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Abstract: Three complex variable circle theorems for studying the two-dimensional Stokes flows interior to a circular 

cylinder are presented. These theorems are formulated in terms of the complex velocities of the fundamental singularities in an 

unbounded incompressible viscous fluid. Illustrative examples are given to demonstrate their usefulness.  
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1. Introduction 

The solutions of fluid mechanical problems involving 

fundamental singularities in the presence of rigid boundaries 

are of considerable interest in practice. Except in a few 

simple cases the solution of such a problem involving an 

arbitrary boundary is still, in general exceedingly difficult. In 

the case of two-dimensional slow flow theory there is a 

complex variable circle theorem [1] for the solutions of 

Stokes flows due to singularities outside a circular cylinder 

which corresponds to Milne-Thomson’s circle theorem [2, 3] 

for potential flow outside the same cylinder, in the inviscid 

flow theory. Again it is notable that the same complex 

variable circle theorem can solve, in particular, some 

particular Stokes flow problems which cannot be done by the 

application of the real variable circle theorem [4, 5]. 

Moreover, the “condition for zero perturbation velocity” 

referred to in the former theorem may suggest, in many 

cases, relatively easily the strengths or positions or both, of 

the singularities of the basic flow so that the viscous flows 

outside the circular boundary exist. Again the literature for 

Stokes flows in the region interior to a circular cylinder is not 

as wide as that for the Stokes flows outside the same 

cylinder; and its mathematical treatment is mostly known in 

terms of the real variables, nearly polar co-ordinates ( )r, θ . 

Notably, Ranger [6] and Meleshko and Arof [7] have 

independently solved the problem for a single rotlet within a 

circular cylinder. Sen [5] has pointed out a method to solve 

some problems of slow viscous fluid flow within a circular 

cylinder with the aid of his circle theorems for the flows 

outside a circular boundary. Chowdhury and Sen [8, 9] have 

solved the problem of viscous fluid motion due to a Stokeslet 

within a circular cylinderical container. Daripa and 

Palaniappan [10] have extensively studied the singularity 

(rotlet or Stokeslet) driven Stokes flows interior and exterior 

to a circular cylinder. Here our object is to study Stokes flow 

interior to a circular cylinder in the light of the complex 

variable theory and to establish a number of complex 

variable circle theorems for slow viscous fluid motion within 

a circular cylinder in terms of the complex velocities of the 

fundamental singularities found in Chowdhury and Sen [11]; 

these theorems also correspond to the complex variable circle 

theorems for potential flow [12, 13] in an inviscid fluid 

within the same cylinder. 

 

Figure 1. The streamlines for a line Strokeslet at the origin, which is 

directed along the positive x-axis. 
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Figure 2. The streamlines for a line rotlet at the origin. 

 

Figure 3. The streamlines for a stresslet at the origin. 

 

Figure 4. The streamlines for a potential doublet at the origin. 

2. The Interior Circle Theorems 

In this section we attempt to study in some detail the two-

dimensional slow viscous flows interior to a circular cylinder 

with the help of the complex analysis and we establish three 

complex variable circle theorems for the determination of 

such flows. This is done by making use of the fundamental 

solutions of the Stokes equations presented somewhat 

differently in Chowdhury and Sen [11], Milne-Thomson [3] 

and Langlois [14] and these solutions governing generally the 

two-dimensional Stokes flows are the complex velocity and 

the stream function which are respectively 

( ) ( ) d
z, z W z z W(z) (z),

dz
υ = − − ω           (1) 

and 

( )1
i z W(z) z W(z) (z)dz (z)dz ,

2
ψ = − + ω − ω∫ ∫    (2) 

where W(z) and ω (z) are arbitrary functions of z. 

Theorem 1. Let there be an irrotational two-dimensional 

flow in a viscous fluid with no rigid boundaries. Let the flow 

be represented by the complex velocity ( )
0 0

z, z (z),υ = −ω

whose singularities are all in the region z a≤ and let 

0

i
(z) ~

z

λ ω ο 
 

 for large z , iλ  being a pure complex 

number. If a circular cylinder z a=  is now inserted into 

flow field, the complex velocity and the stream function for 

the flow inside the cylinder becomes respectively  

2 2 2

20 0 0

a a d a i
(z, z) (z) z ( )

z z dz z a

    λυ = −ω + ω + − ω +    
    

 (3) 

and 

( )1
i zW(z) zW(z) (z)dz (z)dz

2
ψ = − + ω − ω∫ ∫     (4) 

where 

2

20

a i
W(z) z

z 2a

  λ= ω + 
 

                    (5) 

and 

2 2

0 0

a d a i
(z) (z) .

z dz z z

  λω = ω − ω − 
 

          (6) 

Proof. The proof consists in satisfying the following 

conditions.  

(1) The complex function (3) is a complex velocity.  

(2) The same function satisfies the no-slip conditions on 

z a.=
 

(3) The terms in (3) except, 
0
(z),−ω  constitute the 

perturbation complex velocity, say 

2 2 2

20 0 0

a a d a i
(z, z) z ( ) .

z z dz z a

∗     λυ = ω + − ω +    
    

 (7) 

It is to be shown that 
0
(z, z)∗υ  introduces no singularities 

in the region z a,≤  and  
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(4) 
0
(z, z)∗υ , in particular, gives finite velocity at the 

origin. 

