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Abstract: We present a method constructing a function which is the best approximation for given data and satisfiesthe given
self-similar condition. For this, we construct a space F of local self-similar fractal functions and show its properties. Next we
present a computational scheme constructing the best fractal approximation in this space and estimate an error of the
constructed fractal approximation. Our best fractal approximation is a fixed point of some fractal interpolation function.
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1. Introduction

Fractal approximation has been applied to model the
objects which have fractal characteristics in nature. Fractal
functions whose graphs are fractal sets have been widely
used in approximation theory, signal processing, interpolation
theory,computer graphics and so on. Hence, constructions of
fractal functions and fractal approximation have been studied
in many papers.

Constructions of fractal functions by fractal interpolation
have been introduced by many researchers. A construction of
one variable fractal interpolation functions by the iterated
function system (IFS) with a data set on R was studied in [1,
2, 14], where the constructed fractal functions were
self-similar ones. The construction was generalized in [3, 4,
17], which constructed local self-similar fractal functions.
Constructions of bivariate fractal interpolation functions
(BFIFs) have been studied in [5-11, 13, 17]. A construction
of BFIFs by fractal interpolation on R was presented in [5, 17]
and self-affine fractal interpolation functions were
constructed by IFS with a data set on a triangular domain in
[12]. Constructions of self-similar BFIFs in [9, 11] and
self-affine BFIFs in [10, 13] by IFS with a data set on a
rectangular grid were introduced. In [6], local
self-similarBFIFs were constructed by the recurrent iterated
function system(RIFS) on a rectangular grid. A construction
of local self-similar fractal interpolation functions in R" was
studied in [4].

To construct fractal interpolation we need a data set
{(x;,¥,),i=0,1,...,n} and a set of scale parameters

{s;,i=1,...,n}. The fractal property of the graph of the
interpolation function is determinated by those data. Let a
division of the interval and scale parameters be given, that is,
a fractal property of the function be given. If the number of
experimental data is more than the number of the interval
division, then we can not construct the fractal interpolation
for the data using fractal interpolation theory.

So we assume that a division of the interval and scale
parameters be given (that is, a fractal property of the function)
and study the problem constructing the best fractal
approximation for the data set {(Xx,,z;),i=0, 1,...,m},
where m >n (n is the number of the interval division).

In [15, 18], constructionsofthebest approximation of
functions by the fractal functions were presented,
respectively. Butthe continuity of the approximation was not
guaranteed then. The best fractal approximation of a
continuous function in %space was introduced in [16]. In
[7], a space of differentiable fractal interpolation functions
was constructed and it was proved that the constructed space
is the reproducing kernel Hilbert space.

We construct a space of fractal interpolation functions with
a given division of the interval and scale parameters and find
a function satisfying some approximation condition for data
{(x;,2;),i=0, 1,...,m}, with m>n in this space. We
call it a local self-similar fractal approximation. The values
of the function at nodes of division {y;,i=0, 1,...,n} are

unknown unlike interpolation function.

The rest of the article is organized as follows: Section 2
constructs a linear space JF of local self-similar fractal
functions and then a linear space 7 of contraction
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operators which is isomorphic to the constructed F .
Section 3 proves that there exists a unique contraction
operator (RB operator) in 7 corresponding to LSFAin F .
We change the problem constructing this RB operator to the
problem constructing {y;,i=0, 1,...,n} and the fixed

point of this operator is LSFA in JF of a given data set.
Section 4 estimates an error of the constructed fractal
approximation and Section 5 gives examples of calculation of
the least squares fractalapproximation of a coastline.

2. A Space of Local Self-Similar Fractal
Functions and a Space of Contractive
Operators

In this section, we construct a space of local self-similar

fractal functions and a space of contraction operators which
are isomorphic to each other.

Let
A={x,UR:i=0L---,n},
a=x,<x <..<x,=b,
I=[a, b]’ I; =[x, xi],
{s; 1]s; I<Li=12,---,n}
be given.

Letl<g<n (¢gUN),
Ji =[x Xe(k) I Xsk)y> Xe(k) Udxg,xp, e, x,}
And e(k)-s(k)=2, k=1,---,q. I; is called a region and J,
a domain. We define a mapping y:{l,...,n} - {l, ..., q},
which means that we relate every region to a domain. For each

ia{l, ..., n}, denote k = y(i) .
For i0{l, ..., n}, define a mapping u; :J; - I; by

u,, (x)=ax+b, (1)
which satisfies
U (X)) = Xim1s Ui (Xoy) =% (2)
Let f(JC(I)) be a continuous function satisfying
S@) =5 O g )+ pi iz (), *01; - (3)

where functions p;; :Jy - [;, i=1,...,n are defined

by p;(x)=c;x+d; and satisfy the following conditions:
Sif (Xgey) + Pike (X)) = F (Xi21) 4)

Sif (Xegiey) + P (eiy) = S (%) (5)

Define a space of functions satisfying the equations (4), (5)

by JF . The graph of f[OF has a local self-similarity and
we get f(x)=0 OF which corresponds to ¢; =0, d; =0,
(04, ..., n}.

