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Abstract: We present a method constructing a function which is the best approximation for given data and satisfiesthe given 

self-similar condition. For this, we construct a space F of local self-similar fractal functions and show its properties. Next we 

present a computational scheme constructing the best fractal approximation in this space and estimate an error of the 

constructed fractal approximation. Our best fractal approximation is a fixed point of some fractal interpolation function. 
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1. Introduction 

Fractal approximation has been applied to model the 

objects which have fractal characteristics in nature. Fractal 

functions whose graphs are fractal sets have been widely 

used in approximation theory, signal processing, interpolation 

theory,computer graphics and so on. Hence, constructions of 

fractal functions and fractal approximation have been studied 

in many papers. 

Constructions of fractal functions by fractal interpolation 

have been introduced by many researchers. A construction of 

one variable fractal interpolation functions by the iterated 

function system (IFS) with a data set on R was studied in [1, 

2, 14], where the constructed fractal functions were 

self-similar ones. The construction was generalized in [3, 4, 

17], which constructed local self-similar fractal functions. 

Constructions of bivariate fractal interpolation functions 

(BFIFs) have been studied in [5–11, 13, 17]. A construction 

of BFIFs by fractal interpolation on R was presented in [5, 17] 

and self-affine fractal interpolation functions were 

constructed by IFS with a data set on a triangular domain in 

[12]. Constructions of self-similar BFIFs in [9, 11] and 

self-affine BFIFs in [10, 13] by IFS with a data set on a 

rectangular grid were introduced. In [6], local 

self-similarBFIFs were constructed by the recurrent iterated 

function system(RIFS) on a rectangular grid. A construction 

of local self-similar fractal interpolation functions in R
n
 was 

studied in [4]. 

To construct fractal interpolation we need a data set 

},,1,0),,{( niyx ii …=  and a set of scale parameters

},,1,{ nisi …= . The fractal property of the graph of the 

interpolation function is determinated by those data. Let a 

division of the interval and scale parameters be given, that is, 

a fractal property of the function be given. If the number of 

experimental data is more than the number of the interval 

division, then we can not construct the fractal interpolation 

for the data using fractal interpolation theory.  

So we assume that a division of the interval and scale 

parameters be given (that is, a fractal property of the function) 

and study the problem constructing the best fractal 

approximation for the data set },,1,0),,{( mizx ii …= , 

where nm >  ( n  is the number of the interval division).  

In [15, 18], constructionsofthebest approximation of 

functions by the fractal functions were presented, 

respectively. Butthe continuity of the approximation was not 

guaranteed then. The best fractal approximation of a 

continuous function in 2L space was introduced in [16]. In 

[7], a space of differentiable fractal interpolation functions 

was constructed and it was proved that the constructed space 

is the reproducing kernel Hilbert space. 

We construct a space of fractal interpolation functions with 

a given division of the interval and scale parameters and find 

a function satisfying some approximation condition for data 

},,,1,0),,{( mizx ii …=
 

with nm >  in this space. We 

call it a local self-similar fractal approximation. The values 

of the function at nodes of division },,1,0,{ niyi …=  are 

unknown unlike interpolation function.  

The rest of the article is organized as follows: Section 2 

constructs a linear space F  of local self-similar fractal 

functions and then a linear space T  of contraction 
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operators which is isomorphic to the constructed F . 

Section 3 proves that there exists a unique contraction 

operator (RB operator) in T  corresponding to LSFAinF . 

We change the problem constructing this RB operator to the 

problem constructing },,1,0,{ niyi …=  and the fixed 

point of this operator is LSFA in F  of a given data set. 

Section 4 estimates an error of the constructed fractal 

approximation and Section 5 gives examples of calculation of 

the least squares fractalapproximation of a coastline. 

2. A Space of Local Self-Similar Fractal 

Functions and a Space of Contractive 

Operators 

In this section, we construct a space of local self-similar 

fractal functions and a space of contraction operators which 

are isomorphic to each other. 

Let 

},,1,0:R{ nixi ⋯=∈=∆ , 

bxxxa n =<<<= …10 , 

],[ baI =
, 

],[ 1 iii xxI −=
, 

},,2,1,1||:{ niss ii ⋯=<
 

be given.  

