,,,, ∈υυ
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2 2
2ρ ρ∗ < + (where

3 4
,C C∗ ∗

are constants) there exists unique generalized solution 

of problem (3.2), (2.3), from the space

( )
2

2

2 2( , ) ( ).x t W D L Dρυ +∈ ∩  

Proof. Since 
(2)

1 ( )
t

k t  has sign fixed defined in domain D, 

then (following [5] and [9, chapter 1, p. 22] or may repeat 

again steps proof of Therems3.1 and 4.1) we conclude that 

conditions of the theorem due to provided the coerciveness of 

the following operator 

( ) ( ) 22(2)

2 1 2 22 22

1
i

n

tt i x t

i

L k t a b c
ρυ υ υ υ υ υ υ υ

=
= − ∆ + + + +∑

( ) ( ) 22(2)

2 1 2 22 22

1
i

n

tt i x t

i

f k t a b c F
ρυ υ υ υ υ υ υ

=
∆ = − + + + + + ≡∑

. 

Other side, accordance to Sobolev’s embedding Theorem 

(e.g., [1], [15]) and by results of Theorems 3.1 and 4.1 we 

have ( )2

2L D
ρυ υ ∈ , Then for 2

2

2n
ρ <

−
there 

exists unique generalized solution of (3.2),(2.3) in ( )1

2W D .If

( ) ( )1

2,x t W Dυ ∈ , then ( )2

2L D
ρυ υ ∈ , and consequently, we 

get ( )2

2 2f L D
ρυ υ+ ∈ . Therefore, any solution (3.2), (2.3) 

from the space ( )1

2W D , will be an element of space ( )2

2W D

(e.g. [9, chapter 4, p. 216], [10.chapter 1, p. 27-33]). Hence, 

we can conclude that under assumptions of Theorems 3.1 and 

4.1 there exists a unique generalized solution of (3.2), (2.3) 

( )
2

2

2 2( , ) ( ).x t W D L Dρυ +∈ ∩  

Definition5.1.The functions )()(),( 2,2 1
DLDHtxu L +

+∈ ρ∩   

)),()(),(( 2,2 1
DLDHtxu L +

−∈ ρ∩ ( )
2

2

2 2( , ) ( )x t W D L Dρυ +∈ ∩  

is said to be a regular solution of problem (3.1), (2.2) ((3.2), 

(2.3)) if it is generalized solution which satisfy almost 

everywhere equations (3.1) ((3.2)) in domain D+ ( D− ). 

Lemma 5.1. Assume that the conditions of Theorems 3.1 

and 4.1 are fulfilled and sign of function 
(2)

1 ( )
t

k t arbitrarily. 

Then regular solutions of problems (3.1), (2.3) and (3.2), (2.3) 

are unique. The Lemma 5.1 can be proved similarly way to 

the Theorems 3.1.Let consider in the domain D+  , “ ε −
regularized” equation of mixed type: 

 (5.1) 

and we state for its the boundary value problem: 

0
0

nx
uε =

= , 0
S

uε + = , 0
T

uε +Γ
= , 0

T

uε +
−Γ

= 0
T

tuε +Γ
=   (5.2) 

0,
T

tευ +
−Γ

= 0
Sευ + = , 0

T
ευ +Γ

= , 0
T

ευ +
−Γ

= 0.
T

tευ +Γ
=  

Analogically, we will consider the following boundary 

value problem: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

(1) (1)

1 1 2 11 1 11 1 1

1

2(2)

2 1 2 22 22 2

1

( ) ( ) , , ,

 

( ) , , ,

i

i

n

tt t i x

i

n

tt i x t

i

L u k t u k u b u a u c u c x u u f x t u

L k t a b c f x t u

ρ
ε ε ε ε ε ε ε ε ε ε ε

ρ
ε ε ε ε ε ε ε ε ε ε

ε υ

υ ε υ υ υε υ υ υ υ υ

=

=

= + + ∆ + + + + = 


= + − ∆ + + + − =


∑

∑
                  (5.3) 

0
0

nx
uε =

= , 0
S

uε − = , 0
T

uε −
−Γ

= , 0
T

uε −Γ
= 0

T
t

u ε −Γ
=                                                  (5.4) 

0
T

ευ −
−Γ

= , 0
Sευ − = , 0

T
tευ −

−Γ
= , 0

T
ευ −Γ

= 0.
T

tευ −Γ
=  

Proceeding from the results of the papers [5], [20], we can 

affirm in our case the following proposition.  