Substituting the value of complex functions W(z) and w(z) 

from the formulas (5) and (6) respectively, into (1), then 

obtained the particular complex velocity (3) which is satisfy 

the condition (1). The circular boundary z a= , implies 

2
z z a= by which the complex velocity (3) clearly gives 

(z, z) 0,υ = on the boundary z a;=  this result implies at 

once that the radial and the azimuthal velocity components 

vanish on the same boundary, and thus no-slip conditions are 

satisfied. Next by the condition 
0

i
w (z) ~

z

λ ο 
 

 for large 

z ,  referred to in the theorem, we may infer that 
0

w (z)
 
has 

a Laurent’s expansion of the form 

2 30 1 2

1 1 1
w (z) i ....,

z z z
= λ + λ + λ +                  (8) 

where 
1 2
, ,λ λ

 
etc. are complex constants.  

By making use of the expansion (8) in (7), the perturbation 

complex velocity 
0
(z, z)∗υ  within the region z a≤  becomes 

1 1 2

2 2 2 40

2 2 31
(z, z) i z .... z z ...,

a a a a

∗
 α α α
 υ = + λ − + + +
 
 

 (9) 

which shows that 
0
(z, z)∗υ  introduces no singularities in the 

region z a,≤  and obviously yields finite velocity at the 

origin; thus the last two conditions (3) and (4) are satisfied. 

Hence the proof of the theorem is complete. 

Example. A rotlet within a circular cylinder 

Let the basic flow be due to a rotlet of strength ik at the 

point 
0

z  in an unlimited viscous fluid, where 
0

z a.<  Then 

the complex velocity [11] of the flow in this case is given by 

0

0

ik
(z, z) ,

z z
υ =

−
                           (10) 

which may be rewritten, by following Theorem 1,as  

0

0

ik
w (z) .

z z
= −

−                        (11) 

Here one at once sees that 
0

ik
(z) ~

z

 ω ο 
 

 for large z .  

Therefore, the theorem applies here, when the cylinder 

z a=  is introduced into the flow field characterized by the 

complex velocity (10); and thus the complex velocity for the 

new flow interior to cylinder z a= , becomes  

( )
2 2 2

2 2 2 2 2
2

0 00 0

0
0

1 a 1 1 a a 1 1
z, z ik z ,

z z z zz a z a
az

zz
z

  
  
     υ = + + + − − +  −     −  −        

 (12) 

that is,  

( )
2 4

2 2 2 2 2 2
2 2

0 00 0

0
0 0

1 1 a z a 1 z 1 1
z, z ik ,

z z z za z z a
a az

z z zz
z z

 
 
  υ = − − + + − + −     − − −            

 (13) 

which on the appropriate reduction leads to the following 

standard form. 

( )

2

2 2

0

2 2 2 2 2
2

0 0 0

0 0
0

2 2

2 2
2

0 0 0 0

0

a
z

z1 1 a 1 a

z z a z a z
az z

zz z
zz, z ik

a a 1 z 1
1

z z z za
a

z
z

  
  −
  
  − + −

−   − −  −    υ =    
 
  

 + − + + 
    

−  
    

 (14) 

where the terms, excluding the first one, constitute the image 

system exterior to the cylinder z a,=  which thus consists of 

(1) a rotlet of strength, -ik, (2) a stresslet of strength 
2

2

0

2ika
,

z

−
 and (3) a potential doublet of strength 

2
2

0 0

0

a
ika 1

z z
,

z

 
− 

 
   each being at the point 

2

0

a
z ,

z
=  with a 

shear flow 
2

ikz

a
 and a uniform stream 

0

ik
,

z
 outside the same 

cylinder. The stream function, ψ  for the flow structure 

within the boundary z a=  may be obtained by making use 

of the complex functions (5), (6) and (11) in the formula (4); 

but it is convenient to use the complex velocity (14) in the 

same formula (see the appendix) in order to visualize ψ  as 

the algebraic form of the stream functions of the individual 

singularities referred in (14). Thus expressing the stream 

function ψ  in terms of the polar co-ordinates ( )r, θ  one gets  

( ) ( )

( ) ( )

( )

2 2 4
2

2 2 21 2 0 0

00 0 2

2

2
02 2

02 20

0 2

2

20

0 0

a a a 1
LnR LnR r cos 2 2r cos

rr r R

a
r cosa 1rk a r ,

r R

1 1 a 1
r cos r Ln

r r 22a

  
  − + − θ − θ − θ − θ +

   
 
  

θ − θ −  
 ψ = − − − 
  
  
 
 θ − θ − − + 
  

 (15) 

where 
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2

1 0 2 0 0 0 0

0

a
R z z , R z , r z , r z , arg z and arg z .