Let ),N(1 ∈≤< qnq  

},,,{,],,[ 10)()()()( nkekskeksk xxxxxxxJ ⋯∈=  

And 2)()( ≥− kske , .,,1 qk ⋯= iI
 

is called a region and kJ  

a domain. We define a mapping },,1{},,1{: qn …… →γ , 

which means that we relate every region to a domain. For each 

},,1{ ni …∈ , denote )(ik γ= . 

For },,1{ ni …∈ , define a mapping ikki IJu →:,  by 

, ( )i k i iu x a x b= +                  (1) 

which satisfies  

ikekiikski xxuxxu == − )(,)( )(,1)(, .   (2) 

Let ))(( ICf ∈  be a continuous function satisfying 

))(())(()( 1
,,

1
, xupxufsxf kikikii

−− +⋅= , iIx ∈    (3) 

where functions ikki IJp →:, , ni ,,1 …=  are defined 

by iiki dxcxp +=)(,  and satisfy the following conditions: 

)()()( 1)(,)( −=+ ikskiksi xfxpxfs        (4) 

)()()( )(,)( ikekikei xfxpxfs =+        (5) 

Define a space of functions satisfying the equations (4), (5) 

by F . The graph of F∈f  has a local self-similarity and 

we get 0)( ≡xf F∈  which corresponds to 0,0 == ii dc , 

},,1{ ni …∈ . 

Lemma 1 F  is a linear subspace of dimension 1+n  of 

)(IC . 

Proof. For F∈ff
~

,  and R∈λ , we have 

))(())(()( 1
,,

1
, xupxufsxf kikikii

−− +⋅= , 

))((~))((
~

)(
~ 1

,,
1

, xupxufsxf kikikii
−− +⋅= , iIx ∈ .  (6) 

Hence  

1

,
( )( ) : ( )( ( ))

i i k
f f x s f f u x−+ = ⋅ +ɶ ɶ 1

, , ,( )( ( ))i k i k i kp p u x
−+ + ɶ , iIx ∈ , (7) 

))()(())()((:))(( 1
,,

1
, xupxufsxf kikikii

−− +⋅= λλλ , iIx ∈ . (8) 

Thus F∈+ ff
~

 and F∈fλ . 

Because for F∈f , 
1

10 ))(,),(),((
+∈ n

n Rxfxfxf …  

is uniquely determined, a mapping 1: +→Ψ nRF is defined 

by 

))(,),(),(()( 10 nxfxfxff …=Ψ .     (9) 

And for 1
10 ),,,(

+∈ n
n Ryyy … , there exists a unique 

F∈f  such that ii yxf =)( , ni ,,1 …= . 

In fact, the existence and uniquenssof f  areensured by 

the existence and uniquenss of the recurrent fractal 

interpolation function ([3]). 

This shows that the mapping 1: +→Ψ nRF  is a bijection. 

We can easily check that the mapping Ψ  is linear. Hence 

F  and 1+nR  are isomorphic. A basis of F  is 

)0,,0,1,,0(),(
1

……=Ψ−
ii ee , 1,,1 += ni … .  (10) 

The space F  is a Banach space with the norm ∞⋅ |||| . 

For a
1

10 ),,,(
+∈= n

n Ryyyy … , define a function space

yF  by 

,)(:)({ iiy yxfICf =∈=F },,1 ni …= .  (11) 

Then )||||,( ∞⋅yF is a complete space. 

For yf F∈ , define a function RIfTy →:  by 

))(())((:))(( 1
,,

1
, xupxufsxfT ki

T

kikiiy
y −− +⋅= , iIx ∈ ,   (12) 

where yyy T

ki

T

ki

T

ki dxcxp ,,, )( +=  satisfies the following 

conditions: 

iiyiiy yxfTyxfT == −− ))((,))(( 11     (13) 
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i.e. 

.)(,)( )(,)(1)(,)( ike

T

kikeiiks

T

kiksi yxpysyxpys yy =+=+ −  (14) 

By the seconditions, yT

kic ,  and yT

kid ,  are uniquely givenby 

)()(

)()(1

,

)()(

kske

kskeiiiT

ki
xx

yysyy
c y

−
−−−

= −
,    (15) 

)()(

)()()()()()(1

,

)(

kske

kekskeksiksikeiT

ki
xx

xyyxsxyxy
d y

−
−+−

= − . (16) 

Therefore, for a 
1

10 ),,,(
+∈= n

n Ryyyy … , we get a 

unique operator T
y

. And because T f
y

 is continuous by 

(12), yy fT F∈ . Thustheoperator yyyT FF →:
 

is 

defined by (12). It is easy to verify that the operator T
y  

isacontraction with respect to || ||∞⋅ . According to the 

fixed-point theorem in a complete space, there exists a 

unique yTy
f F∈  such that  

0 1( ( ), ( ), , ( ))T T T nf x f x f x
y y y

⋯
0 1( , , , )ny y y= ⋯  (17) 

Let T betheset of such operators. Define a mapping

T→Φ +1: n
R by T∈=Φ yTy)( . Then the mapping Φ  is 

a bijection. 