Remark 5.1. If the conditions of Theorems3.1, 4.2 and 

( ) ( )1

11 12 , 0tb x t k δ− ≤ − < ( ) ( )1

22 12 , 0tb x t k δ− ≤ − < ( ),x t D∈  

are satisfied, then for any right-hand sides of (3.1),(3.2),

( ) ( ) ( )1 1 2, , , , , , , ,tf x t u f x t u L Dυ υ ∈ ( ) ( ) ( )2 2 2
, , , , , , ,f x t u f x t u L Dυ υ ∈

there exists a unique solution of boundary value 

problems(5.1),(5.2) and (5.3),(5.4) from the space 

( )2

2
( , )u x t W Dε

+∈ ( )( )2

2
( , )u x t W Dε

−∈
and ( )2

2( , )  x t W Dυ ∈ this 

solutions admissible estimates 

( ) ( ) 2
2 2 2 21

2 2 2

1 1 3 ( ) ( )
,

tL D L D W D L D
f f m u

ρε+ + +
+

∗+ ≥
∩

( ) ( ) 2
2 2 2 21

2 2 2

1 1 4 ( ) ( )tL D L D W D L D
f f m u

ρε− −+ −
+

∗+ ≥
∩  

    (5.5) 

where, the constants 3
m∗

, 4
m∗

5
, m∗

 are independent from the 

function , ( , ), ( , ).u x t x tε εε υ  

Proof. This Remark can be proved by similarly to 

Theorems 3.1, 4.1 and 5.1.  

Theorem 5.2. (On the solvability of problems (3.1), (2.2) 

and (3.2),(2.3) in D+ ). Suppose that the conditions of 

( ) ,,,,
2

2
432 dDCCutxf

D

L

∗

∫
∗∗ +≤

ρ
υυ

( ).2 DLF ∈

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
  

,,,)(

,,,)(

22222

1

2

2

)2(

12

111111

1

1

12

)1(

11

2

1













=−+++∆−−=

=++++∆−+=

∑

∑

=

=

εεε
ρ

εεεεεεε

εεε
ρ

εαεεεεεε

υυυυυυευυευ

υε

utxfcbatkL

utxfuuxcucubuauxkutkuL

t

n

i

xitt

t

n

i

xitt

i

i

( ) ( )
2

)()(5

2

2

2

2
22

2
222 DLDWDLtDL

umff
+

∗≥+
ρε ∩
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Theorem 3.1, 4.1 and ),(2122 xkMkk
ji xx ≤ ),,,,(1 υutxf

),(),,,(),,,,(),,,,( 2221 DLutxfutxfutxf tt ∈υυυ
( ) ( )2

22 12 , 0tb x t k δ− ≤ − < , ( ) ( ) ( )1

11 12 , 0,tb x t k t δ− ≤ − < for 

( )x,t D+∈ , 1, 2,...,i, j n=  are satisfied, then there exists a 

unique regular solution of problems (3.1), (2.2) and 

(3.2),(2.3)from the space ( )
12, 2( , ) ( ),Lu x t H D L Dρ

+
+∈ ∩

( )
2

2

2 2( , ) ( ).x t W D L Dρυ +
+∈ ∩  

Theorem.5.3 ( On the solvability of problems (3.1), 

(2.2)and (3.2),(2.3))in D− ) Assume that the conditions of 

Theorem3.1,4.1 and ),(2122 xkMkk
ji xx ≤ ),,,,(1 υutxf

),(),,,(),,,,(),,,,( 2221 DLutxfutxfutxf tt ∈υυυ
( ) ( )2

22 12 , 0tb x t k δ− ≤ − < , ( ) ( ) ( )1

11 12 , 0,tb x t k t δ− ≤ − <  for 

( )x,t D−∈ , 1, 2,...,i, j n=  are satisfied, then there exists a 

unique regular solution of problems (3.1), (2.2) and 

(3.2),(2.3)from the spaces ( )
12, 2( , ) ( ),Lu x t H D L Dρ

−
+∈ ∩

( )
2

2

2 2( , ) ( ).x t W D L Dρυ −
+∈ ∩  

Proof. The Theorems 5.2 and 5.3 are proved exactly and 

similarly way to the Theorems 4.1and 4.2. 