z
= − = − = = θ = θ =  

The expression (15) may be made considerably simplified 

if one uses the result, ( )
4 4

2 2

22 0

00

a a
R r 2r cos ,

rr
= + − θ − θ  in 

order to remove ( )
0

cos θ − θ  from ( )
0

cos 2 θ − θ  shown in 

the same expression. Thus the stream function (15) simplifies 

to  

( ) ( )
2

2 2

2 21 2 0

0 0 02

1 a 1 1 a
k LnR LnR a r r cos Ln ,

r r rR 2a

      ψ = − + + − θ − θ − + −       
 (16) 

from which Ranger’s [6] stream function for the flow pattern 

due to a rotlet within circular cylinder is at once recovered by 

choosing 
0 0

k m,a 1, r c, 0.= − = = θ =   

Theorem 2. Let ( )
0 0 0 0

z, z (z) z (z) (z)υ = ω − ω − ω  be 

the complex velocity for a motion in an unbounded viscous 

fluid, the singularities of ( )
0

z, zυ  being all at a distance less 

than a  from the origin. Let ( )
0

W (z) ~ Lnzο α  and 

0

i
(z) ~ Ln z

z

λ ω ο −α + 
 

 for large z ,α  being a complex 

constant, α its complex conjugate and iλ  a pure complex 

constant. If a circular cylinder z a=  is now introduced into 

the flow field, the complex velocity ( )z, zυ  and the stream 

function ψ  for the flow inside the cylinder become  

( )
0 0

z, z (z, z) (z, z),∗υ = υ + υ                      (17) 

and 

( )1
i z W(z) zW(z) (z)dz (z)dz ,

2
ψ = − + ω − ω∫ ∫     (18) 

where  

3 2 2 2

20 0 0 0

2 3 2 2

2 2 20 0

z d a a a
(z, z) W W

d z z z za

zz a d z d a a i
Ln z W ,

z dz dz z z za a a

∗      
υ = − − + ω     

     

        λ α  −α + − − ω − +                    

 (19) 

where  

23 2

2 20 0 0

az d a i
W(z) W (z) W z Ln z,

dz z za 2a

    λ
 = − + ω + − α     

 (20) 

and 

2 2 2 2
3

0 0 0 0

2 2

2

a 1 d d a a d a i
(z) (z) W z W

z z dz dz z z dz z z

1
Ln z Ln a a .

z

       λω = ω + + − ω −       
      

+α − α + α

 (21) 

Proof. The proof of the theorem is complete if the 

following four conditions are satisfied. 

(1) The expression (17) is a complex velocity. 

(2) The same expression satisfies the no-slip conditions on 

the boundary z a.=  

(3) 
0
(z, z)∗υ  introduces no singularities in the region, 

z a.≤  and 

(4) 
0
(z, z)∗υ , in particular, gives finite velocity at the 

origin. By making use of the complex functions (20) and (21) 

in the general complex velocity  

(1), we obtain the following particular complex velocity.  

( )
0 0 0 0

z, z W (z) zW (z) (z) (z,z),  ∗′υ = − − ω + υ      (22) 

where 

3 2 2 2

20 0 0 0

2 3 2 2

2 2 20 0

z d a a a
(z, z) W W

d z z z za

zz a d z d a a i
Ln z W .

z dz dz z z za a a

∗      
υ = − − + ω     

     

        λ α  −α + − − ω − +                    

  (23) 

Thus the condition (1) is satisfied. On the boundary 

z a,=  we have 2zz a=  so that the complex velocity (22) 

at once yields ( )z, zυ  =0 on the same boundary; this 

satisfies the condition (2). Since by hypothesis, the 

singularities of  i.e., of 

0
W (z)  and 

0
ω are all in the region z a.≤  And since as 

referred to in the theorem, ( )
0

W (z) ~ Ln zο α  and 

0

i
(z) ~ Ln z

z

λ ω ο α + 
 

 for large z , both 
0

W (z)  and 

0
(z)ω  must have Laurent’s expansions of the forms 

20 1 2

1 1
W (z) Ln z a a .......,

z z
= α + + +    (24) 

and  

20 2

i 1
(z) Lnz b ........,

z z

λω = −α + + +       (25) 

where 
1 2 2

a ,a , b
 
are complex constants. Substituting the 

complex functions(24) and (25) in (23) yields the 

perturbation complex velocity in the region z a≤  as 

32 1

2 2 2 20 1

2 24 2 2

4 2 4 2 4 22

232

2 2 4 21

bb a3
(z, z) 2 Lna a z

a a a a

b a b4 i 1
a z ............. z z

a a a a a a

bb 1 3
...... 2 zz a z z ..............,

a a a a

∗
   
   υ = α + − α − − +

    
    

   λ
 − − + − + + +      

  
  + − α + + − +

   
   

 (26) 

which implies that 
0
(z, z)∗υ  has no singularities within the 

space z a≤  and, in particular, gives finite velocity at the 

origin; this satisfies the above two conditions (3) and (4). 

Thus the proof of the theorem is complete. 