Lemma 2. T is a linear space of dimensionn+1. 

Proof. For
1 2y yT , T ∈T  and ∈ Rλ , define 1 2

+y yT T  on 

21 yy +F  by 
21 yyf +∈F , 

1 2

1 2

1 1( )( )( ) : ( ( )) ( )( ( )),
TT

i i i i i iT T f x s f u x p p u x x I− −+ = ⋅ + + ∈yy

y y  (18) 

and 
1

λT
y  on 

1yλF  by 

1

~
yf λF∈ , 1

1

1 1( )( )( ) : ( ( )) ( ( ))
T

i i i iλT f x s f u x λp u x− −= ⋅ + y

y
ɶ ɶ , 

ix I∈ , 1, ,i n= …        (19) 

Note that we omit a subscript k after this because the 

domain and region are all fixed. 

It is clear that 
2121

)( yyyy fTT +∈+ F
 

and 

11

~
)( yy fT λλ F∈ . Therefore, T∈+

21 yy TT
 

and T∈
1yTλ , 

i.e. the linear operations are defined in the set T . It is easy 

to prove that the set T  is a linear space with respect to the 

linear operations. 

The mapping T→Φ +1n
R:  is linear. In fact, because 

for  

1 1, 0 1,1 1,( , , , ),ny y y=y ⋯

1
2 2, 0 2,1 2,( , , , ) R n

ny y y += ∈y ⋯  

and R∈λ , by (15), (16) 

1 2 1 2 1 2 1 2 1 2

1 1 2 2 1 2

( ) ( ) ( )

( ) ( ),

T T T T T T T

i i i i i i i

T T T T T T

i i i i i i

p x c x d c c x d d

c x d c x d p x p x

+ + += + = + + +

= + + + = +

y y y y y y y y y y

y y y y y y

 (20) 

1 1 1 1 1 1( ) ( ) ( )
T T T T T T

i i i i i ip x c x d c x d p xλ λ λ λ λ= + = + =y y y y y y  (21) 

and we get 

1 2 1 2( ( ))( )( ) ( ( ) ( ))( )( )f x f xΦ + = Φ + Φy y y y ,  (22) 

1 1( ( ))( )( ) ( ( ))( )( )f x f xλ λΦ = Φy y .    (23) 

Hence, T  and 
1R n+

 are isomorphic, which means that 

the dimension of T  is n+1.  

By the isomorphic relation, 
1)0,,0,0( +∈ nR⋯

correspondedstothe operator T  defined by 

iii IxxufsxTf ∈⋅= −
)),(())((

1
,        (24) 

whose fixed point is 0)( ≡xfT . 

Theorem 1. Let F and T  be the linear spaces 

constructed above. Then they are isomorphic. 

Proof. This follows from Lemmas 1 and 2. 

Denote the isomorphism of F to T by Ψ~ . Note that for 

F∈f , the fixed point of T  with Tf =Ψ )(
~

 is f . 

3. Construction of LSFA of a Data Set 

In this section, we prove that there exists the least squares 

fractal approximation f inF  of a data setand present an 

algorithm for finding f by calculating approximately the 

contraction operatorTin T  corresponding to f. 
Let P  be a data set given by 

{( , ) : 0, 1, , }i iP x z i m= = … ,         (25) 

0 1 0 0( , , )m m nx x x x x x x< < < = =⋯  

where nm > . 

An 
*f  is called the least squares fractal approximation 

(LSFA) if 
*f  is a solution of the following question: 

2

0

min ( ( ) )

m

i i
f

i

f x z
∈

=

−∑
F

.         (26) 

First, we consider theexistence and uniqeness of LSFA. 