In this case we need to obtain second a prior estimate for 

nonlinear terms. For this purpose, applying Holder’s 

inequality we have 

1 1

2
1 1 1 ( ) ( )

( )

( 1) ( ) ( 1)
r

n
t

t tt t ttL D L D
L D

D

c x u u u dD u u u
ρ ρ

ε ε ε ε ε ερ ρ+ ≤ +∫                                         (5.6) 

Where, 
1 1 1

1
2n r

+ + = . Since n rρ ≤ , then at the same time 

analogous we have 

,  

According to Sobolev’s embedding theorem (e.g. [1], 

[15])we get:
1

2

2
( ) ( ),

2
r

n
W G L G r

n
⊂ =

−
, 3,n ≥

1 1

1
2

0 ( )
( )

,
n

W G
L G

u C u C
ρ ρ

ε ε
∗ ∗≤ ≤ 21 21

1
2

2 2( )
( )

.
n

W G
L G

C C
ρ ρ

ε ευ υ∗ ∗≤ ≤  

Hence, taking account into inequality of (5.6) obtains that, 

for any ( , )t T T∈ −  the inequality is valid: 

1

2
1 1 ( ) ( )

( 1) ( )
r

t

t tt t ttL G L G

D

c x u u u dD C u u
ρ

ε ε ε ε ερ ∗+ ≤ ∇∫

2
2 ( ) ( )

( 1)
r

tt tt ttL G L G

D

dD Cε ε ε ερ υ υ υ υ∗+ ≤ ∇∫ . 

Hence, using Gromwell’s lemma, we get ( )1
5 ,tt H D

u Mε ≤

( )2

(1)

1 5tt
L D

K u Mε ≤ ( )1
2

6 ,tt W D
Mευ ≤

( )2
6 .tt L D

Mευ ≤ (where 6 3
,M M are 

constants) 

Definition 5.3 (following by [17],[20]) The functions  

( ) ( )
11, 2

, ( )Lu x t H D L Dρ
+

+∈ ∩ ( ) ( )( )
11, 2, ( )Lu x t H D L Dρ

−
+∈ ∩

 

and ( )
2

1

2 2( , ) ( ).x t W D L Dρυ +∈ ∩ functions is said to be a 

strong solution of boundary value problem (3.1), (2.2) and 

(3.2), (2.3), if there exists a sequences of functions 

{ } ( )n Lu C Dε
+′∈ { } ( )( )n Lu C Dε

−′∈
 , { } ( )n LC Dευ ′∈ (where 

the spaces ( ) ,LC D+′ ( )LC D−′ ( )LC D′  are infinitely 

differentiable functions which satisfies boundary conditions 

of (2.8),(2.9) ,(2.4) , respectively) and such that equalities 

( ) ( ) ( ) ( )1,2
1 1lim , , , lim 0

L
n n H DL Dn n

L u f x t u u uυ ++→∞ →∞
− = − =  

in the domain D−  as well if instead of the domain taken D+

and 

 

in the domain Dare fulfilled.  

The following theorem on the existence of strong solution 

holds. 

Theorem5.4 Strong (regular) solution of problems (3.1), 

(2.2) and (3.2), (2.3)) 

Suppose that the conditions of Theorem 3.1, 4.1 and

( )2 2 1 2 ,    , 1,...,
i jx xk k M k x i j n≤ = ( ) ( )1

22 12 , 0,tb x t k δ− ≤ − <

( ) ( ) ( )1

11 12 0,   ,b k t x t Dδ− ≤ − < ∈  are satisfied. 