Example. A Stokeslet inside a circular cylinder 

( ) ),()()(, 0000 zzWzzWzz ωυ −′−=
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Let the primary flow field in a viscous fluid be due to a 

Stokeslet of strength β at the point 
0

z , where 
0

z a;<  and 

the corresponding complex velocity [11] is given by  

( )( )

( ) ( ){ }
0 0 0

0 0

0

1
(z, z) Ln z z z z

2

1 1
z z z z ,

2 z z

υ = − β − −

+ β − + β −
−

             (27) 

which may be expressed in the form 

0 0 0 0
(z, z) W (z) zW (z) (z),′υ = − − ω                   (28) 

where 

( )
0 0

1
W (z) Ln z z ,

2
= − β −                         (29) 

and 

( )
0 0 0

0

1 1 1 1
(z) Ln z z z .

2 2 z z 2
ω = β − + β − β

−    (30) 

We then easily calculate that the complex functions (29) 

and (30) are respectively ( )
0

W (z) ~ Ln zο α  and 

0

i
(z) ~ Ln z

z

λ ω ο α + 
 

 for large z ,  where 
1

  
2

α = − β  

and ( )
0 0

1
i z z .

2
λ = β − β  This clearly shows that Theorem 2 

applies here; and thus we may introduce the cylinder z a=  

into the basic flow characterized by (27) and the complex 

velocity for the new flow inside the cylinder, after a 

somewhat lengthy calculation, emerges as 

( ) ( ) ( )

( )

2 4 2

2 20 0

0 0 00

0

22
20 0

2 2 0

0 00

0

24

0

3 2 2 2
2

0 0

0
0

1 a a 1 1 a 1
z, z z, z z Ln z Ln z

2 z z 2 z 2z a
z

z

z a z1 a 1 1 1 1 1 1
Ln z Ln z Ln a

2 z 2 2 z 2 2 2z a
z

z

z a1 1 1 a 1 1 1 1
z

2 z 2 2 2z a z
a z

z z
z

 
   β    υ = υ + + + + β − + β −   

 − 
 
 

 
 + β − − β − β − β + β − − β
 
  −

+ − β + β − β − β
  −− 
 
 

0

2
2

0

0

2 4

2 2 2 20 0
2

0 0

0 0
0

2

0

2 20 0
2

0

0
0

2

2 2 0

1 1 1

2 z
a

z
z

a 1 a 1 1 1 1
z z

2 z 2 za z a
az z

zz z
z

z a1 1 1 1
z z

2 z za
az

zz
z

1 a 1
z z

2 z 2a

 
 
 
 + β +
  
 − 

  
  

 
  
  β   − + β − + +   − −  −         

 
 
 
 β − + −
  − − 

  
  

β − β −( ) ( )
2

20 0 0

1 1 1 1 1 a
z z z .

2 z 2 z 2 z

 β + β + β − β + β 
 

 (31) 

The expression (31), after an appropriate simplification, 

takes the standard form 

( ) ( )
2 2 2 2

0 2
0 0 0 0

0

2 2 2 2 2

2 2 20 0
2

0 0 00 0

0
0

1 a a 1 a a 1
z, z z, z Ln z z z z

2 z z 2 z z a
z

z

1 a a 1 1 a a a 1
z z z

2 z 2 z zz a z
az

zz
z

 
 

                υ = υ + β − − − β − + β − +                   −   
   

    
    β − + β − −
          − −




( ) ( )

( )

2

2 2
2

2

3 2 20 0 0 0
2

0 00 0

0
0

2

0 0 0

2 2 20 0

0 0 00

1 a 1 1 a 1
a z z z z 1

2 2 z zz z a
a z

z z
z

z z z1 1 1 1 a 1
z z z Ln ,

2 z z 2 z 2a z a

 
 
  + 
 

   

 
 β − + β − β − +
     −− 

 
 

    
  β − β − + β − + β           

  (32) 

where the terms, excepting 
0
(z, z),υ  constitute the image 

system in the region outside the boundary z a,=  which thus 

consists of  

(1) a Stokeslet of strength, −β , 

(2) a stresslet of strength 
2 2

2 0

00

1 a a
z ,

2 zz

 
 β −
 
 

 

(3) a potential doublet of strength ( )
2

2
2

3 0 0

0 0

1 a
a z z

2 z z
β − , 

(4) a rotlet of strength ( )
2

0 0

0 0

1 a
z z 1

2 z z

 
 β − β −
 
 

, each being 

at the point 
2

0

a
z ,

z
=  

(5) a shear flow and  

(6) a uniform stream. 

The evaluation of the corresponding stream function, ψ  

for the flow pattern is somewhat tedious by making use of 

the complex functions (20), (21), (29) and (30) in the formula 

(18); but it is advantageous to use the complex velocity (32) 

in the same formula, in order to obtain directly the stream 

functions of the individual singularities (see the appendix). 