Theorem 2. If },,,{},,,{ 010 mn xxxxx …… ⊂  then there 

exist a unique solution F∈*
f of (26) and a unique 

T∈*f
T  whose fixed point is

*f . 

Proof. Define an operator :mB
1+→ mRF  by 

F∈f , =fBm ))(,),(),(( 10 mxfxfxf ⋯   (27) 
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And denote FmB
 

by D . Then mB  is a linear operator 

and D  is a linear subspace of 
1+mR . The question (26) is 

represented by 

2
||ˆ||min Em

f
fB z−

∈F
,               (28) 

where 
1

10 },,,{ˆ +∈= m
m Rzzz …z  and E|||| ⋅  is the 

Euclidean norm. 

Therefore, (26) is equivalent to the following question: 

2||ˆ||min E
z

zz −
∈D

.                 (29) 

Because )||||,(
1

E
m

R ⋅+
 is a Hilbert space and D  is a 

subspace of 
1+mR , there exists a unique solution 

*z  of 

(29). If 0mB f ≡ , then from the hypothesis of the theorem 

))(,),(),(( 10 nxfxfxf ⋯ =(0,0,…,0)    (30) 

And 0)( ≡xf  by the construction of F . Therefore, mB  

is an injection and there exists a unique F∈*
f

 
such that

**
zfBm = , i.e. there exists a unique )(

~ *1*
fT

−Ψ= T∈ . 

From Theorem 2, Equation (26) is equivalent to the 

following question:  

2||ˆ||min ETm
T

fB z−
∈T

.            (31) 

Now, we consider a construction of the LSFA. 

Let Ψ  be the linear mapping defined by (9) and denote 

)0,,0,1,,0(),(
1

……=Ψ= −
iiiv ee , 1,,1 += ni … . (32) 

Then 
1

1}{ +
=

n

iiv  is a basis of F  and there exist unique

1λ ,…, R∈nλ  such that ∑
=

=
n

k

kkvf
0

* λ . For F∈gf, , 

define , Rf g< >∈  by 
0

, ( ) ( )
m

i i

k

f g f x g x
=

< >= ⋅∑ . 

We get a normal equation 

bA =α ,                  (33) 

0

( ), , , ( ), ( )
m

ij ij i j i i k i k

k

A a a v v b b b z v x
=

= =< > = =∑   (34) 

to find F∈*
f . 

Since nivi ,,1, ⋯=  are fractal functions in (34), it 

needs enormous operations. Therefore, we consider an 

algorithm for calculating the approximation of 

contractionoperator *
f

T . Wecalculateapproximately 
*f  as 

the fixed point of *
f

T . 

Now, for 0 0 1( , , , )mp x x x= … , let us denote 

1

0

+×= m

m RpX . Define an operator mT  on mX by 

1
10 ),,,(

+∈= m
m Rzzzz … , 0 0

( , ) ( , )
m

T p z p z= ɶ , 

)~,,~,~(~
10 mzzzz …= ,          (35) 

where iz~ , 1, 2, ,i m= ⋯  are defined as follows:for ix , 

there exist ( {1, , })l n∈ ⋯  and })1,,1,0{( −∈ mk …  such 

that li Ix ∈  and 1
1

)( +
− ≤≤ kilk xxux . Then  

lillkkli dxuczzsz +++= −
+ )(2/)(~ 1

1 .     (36) 

The operator mT  is given by ii cs ,  and id , 

ni ,,2,1 …= , where 1|| <is , ni ,,2,1 …=  and ic , id , 

ni ,,2,1 …= are calculated by (15), (16) and represented by 

nyyy ,,, 10 … . Let us denote zzpTm
~)),(( 20 = . 

We find a *
mT  such that  

min||ˆ
~
ˆ||||ˆ))ˆ,((|| 20 →−=− EEm zzzzpT .    (37) 

This problem is a minimization problem of a 

multi-variable function with unknown nyyy ,,, 10 … . We 

find nyyy ,,, 10 …  from this problem. Next we find the RB 

operator 
*
mT  using the method constructingthe fractal 

interpolation and its fixed point, that is the fractal 

interpolation with }},{,},,{},,{( 1100 nn yxyxyx …  

and scale parameters nsss ,,, 21 … , is our best fractal 

approximation. 

4. Estimation for Errors of the 

Approximation 

In this section, we consider a relation between mT  and 

T and estimatean error betweenthe approximation solution 

*T
f  and given data. 