Then for any functions ( ) ( ) ( )1 1 2, , , , , , ,tf x t u f x t u L Dυ υ +∈

( ) ( ) ( )1 1 2
( , , , , , , , )

t
f x t u f x t u L Dυ υ −∈ , ( ) ( ) ( )2 2 2, , , , , , ,tf x t u f x t u L Dυ υ ∈

there exists a unique strong solution of boundary value 

problem (5.1), (5.2) from the space

( )
12, 2

( , ) ( ),
L

u x t H D L Dρ
+

+∈ ∩  (for problem (5,3), (5.4) from

( )
12, 2( , ) ( ),Lu x t H D L Dρ

−
+∈ ∩ ) and ( )

2

2

2 2
( , ) ( ).x t W D L Dρυ +

+∈ ∩  

Proof. From these Theorem 3.1, Theorem 4.1, Theorem4.2 

and Theorem 5.1 there exists ( ( ),u x t+ ( ),x tυ ) solution of 

problem ((5.1), (5.2)), ( ( ),u x t−
, ) solution of 

problem ((5.3), (5.4)) in the domains D+  and D− , 

respectively, and belonging respectively to the spaces 

( ) 2

2, 2
( )

L
H D W D+ ∩  and ( ) 2

2, 2L
H D W− ∩ . Then by the 

construction of such spaces there exists sequences 

{ } ( )n L
u C D+′∈ { } ( )( )n L

u C D−′∈ { } ( )n L
C Dευ ′∈ such that     

2 , 2,( ) ( )
lim lim 0

L L
n nH D H Dn n

u u u u+ −

+ + − −

→∞ →∞
− = − =

2, ( )
lim 0

L
n H Dn

υ υ +
→∞

− =  .  

From the obvious inequality 

22

)(
)(

ρ
ε

ρ
ε υυ

DL
DL r

n

≤ .
11

(
)(

ρ
ε

ρ
ε D

DL n
n

uu ≤

( ) 5
2

Mu
DLtt ≤ε

( )
,6

)2(

1

2

MK
DL

tt ≤ευ

( ) ( ) ( ) ( ) 0lim,,,lim
,12

22 =−=−
∞→∞→ DHn

nDLn
n L

utxfL υυυυ

( )tx,υ
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( ) ( ) ( ) ( )2, 2 ,2 2

1 1( ) ( )
,  

L L
n n n nH D H DL D L D

u m L u u m L u+ −+ −

+ + − −≥ ≥

( )
2 ,

2( )L
n H D

m Lυ υ≥  

it follows that ( ){ }1 1nL u f+ +→  in 2
( )L D+

, for n → ∞ . 

( ){ }1 1nL u f− −→ in 2
( )L D−

, ( ){ }2 2nL fυ →  in 2
( )L D , for 

n → ∞ . Thus, suppose that ( )1 2tf L D+ +∈ , ( )1 2tf L D− −∈ , 

then regular solutions ,υ u + and u −  are strong solution. We 

are constructing the sequences of functions ( )1

1 2nf W D+ +∈ , 

( )1

1 2nf W D− −∈  such that { }1 1nf f+ +→  in 2
( )L D+

, 

{ }1 1nf f− −→ { }2 2nf f→ in 2
( )L D−

, { }2 2nf f→ in 2
( )L D for 

n → ∞ .Then for the functions 1
f +

 and 1
f −

, 2
f there exists 

strong solution problem of ((5.1), (5.2)) and ((5.3), 

(5.4))from the spaces ( )
1 1

2

2, 2 ,
( ), ( )LH D W D L Dρ

+ ∩ ∩

( )
2

2

2, 2
( ) ( )LH D W D L Dρ

− ∩ ∩ respectively. Hence, we can 

include that 
++ → uun

in ( )1,LH D+
, n

u u− −→  in ( )1,L
H D−

, 

n
υ υ→ for n → ∞ and these functions are strong of problem 

((5.1), (5.2)) and((5.3), (5.4)) respectively. 

6. The Solvability of Problem ((2.1)-(2.3)) 

Theom6.1. (Gluing solutions in the spaces) Suppose that 

the functions ,u
+

u − from the spaces ( ),i L
u H D+ +∈ , 

( ),i L
u H D− −∈ , 1,2.i =  Then the constructed function  

( ) ( ) ( )
( ) ( )

, , , ,
,

, , ,

u x t x t D
u x t

u x t x t D

+ +

− −

 ∈= 
∈

               (6.1) 

will also be from the class ( ) ( ),, ,  1, 2i Lu x t H D i∈ = . 