Finally, the form of the stream function 
ψ

 in terms of polar 

coordinates ( )r,θ  characterizing the flow field (32), can be 

shown as  

( ) ( )
( )
( )

( ) ( )

( )
( ) ( )

( )

( )

0 1 0 0 0 1

0

0 2

2

0 0 2 0

0

2
2

0 0 0 0
2

02 2

3 20 4

0 2

2 0 0

0

2
2 2

4 0

0

r sin Ln R r sin LnR

rsin

r sin LnR

a
sin Ln R r sin

r

a
r sin 2 3 2r sin 2

r
1 a 1

a r
2 r Ra

sin
r

1 a
a r r sin

2 r

 θ − ϕ − θ − ϕ +
 − 
 θ − ϕ
 

 θ − ϕ
  
 

− θ − ϕ + θ − ϕ 
  

 
θ − θ + ϕ − θ − θ + ϕ 

 
− −  

 − θ − ϕ 
 

ψ = β

− − θ −( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

20 0 0 0

0 2

2 2 2 2

0 0 2

20 0 2 0 0

0 0

2 2

0 0

2 0 0 0

0

2 2

00

0 0 0 0 0

0

a 1
2 sin

r R

a r a r1
sin LnR sin r

r 2 a r

a r r1
sin 2 Ln sin r

2 ar

a rr 1
r Ln sin sin

a 2 r

 
 

















    θ + ϕ + θ − ϕ 

  


− −
− θ − ϕ + θ − ϕ −


  −  θ − θ + ϕ + θ − ϕ 
  


−
+ θ − ϕ − θ − ϕ


 





































 (33) 
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where the last two constant terms are added to make ψ  

vanish on r = a ,and where 

1 0 2 0 0 0 0

0

a
r z , R z z , R z , r z , arg z, arg z

z
= = − = − = θ = θ =

 
and 

0
arg .ϕ = β  

A relative concise form of the stream function (31) may be 

given by  

( ) ( ) ( ) ( )

( ) ( ) ( )

0

0 1 2

0

1 2 0 0 02 2 2 2 2
2

0

2 2 2

0 0 2

2 2 2 2

0

2 2 0 0

0 2

r
r LnR Ln R

a
r

r LnR Ln R sin sin
a a r a r a1 r

1 .
2 r r R a

a r r a r1
sin 2 .

2 r R

   
− +          − θ− θ − θ − ϕ     − −    − +ψ = β    
   

 
− −

− θ− θ + ϕ 
  

 (34) 

And thus one may be interested in verifying that the stream 

function (2.34) satisfies no slip conditions, 0
r

∂ ψψ = =
∂

 on 

the boundary r = a . 

Theorem 3. Let there be a two-dimensional flow in an 

unbounded incompressible viscous fluid in the z – plane. Let 

the flow be characterized by the complex velocity 

0 0 0 0
(z, z) W (z) zW (z) (z),′υ = − − ω  whose singularities are 

all at a distance less than a from the origin; and let 

0

1
W (z) ~

z

 ο 
 

 and 
20

1
w (z) ~

z

 ο 
 

 for large z .  Now if 

a circular cylinder z a=  is introduced into the flow, then the 

complex velocity and the stream function for the flow 

internal to the cylinder becomes respectively 

0 0
(z, z) (z, z) (z, z),∗υ = υ + υ             (35) 

and 

( )1
i zW(z) zW(z) (z)dz (z)dz ,

2
ψ = − + ω − ω∫ ∫  (36) 

where 

3 2 2 2

20 0 0 0

2 2 2
3

2 0 0

z d a a a
(z, z) W W

d z z z za

a 1 d d a d a
z z W ,

z dz dz z dz za

∗      
υ = − − + ω +     

     

        − − ω        
        

 (37) 

and where 

3 2 2

20 0 0

z d a a
W(z) W (z) W ,

d z z za

   
= − + ω   

   
    (38) 

and 

2 2 2 2 2 2
2

20 0 0 0

a d a d a a d a
(z) (z) W z W 3z W .

z z d z z z d z zd z

       
ω = ω + + + − ω       

       
   (39) 

Proof: “Account into (1) the value of the complex 

functions W(z)  and (z)ω  by the expressions (38) and (39) 

respectively, one gets the function (35) which is clearly a 

particular complex velocity.” Next, making use of the 

transformation 
2a

z
z

=  in the complex velocity (35) yields 

( )z, z 0,υ =  on z a;=  and thus the no-slip condition is 

satisfied. Since, by hypothesis, 

20 0

1 1
W (z) ~ and (z) ~

z z

   ο ω ο   
   

 for large z ,  

0 0
W (z) and (z)ω  may be expanded in Laurent’s series as  

31 2

2 3 40

bb b
w (z) ........,

z z z
= + + +              (40) 

31 2

2 30

aa a
W (z) ........,

z z z
= + + +            (41) 

where 
1 2 3

a ,a ,a ...............,  and 
1 2 3

b , b , b .....,  are complex 

constants. Substituting these series in (2. 37) results in the 

perturbation complex velocity within the region 
z a,≤

as 

2 2 20 1 1 2

2 2

4 2 4 42 3 1 1

1 1 1
(z,z) 2b 2a 3b z

a a a

1 1 1 1
7a 4b z b z 2b zz .....,

a a a a

∗  υ = + + 
 

 + + + − + 
 

       (42) 

which implies that 
0
(z, z)∗υ  has no singularities inside the 

region z a,≤  and has in particular, finite velocity at the 

origin; and all conditions being satisfied the theorem is 

therefore proved. 