For mXgpyp ∈),(),,( 00 and R∈λ , define 

),(),( 00 gpyp + , ),( 0 ypλ  and ||),(|| 0 yp as follows: 

),(:),(),,(:),(),( 00000 ypypgypgpyp λλ =+=+  (38) 

||max||:),(||
0

0 i
mi

yyp
≤≤

= .          (39) 

Lemma 3. mT
 

is a contraction operator on mX . 

Proof. For 

mXgpyp ∈),(),,( 00 , 

we get 
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1 1| | | |
2

l

i i k k k k

s
y g y y g g+ +− = + − − , 

m 0 m 0 0 0

0 i i
i

|| T (p , y) T (p , g) || || (p , y) (p , g) ||

|| (p , y g) || max | y g |,

− = −
= − = −  

1 1
(| | | |)

2

l

k k k k

s
y g y g+ +≤ − + −  

||,),(||||max 0 gypsgys iii
i

i −=−≤  

where 
1

max{| |, , | |}
n

c s s= … <1. Therefore, mT  is a 

contraction operator with contraction constant c. 

Because mX  is equivalent to 
1+mR , we identify mX

with 
1+mR  and get a diagram that shows the relation 

between T  and mT (see Fig 1). 

 

Fig. 1. Relation between T and 
mT . 

Lemma 4. Let 0

1

m

i i

x x
x x

m
−

−
− = , for mi ,,2,1 …= . Let 

T  and mT  be defined by the same ii cs , id , ni ,,2,1 …= . 

Then for Fg ∈ , we have 

0|||| →−
mXmmm TgBgBT .        (40) 

Proof. By the definitions of mB
 

and mT , we get  

0 1( ( ), ( ), , ( ))m mB g g x g x g x= … , 0 1( , , , )m m mT B g g g g= … (41) 

1

1

1

1

( ) / 2 ( ( )),

, ( ) ,

i l k k l l i

i l k l i k

g s g g p u x

x I x u x x

−
+
−

+

= + +

∈ ≤ ≤
       (42) 

and 

lllll IxxupxugsxTg ∈+= −− )),(())(()( 11
,   (43) 

))(,),(),(( 10 mm xTgxTgxTgTgB …= .   (44) 

Therefore, we have 

1

1| ( ) ( ) | | ( ) / 2 ( ( ))m m i m i l k k l l iT B g B Tg s g g p u x
−

+− = + +
1 1

( ( )) ( ( )) |l l i l l is g u x p u x
− −− − =  

1
1| (( ) / 2 ( ( ))) | 0 ( )l k k l is g g g u x m−

+= + − → → ∞ , 

which gives(40).  

If T  and mT  are defined by the same ii cs ,  and id , 

ni ,,2,1 …= , then since contraction constants of T  and 

mT  are given by ,is ni ,,2,1 …= , the elements of T  and 

mT  have the same contraction constant c. 

Theorem 3. Let T  and mT  be defined by the same ii cs ,

and id , ni ,,2,1 …= . If for mxxx ,,, 10 … , ∈− )(1
il xu

},,,{ 10 mxxx … , li Ix ∈  and {1, , }l n∈ ⋯ , then we get 

TmmTm fBTfB =  and 

||ˆˆ||
1

1
||ˆ|| zzT

c
zfB mTm −

−
≤− .       (45) 

Proof. Since Tf  is the fixed point of T, we have 

1 1
( ) ( ) ( ( )) ( ( )),T T l T l l l lf x Tf x s f u x p u x x I

− −= = ⋅ + ∈ , (46) 

and by the definitions of mB  and mT , we get 

1 1( ( )) ( ( )) ( ( ))m T i l T l i l l iB f x s f u x p u x− −= ⋅ + .   (47) 

Since  

))(,),(( 0 mTTm xfxffB …= , 

we have  

))(,),(( 0 mTmTmm xfxfTfBT …=  

and 

1 1
( ) ( ( )) ( ( ))m m T i l T l i l l iT B f s f u x p u x

− −= ⋅ + . 

Hence, we have TmmTm fBTfB =  and 

m T m T m m

m m T m m

ˆ ˆ ˆ ˆ|| B f z || || B f T z || || T z z ||

ˆ ˆ ˆ|| T B f T z || || T z z ||

− ≤ − + −
= − + −

 

||ˆˆ||||ˆ|| zzTzfBc mTm −+−≤
 

Thus ||ˆˆ||
1

1
||ˆ|| zzT

c
zfB mTm −

−
≤− . 