Proof. The Theorem6.1 proved exactly and similarly way 

to the Remark6.1 (e .g. [20] ). 

Thus, we have the proof of the following theorem 

accordance essentially a combination of the proof of 

Theorems 3.1, 4.1, 5.1, 5.2, 5.3, 5.4, Lemma5.1 and Theorem 

6.1.  

Theorem6.2. (On the solvability of problem (3.1), (2.3) 

and (3.2),(2.4) in D) Let the conditions of Theorems3.1, 4.1, 

5.1, 5.2, 5.3, 5.4, and Theorem 6.1 are satisfied.  

Then for any functions ( ) ( ) ( )1 1 2, , , , , , ,tf x t u f x t u L Dυ υ ∈  

and ( ) ( ) ( )2 2 2, , , , , , ,tf x t u f x t u L Dυ υ ∈  there exists a unique 

generalized solution of problem (3.1), (2.2) and (3.2),(2.3) 

from the space ( )
12, 2 ( )LH D L Dρ +∩  and ( )

2

2

2 2( , ) ( ).x t W D L Dρυ +∈ ∩  

Proof. Since on the base of Theorem 4.1, Theorem 4.2 and 

Theorem 5.1 there exists a unique solution ( ),u x t+
, 

( ),u x t−
 of problems ((5.1), (5.2)) and ((5.3), (5.4))from the 

space ( )
12, 2

( )
L

H D L Dρ
+

+∩  and ( )
12, 2

( )
L

H D L Dρ
−

+∩  

respectively. Then function ( ),u x t  which is constructed by 

formula (6.1) will also be from the class ( ) ( )2,, Lu x t H D∈
and at the same time is generalized solution of equation (5), 

moreover, the functions ( ),u x t+
and ( ),u x t−

 are strong 

generalized solution of problems((3.1), (2.2)) and ((3.2), 

(2.3)).Consequently, it means that the strong and weak 

solutions of corresponding problems are identity (see, e.g., 

[17],). It follows that the problem ((3.1), (2.2)) and ((3.2), 

(2.3)) are solvability. The uniqueness of problem ((3.1), (2.2)) 

and ((3.2), (2.3)) follows by means of inequality of Theorem 

3.1. That is proof of Theorem 6.2. Analogically, the existence 

strong solution of problem ((3.1), (2.2)) and ((3.2), (2.3)) 

from the space ( )1,LH D  can be proved. Now we must prove 

solvability of problem (2.1) ,(2.2) ,(2.3). Let  

1

1

,
i

n

tt i x t

i

M u ku A u Bu D u∗ ∗

=
= + + +∑

1

1

.
i

n

i x t

i

N u Pu Qu Ru
=

= + +∑  

Where 

(1)

1

(2)

1

0

0

k
K

k

 
=  
 

, 

(1)

1

(2)

2

0

0

i

i

i

a
A

a

 
=  
 

, 
11

22

0

0

b
B

b

 
=  
 

, 

2 11

22

0

0

k c
C

c

∆ + 
=  ∆ + 

 

(1)

2

(2)

1

0

0

i

i

i

a
P

a

 
=  
 

, 
12

21

0

0

b
Q

b

 
=  
 

, 

12

21

0

0

c
R

c

 
=  
 

, 
u

u
υ
 

=  
 

, 1

2

( , , , )

( , , , )

f x t u
f

f x t u

υ
υ

∗  
=  
 

 

( ) 1

2

2 11 1

22

0
   ,

0

k x c c u
D

c

ρ

ρυ
∗

 ∆ + +
 =
 ∆ + − 

{ } { }0 ,   .n nD D x D D xε ε ε+ −= > = < −∩ ∩

2 2 ,  .D D D D D Dε ε ε ε ε
+ − + −= =ɶ ɶ∪ ∪  

Then the system equations (2.1) can be written in the form  

1 1 .L u M u N u f∗ ∗ ∗= + =                      (6.2) 

Theorem6.2. Assume that the conditions ( )2 , , , 0,f x T u υ− =

( ) ( ) ( ) ( )1 1 2 2 2, , , , ( , , , ), , , , , , , , ,t tf x t u f x t u f x t u f x t u L Dυ υ υ υ ∈