Example. A stresslet interior to a circular cylinder 

Let the primary flow be due to a stresslet of strength α  at 

the point 
0

z , with 
0

z a,<  in an incompressible viscous 

fluid; the complex velocity [11] generated by this singularity 

in the fluid is given by  

( )
0

20

0
0

z z1 1
(z, z) ,

2 z z z z

 − υ = α + α − −
 

                (43) 

which may be written in the form 

0 0 0 0
(z, z) W (z) zW (z) (z),′υ = − − ω             (44) 

where 

0

0

1 1
W (z) ,

2 z z
= α

−                  (45) 

and  

20 0

0

1 1
(z) z .

2 (z z )
ω = α

−            (46) 

A direct calculation shows that 
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20 0

1 1
W (z) ~ and w (z) ~

z z

   ο ο   
   

 for large z , Thus the 

theorem 3 applies here. Therefore, after the insertion of the 

cylinder az = into the basic flow represented by (2.43), the 

complex velocity for the flow inside the cylinder becomes  

0 0
" (z, z) (z, z) (z, z),∗υ = υ + υ               (47) 

Where 

2

0

2 3 20

0 0 0 0

2 2 4 2 2

3 4 2 20 02 22
0 00 0 0

0 00

2 2

2 0
2

0 00

0

z1 1 1 a 1 1
(z, z ) z

2 z 2 2z z z

1 a 3a 1 1 a a 1 1 a 1
2 z z

2 z 2 z 2z z za aaz zz
z zz

1 1 a 3a 1
z 1 2z

2 z zz
a

z
z

∗
 
 υ = α + α − α − α −
 
 

   
   α − + α − + α
          − −   −         

 
 + α − −
    

− 
 
 

4 2

2 2 30
2

00

0

2 2 2 2

2 2 2 30
2 2

0 0 00

0
0 0

2a a 1
z

zz
a

z
z

1 a 1 a 1 2a a 1
z ,

2 z z zz a
a az

z zz
z z

 
 
   

 + −      
−      

 
 
   

 − α − − −       − − −            

 (48) 

which upon the appropriate reduction can be given a standard 

form 

( )

( )

( )

( )

4
2 2

2
5 20 0

4 2 20 0
0

0

0 0

2
2

0

2
42 0

2 0
4 20 0

5 32 0 0
20

0

0
0

4

0

a 1a 1 a z z3a 2z z zz a a
z z

z z

1 1
a(z, z) az2 2 zza za3a 2z z 2 a z zz za az zz z

3 a

2 z z

∗

   α − + α − +     − −    
   
  υ = − −   − −   

   α − α −         −  −           

− α ( ) ( )

( )

4
2

2 2

4 2 5 30 0 0 0
2 2

0 0 0

0 0

2
2 2 0

2 2 2 30 0

00 0 0 0

1 a 1
a z z a z z

z z
a a

z z
z z

z1 1 1 1 1 a
z z z .

2 2 z 2z z z z

− − α −
   

− −   
   
   

 
 + α − α + α + α − α
 
 

 (49) 

The terms in (49) give the image system outside the 

boundary z a,= which is consisted of (i) - (v):  

(1) a stresslet of strength, ( )
2

2

4 0 0

0

a
3a 2z z

z
−α −  at the 

point 
2

0

a

z
, 

(2) a stressing quadrupole of strength 

( )
4

2

5 0 0

0

a
2 a z z

z
− α −  at the point 

2

0

a

z
, 

(3) a potential doublet of strength, 

( )
4

2

4 0 0

0 0

3 a
a z z

2 z z
− α −  at the point 

2

0

a

z
, a potential 

quadrupole of strength, ( )
4

2
2

5 0 0

0 0

a
a z z

z z
−α −  at the same 

point, 

(4) a shear flow, ( )2 2

2 2 0 0

0 0

1 1
z z z

2 z z
α − α  and  

(5) a uniform stream 
2

0

2 3

0 0 0

z1 1 1 a
.

2 z 2 z z

 
 α + α − α
 
 

 

The stream function corresponding to the complex velocity 

(47) can found by the similar way of having the expression 

(33) and this is  

( ) ( ) ( ){ }

( )
( )

( ) ( )

( )
( ) ( )

( )

2 2

20 0 0 0 0 0 0

1

2

0 02
2 2

2 4
4 20

0 220 0 0 0

0 0

3 2 2

0 0 0 0
4

0
2 2

5 0 4

0

2 0 0

0

1 1
r sin 2 2r r sin r sin 2

2 R

r sin 2 4

1 a 1
3a 2r

a a2 r R2r sin 3 sin 2
r r

1
r sin 3 5 3a r sin 2 4

r
1 a

a r
2 r a

3r sin 3
r

ψ = − α θ − ϕ − θ + θ − ϕ + θ − ϕ

 θ − θ + ϕ
  + α −  

− θ − θ + ϕ + − θ + ϕ 
  

θ − θ + ϕ − θ − θ + ϕ

+ α −
+ θ − θ + ϕ ( )

( ) ( ) ( )