Lemma 5. [1] Let X be aBanach space and T a contraction 

operator on X with the contraction constant c. Let Tf  be 

the fixed point of T. If for Xf ∈ , ε<− |||| Tff , then  

)1/(|||| cffT −<− ε .              (48) 

Denote ||ˆˆ|| *
1 zzTm −=ε and 
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|||||||| ****
***

2
mm TmTmmTmTmm fTBfBTfBfBT −=−=ε . (49) 

Theorem 4. Let *T
f be the fixed point of *T  defined by 

the solution 
* *

0( , , )ny y…  of (37). Then we have 

)1/()(||ˆ|| 21* czfB
Tm −+≤− εε ,      (50) 

where c  is the contraction constant of the contraction 

operator 
*
mT . Especially, 02 =ε

 
under the conditions of 

Theorem 3. 

Proof. We caneasily see that  

||ˆ||||||||ˆ|| **** zfffBzfB
mm TTTmTm −+−≤− .   (51) 

From Lemma 4, we have * *

*|| || 0.m m mT T
T B f B f− →  

Let us denote ),,(,: 1
*

** mTmTmm pppfBfBTp …=−= , 

For ,i lx I∈
 

there exists a {0,1, , }k m∈ ⋯  such that 

1

1( )k l i kx u x x−
+≤ ≤ . Then we get 

* *

*

1

1

1 1

( ( ) ( )) / 2 ( ( ))

( ( )) ( ( ))

−
+

− −

= + +

− −
i l k k l l iT T

l l i l l iT

p s f x f x p u x

s f u x p u x
 

* * *

1

1(( ( ) ( )) / 2 ( ( )))l k k l iT T T
s f x f x f u x−

+= + − .   (52) 

From Lemma 5, we have 

)1/(||ˆ||),1/(|||| 12 *** czfcffB
mm TTTm −≤−−≤− εε , (53) 

where max {| |, 1, , }
i

c s i n= = … . 

By (51) and(53),we get(50). 

5. Examples of Calculation 

Example 1. Let P  be a data set given by 
2

{( , ) : 0, 1, ,10}i iP x z R i= ∈ = … ={(0, 3.6), (0.1, 5.1), 

(0.2, 5.6), (0.3, 6.3), (0.4, 6.0), (0.5, 5.4), (0.6, 5.6), (0.7, 5.0), 

(0.8, 4.2), (0.9, 3.2), (1, 1.7)}. 

Let 0 1 2 3 4{ , , , , } {0, 0.2, 0.5, 0.7, 1}x x x x x = , 

∆ =
0 1 2 3 4{(0, ), (0.2, ), (0.5, ), (0.7, ), (1, )}y y y y y , 

1 2 3 4

1 2 1 1
{ , , , } , , ,

3 5 6 7
S s s s s

 = =  
 

. 

Then, ]7.0,5.0[],5.0,2.0[],2.0,0[ 321 === III  and 

]1,7.0[4 =I . 

Let 
1 2 3 4

[0, 1], [0, 1], [0, 1], [0, 1]J J J J= = = = . 

By (1) and (3), we have 
1
( ) 0.2 ,u x x=

2
( ) 0.3 0.2,u x x= +

3
( ) 0.2 0.5,u x x= +

4
( ) 0.3 0.7u x x= +  and by (15) and(16),

, , 1, , 4
i i

c d i = ⋯  are given by  

ｃ={-0.666667 0y + 1y -0.333333 4y , 

0.4 0y - 1y + 2y -0.4 4y , 

0.166667 0y - 2y + 3y -0.166667 4y , 

0.142857 0y - 3y +0.857143 4y } 

d={0.666667 0y ,-0.4 0y + 1y ,-0.166667 0y + 2y ,-0.142857

0y + 3y }. 

Then, we have 0 1 2 3 4( , , , )y y y y y =(3.16738, 4.97274, 

5.05272, 4.84987, 1.66452) from the problem (37). 

Hence, we getc =(2.30631, 0.681127, 0.0476312, -2.97066), 

d =(2.11159, 3.70579, 4.52482, 4.39739). 

The attractor of IFS
2

1 2 3 4{R : , , , }w w w w , 

( )i

i

i i i

u xx
w

s y c x dy

  
=    + +   

, 1,2,3,4i = , is the graph of the 

found least squares fractal approximation(see Fig 2). 