( ) ( ) ( )
2

1

2 2
,

i
a x t M k x≤ are fulfilled. Then there exists 

unique solution of problem (2.1), (2.2) ,(2.3) from the space 

( ) ( )
1 12, 2,

( , ) ,L c
u x t H D L Dρ +∈ ∩

( )
2

2

2 2( , ) ( ).x t W D L Dρυ +∈ ∩  

Proof. Multiplying (6.2) by the vector  

in domain D, after integration by parts and using the Cauchy 

inequality, allowing for boundary condition (by analogically 

action to Theorems 3.1, 4.1, and 5.1) we get the following 

estimates 

( )ttu υαη −= ,1
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( ) ( )2 1 22, 21 1
( ) ( )cL D H D L D L D

L u m u
ρρ ++

∗ ∗≥
∩ ∩

or

1
2 1, 2 22

( ) ( ) ( ) ( )LL D H D W D L D
L u m u

ρ +

∗ ∗≥
∩ ∩

 .                  (6.3) 

Now, let ,0t
H  - is the space of vector function 

1 2( , )φ φ φ=  

such that ( )1 1 2 2, ,t L Dφ φ φ ∈  and 1
( , ) 0x Tφ − = .The norm of 

space ,0t
H  is defined by

2 2 2

1 2,0 0 0tt
φ φ φ= + . From the 

results of the Theorems 3.1, 4.1, 5.1, 5.2, 5.3, 5.4, 6.1, 6.2, it 

follows the following a prior estimates  

2,

6 1
( ) ( ) ,0LH D L D t

u m M u
ρ∗

∗ ∗≤
∩

 or

2
2, 2 ( )

7 1
( ) ( ) ,0L d

H D W D L t
u m M u

ρ∗

∗ ∗≤
∩ ∩

           (6.4) 

 

where 1 2max( , )ρ ρ ρ∗ = and the constants m∗  , 6m∗
 , 7m∗

 are 

not dependent from ( , )u x t .We must to show that, analogical 

estimates(6.3), (6.4) are also have to for operator L u∗ . Indeed, 

we may rewrite uNuLuM −= ∗∗
1

, then 

( )
2,

8
( ) ( ) ,0 ,0LH D L D t t

u m L u Nu
ρ∗

∗ ∗≤ +
∩

or

( )2
2, 2

9
( ) ( ) ( ) ,0 ,0LH D W D L D t t

u m L u Nu
ρ∗

∗ ∗≤ +
∩ ∩

 are valid. Now, 

we consider the set of equations: uNuMuL τ+= ∗∗
11

 where  

0 1τ≤ ≤ . Obviously, the following a prior estimate is 

uniformly bounded respect to parameter ofτ :  

2
2, 2

10
( ) ( ) ( ) ,0LH D W D L D t

u m L u
ρ

τ
∗

∗ ∗≤
∩ ∩  

where the constants 8
,m∗

9
,m∗

10
m∗

are independent from 

parameter τ  and ( , ).u x t  Other side for 0τ =  we have 

uMuL ∗∗ = 10
. In this case considered problem is solvable. 

Notice that, if 1τ =  then 1
.L L∗ ∗= Then as well as known 

method of continuation by parameter, with the standard 

approaches, the solvability of problem (2.1),(2.2) ,(2.3) can 

be proved. But the uniqueness of problem (2.1), (2.2),(2.3) 

can be proved by a similar way as Theorem3.1 The proof of 

this theorem is completed. 

7. Conclusion 

The existence and uniqueness of the boundary value 

problem (2.1), (2.2),(2.3) for semi-linear systems of the 

mixed hyperbolic-elliptic Keldysh type in the multivariate 

domain with the changing time direction were studied. The 

existence and uniqueness of generalized and regular solutions 

of a boundary value problem were established in a weighted 

Sobolev space. In this case applying the method of result of 

the work (e.g.,[20]) and with aid Theorem 6.1. (Gluing 

solutions in the spaces) shown that weak and strong (e.g., 

[17]) solutions of the boundary value problem for weakly 

nonlinear systems equations of the mixed hyperbolic-elliptic 

type in the multivariate domain with the changing time 

direction are identity. Finally, the solvability of the boundary 

value problem (2.1)-(2.3) was proved. 
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