( )
( )

( ) ( )

( )

46

2

3 0 0

0

4 2
2 2

3 20 0 0 0 0

00 2

2

0 04
2

2 2
2 4

6 40

0 220 0 0 0

0 0

2

2 0 0

0

3 0

0

1

Ra
sin 2

r

3 a a 1
a r r sin 3 sin 2

2 rr R

r sin 2 4

1 a 1
a r a a2 r R2r sin 3 sin 2

r r

1
r sin 2

2r

1
r r

2r

 
 
 
 
 − − θ + ϕ 
 

  + α − θ − θ + ϕ − − θ + ϕ 
  

 θ − θ + ϕ
  + α −  

− θ − θ + ϕ + − θ + ϕ 
  

− α θ − ϕ

+ α ( ) ( ) ( ){ }

( )

2 2 2

0 0 0 0 0

2

2 0 0

0

2a sin 3 r sin

1
a sin 2 ,

2r

+ θ − θ + ϕ − θ + θ − ϕ

+ α θ − ϕ

 (50) 

where  

2

1 0 2 0 0

0

a
r z , R z z , R z , r z , arg z,

z
= = − = − = θ =

0 0
arg z ,θ =  and 

0
arg .ϕ = α  

3. Conclusion 

Except in a few simple cases the solution of fluid 

mechanical problems involving an arbitrary boundary is still, 

in general exceedingly difficult. In the case of two-

dimensional slow flow theory there is a complex variable 

circle theorem [1] for the solutions of Stokes flows due to 

singularities outside a circular cylinder which corresponds to 

Milne-Thomson’s circle theorem [2, 3] for potential flow 

outside the same cylinder, in the inviscid flow theory. Again 

it is notable that the same complex variable circle theorem 

can solve, in particular, some particular Stokes flow 

problems which cannot be done by the application of the real 

variable circle theorem [4, 5]. Moreover, the “condition for 

zero perturbation velocity” referred to in the former theorem 

may suggest, in many cases, relatively easily the strengths or 

positions or both, of the singularities of the basic flow so that 

the viscous flows outside the circular boundary exist. Besides 

these type of solutions, many relevant solutions regarding 
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this topic are also provided in this paper. Here our object is to 

study Stokes flow interior to a circular cylinder in the light of 

the complex variable theory and to establish a number of 

complex variable circle theorems for slow viscous fluid 

motion within a circular cylinder in terms of the complex 

velocities of the fundamental singularities found in 

Chowdhury and Sen [11]; these theorems also correspond to 

the complex variable circle theorems for potential flow [12, 

13] in an inviscid fluid within the same cylinder. 

Appendix 

(1) Calculation of the stream functions of the singularities 

constituting the complex velocity (14) 

Let 
1 2 3 4 5 6
, , , , andψ ψ ψ ψ ψ ψ  be respectively the stream 

functions of the basic rotlet, the image rotlet, stresslet, 

potential doublet, shear flow and the uniform stream, referred 

to (14). 

By taking 
0

W(z) 0and (z) (z)= ω = ω  in the stream 

function (4), 

( )
1 0 0 0

0

1 ik
i (z)d z (z)d z , (z) .

2 z z
ψ = ω − ω ω = −

−∫ ∫            (51) 

i. e., 

1 1 1 0
k nR , where R z z ,ψ = − Ι = −                (52) 

Similarly,  

2

2 2 2

0

a
k nR , where R z .

z
ψ = Ι = −              (53) 

Next for the determination of 3ψ , the complex velocity of 

the stresslet, shown in (14) is expressed as  

)()()(
1

2

0

2

0

2

2

0

2

0

22

0

2

zzWzzW

z

a
z

z

a
z

z

a

z

a
z

z

a
ik ω−′−=

































−

−
−

−
      (54) 

where  

2 2 2

2 2 2 2
2

0 0 0

0
0

a 1 a a 1
W(z) ik and (z) ik

z a z z
az

zz
z

= − ω = −
 − − 
 
 

. (55) 

Thus using these expressions in (4) yields  

( ) ( )
2 2 4

2

2 2 23 0 0

00 0 2

a a a 1
k r cos2 2r cos ,

rr r R

  ψ = − θ − θ − θ − θ + 
  

  (56) 

Where 
0 0

r z= , and 
0 0

arg zθ = . 

Then the stream function  

( )
4 0 0

1
i (z)d z (z)d z ,

2
ψ = ω − ω∫ ∫       (57) 

where 

2 2

2
2

0 0 0

0

a a 1
(z) ik (1 ) .

z z z
a

z
z

ω = − −
 

− 
 
 

        (58) 

The evaluation of the stream function (57) is 

straightforward, giving 

( ) ( )
2 2

2 2

3 24 0 0

00 2

k a a 1
a r r cos .

rr R

  ψ = − − θ − θ − 
  

     (59) 

In order to determine the stream function 5ψ , of the shear 

flow we express its complex velocity as 

2

ik
z W(z) zW (z),

a
′= −                (60) 

Where 
2

ik
W(z) z.