 

Fig. 2. LSFA of a data set. The points are one of the data set. 

Example 2. Calculate LSFA of a coastline with a data set 

taken from the coastline in Fig 3. 

 

Fig. 3. The coastline. 

We take the following data set: P={(2.0, 5.82), (2.1, 5.86), 

(2.2, 5.9), (2.3, 5.92), (2.4, 5.92), (2.5, 5.92), (2.6, 6.0), (2.7, 

6.22), (2.8, 6.29), (2.9, 6.31), (3.0, 6.29), (3.1, 6.27), (3.2, 

6.39), (3.3, 6.63), (3.4, 7.15), (3.5, 7.29), (3.6, 7.47), (3.7, 
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7.49), (3.8, 7.55), (3.9, 7.59), (4.0, 7.61), (4.1, 7.54), (4.2, 

7.42), (4.3, 7.26), (4.4, 7.28), (4.5, 7.36), (4.6, 7.36), (4.7, 

7.40), (4.8, 7.40), (4.9, 7.36), (5.0, 7.32), (5.1, 7.42), (5.2, 

7.38), (5.3, 7.38), (5.4, 7.28), (5.5, 7.01), (5.6, 6.75), (5.7, 

6.54), (5.8, 6.23), (5.9, 5.52), (6.0, 5.48), (6.1, 5.44), (6.2, 

5.36), (6.3, 5.46),(6.4, 5.34), (6.5, 5.18), (6.6, 5.24), (6.7, 5.28), 

(6.8, 5.16), (6.9, 5.14), (7.0, 5.12), (7.1, 5.16), (7.2,5.12}, (7.3, 

5.10), (7.4, 5.06), (7.5, 5.1), (7.6, 5.48), (7.7, 5.82), (7.8, 5.98), 

(7.9, 5.98), (8.0, 5.84), (8.1, 5.70), (8.2, 5.62), (8.3, 5.58), (8.4, 

5.4), (8.5, 5.28), (8.6, 5.20), (8.7, 5.24), (8.8, 5.2), (8.9, 5.14), 

(9.0, 5.12), (9.1, 5.20), (9.2, 5.50), (9.3, 5.50), (9.4, 5.54), (9.5, 

5.56),(9.6, 5.42), (9.7, 5.40), (9.8, 5.6), (9.9, 5.64), (10.0, 5.68), 

(10.1, 5.64), (10.2, 5.64), (10.3, 5.60), (10.4, 5.62), (10.5, 

5.70), (10.6, 5.74), (10.7, 5.74), (10.8, 5.78),(10.9, 5.86), (11.0, 

5.88), (11.1, 5.88), (11.2, 5.70), (11.3, 5.76), (11.4, 5.84), (11.5, 

5.78), (11.6, 5.74), (11.7, 5.74), (11.8, 5.68), (11.9, 5.58), 

(12.0, 5.52)}  

 

Fig. 4. A data set of the coastline. 

Then, we have I=[2, 12],

},,,,,,,,,,{ 109876543210 xxxxxxxxxxx=∆ , ]3,2[1 =I , 

]4,3[2 =I , ]5,4[3 =I , ]6,5[4 =I , ]7,6[5 =I , ]8,7[6 =I , 

]9,8[7 =I , ]10,9[8 =I , ]11,10[9 =I , ]12,11[10 =I ,

=),,,,,,,,,,( 109876543210 yyyyyyyyyyy (5.71008, 

6.22253, 7.4376, 7.58819, 5.95495, 4.91328, 5.74059, 

5.12894, 5.59619, 5.83781, 5.6046),c= (0.0522994, 0.122562, 

0.0161142, -0.162269, -0.103113, 0.0837858, -0.0601096, 

0.0477794, 0.0252167, -0.0222661), d= (5.03448, 5.4064, 

6.83436, 7.34172, 5.59017, 4.1747, 5.2898, 4.46238, 4.97475, 

5.31133). 

The attractor of IFS 2

1 2 10{R : , , , }w w w⋯ , 

( )i

i

i i i

u xx
w

s y c x dy

   =    + +   
, 1,2, ,10i = ⋯  is the graph of the 

found least squares fractal approximation (see Fig 5). 

 

Fig. 5. The fractal approximation of the coastline. 
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