2a
= −  So the same stream function is 

given by the formula (4) with (z) 0;ω =  and thus  

( ) 2

25

1 1 k
i zW(z) zW(z) r .

2 2 a
ψ = − = −       (61) 

Similarly, the stream function 
6
,ψ  of the uniform stream 

is obtained by the formula  

( )
6

1
i (z)d z (z)d z ,

2
ψ = ω − ω∫ ∫              (62) 

in which 

0

ik
(z) ;

z
ω = −  and this clearly gives  

( )
6 0

0

k
r cos .

r
ψ = − θ − θ                  (63) 

(2) Calculation of the stream functions of the singularities 

constituting the complex velocity (32) 

Let 
7 8 9 10 11 12 13
, , , , , , andψ ψ ψ ψ ψ ψ ψ  be the stream 

functions of the basic stokeslet, the image stokeslet, stresslet, 

potential doublet, rotlet, shear flow and uniform stream, all of 

which make the complex velocity (32). The expression (27) 

is the complex velocity of the basic stokeslet. Thus by the 

formula (18) the corresponding stream function is  

( )
7 0 0 0 0

1
i zW (z) zW (z) (z) d z (z)d z ,

2
ψ = − + ω − ω∫ ∫   (64) 

where 
0

W (z)  and 
0
(z)ω  stand for the functions (29) and 

(30). Evaluating the integrals in (64) in a straightforward 

manner yields the stream function for the basic Stokeslet, that 
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is  

( ) ( ) ( ){ }7 0 1 0 0 0 1 0
r sin LnR r sin LnR r sin ,ψ = β θ − ϕ − θ − ϕ + θ − ϕ  (65) 

where 
0

arg .ϕ = β  Similarly, the stream function for the 

image stokeslet is 

( ) ( ) ( ){ }8 0 2 0 0 0 2 0
r sin LnR r sin LnR r sin .ψ = − β θ − ϕ − θ − ϕ + θ − ϕ  (66) 

The complex velocity of the stresslet can be expressed as  

2 2 2 2 2

2 2 2 20 0
2

0 0 0 0 0

0
0

1 a a 1 1 a a a 1
z z z

2 2z z a z z z
az

zz
z

W(z) zW (z) (z),

    
    β − + β − −
          − − 

 
 

′= − − ω

    (67) 

where  

2 2

2 0
2

0 0

0

1 a a 1
W(z) z

2 z z
a

z
z

 
 = β −
     − 

 
 

           (68) 

and 

2 2 2

2 20
2

0 0 0

0

1 a a a 1
(z) z

2 z z z
a

z
z

  
  ω = β −
       − 

 
 

.    (69) 

Making use of the last results in the formula (18) leads to 

the stream function  

( )
( ) ( )

( )

2
2

0 0 0 0
2

02 2

3 29 0 4
0 2

2 0 0

0

a
r sin 2 3 2r sin 2

r
1 a 1

a r
2 r R .a

sin
r

 
θ − θ + ϕ − θ − θ + ϕ 

 
ψ = − β −  

 − θ − ϕ 
 

   (70) 

The stream function for the potential doublet is given by  

( )
10

1
i (z)d z (z)d z ,

2
ψ = ω − ω∫ ∫              (71) 

where 

( )
2

2
2

3 20
2

0

0

1 a 1
(z) a zz .

2 z z
a

z
z

ω = − β −
 

− 
 
 

        (72) 

By using (72) in (71) we get 

( ) ( ) ( )
2

2
2 0 0 0 02 2

02 210 0

0 2

a
r sin 2 sin1 a 1ra r

2 r R .

 
θ − θ + ϕ + θ − ϕ 

ψ = − −  
 
 

  (73) 

Similarly, the stream function for the rotlet is calculated by 

using the formula (71) with  

( )
2

0 0 2
0 0

0

1 a 1
(z) z z 1 ;

2 z z a
z

z

 
 ω = − β − β −
     − 

 
 

      (74) 

and it emerges as 

( ) ( )2 2

11 0 0 0 2

0

1
a r sin LnR .

r
ψ = − β − θ − ϕ       (75) 

To find out the stream function 
12

,ψ  for the shear flow, its 

complex velocity is written as  

( ) ( )
20 0

0 0

1 1 1
z z z W z zW (z),

2 z z a

 
′ β − β − = −

 
 

    (76) 

where 

( ) 20 0

0 0

1 1 1
W(z) z z z,

4 z z a

 
 = β − β −
 
 

      (77) 

Thus, using (77) in the formula (2.18) with ω  (z) = 0, 

yields  

( ) ( )
2 2

0 2

212 0 0

0

a r1
r sin .

2 a r

−
ψ = β θ − ϕ        (78) 

Finally, substituting 

2

0 0 0

2 2

00

z z z1 a 1
(z) Ln

2 z 2z a

   
 ω = β − + β       

 and W(z) 0=  in 

(18) the stream function for the uniform stream may be given 

by  

( ) ( ) ( )
2 2

0 0

213 0 0 0

0

a r r
sin 2 Ln sin r.

a2r

 − ψ = − β θ − θ + ϕ + θ − ϕ 
  

   (79) 
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