Lemma 1 F is a linear subspace of dimension #n+1 of
c{).

Proof. For f, fO0F and AOR, we have
S =5; Of (g (0)) + prg (g (X))
o) =5 O (i () + By (g (x)), x0O1,. (6)

Hence

(f+ D) =5, Q1+ O (x) +H(poy + P, (), x0O1;,(7)
AN)x) = 53 LAy (X)) + (A, )y (x)) s x01;.(8)

Thus f+]7D}" and AfOF.
Because for fOF, (f(x), f(x)), ..., f(x,)OR"!

is uniquely determined, a mapping W:F — R"*!is defined
by

W) =(f(xp), f(x1)soons f(x,))- )

And for (y,, ¥y, ..., ¥,) JR™!, there exists a unique
SUOF suchthat f(x;)=y;,i=1 ..., n.

In fact, the existence and uniquenssof f areensured by

the existence and uniquenss of the recurrent fractal
interpolation function ([3]).

This shows that the mapping W:F _ R"*! is a bijection.
We can easily check that the mapping W is linear. Hence
F and R"*! areisomorphic. A basis of F is

wle), e =(0,...,1,0,...,0), i=L...,n+1. (10)

The space F is a Banach space with the norm || O, .

Foray =¥y, V1> --e» yn)IZIR”H, define a function space
F, by

F,={0cd): f(x)=y;, i=1...,n}. (11)
Then (F,, ||l ) is a complete space.
For fUF,,define a function 7,/ :1 - R by
_ T, -
(T, @) =5 O g () + i (i (0), 201, (12)
T, T, T, . .
where  p;i(x)=c;jx+d;; satisfies the following
conditions:
(T, /) xi=1) = Yiers (L) = i (13)
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ie.
Ty — Tv —_
$iVsy T Pk Xsiy) = Viets SiVetiy Pk (Keiy) = yi- (14)
By the seconditions, clT}C and d[T;C' are uniquely givenby

C~Ti _ i =2 =81 Wey = Vi) ’

(15)

Xe(k) ~ Xs(k)

d.T;t’, _ Yim1¥e(k) ™ ViXs(k) +Si(xs(k)ye(k) _ys(k)xe(k)) .(16)

1,

Xe(k) ~ Xs(k)

Therefore, for a ¥ =(¥g, V1» ..r ¥,) DR™, we get a

unique operator Ty. And because T v f is continuous by
(12), T,f0F, I,:F, -F, is
defined by (12). It is easy to verify that the operator 7' v

Thustheoperator

isacontraction with respect to ||, . According to the

fixed-point theorem in a complete space, there exists a
unique fr [JF, such that

(f}y(xo)a fTv( xl)’ Ty ny(xn)):(yoa Yis s y,,) (17)

Let 7 betheset of such operators. Define a mapping
®:R"™ L Toyd(y) =7, 07 . Then the mapping ® is

a bijection.
Lemma 2. T is alinear space of dimensionn+1.

Proof. For Ty, T,, 0T and AOR, define 7y, *7y on
f}’ﬁ')’z by fD]:yl"’yz’

(T, +T, )N =5 D@ @)+ (o +p ) @), 01 (18)

and AT, on Fj, by

FOF . OT,)(N@=s T )+ w7 ().
xU1, (19)

i=1, ..., n
Note that we omit a subscript k after this because the

domain and region are all fixed.
It is that (7}, +7, ) fUF, 4,

(AT, )?D‘Fﬂyl . Therefore, 7\, +7, U7 and AT, UT,

i.e. the linear operations are defined in the set 7 . It is easy
to prove that the set 7 is a linear space with respect to the
linear operations.

clear and

The mapping ®:R™ L T is linear. In fact, because
for

s yl,n)’
, yz,”)DRrH-l

Y = ()’1,0’ Y1

Y2 =205 Yaus
and AOR, by (15), (16)

p?;’l+YZ (.X) = CT)’I*YZ x +d?;’l+YZ = (C?;’l +C?;’2 )x + (dTYI +d§’2 )
1 1 1 1 1 1 1 (20)

=6 xHd P+ = p ()4 p (),
T, Ty Ty T, T, T,
Pl )=k = M+ d ) = Ap] () 2D

and we get

(@(y; +y2))(N)x) = (P(y)) + Py )))(x)
(@AY NNx) =A@y D)) -

(22)

(23)

Hence, 7 and R"™ are isomorphic, which means that
the dimension of 7 isn+l.

By the 0,0, ---,00)0R""
correspondedstothe operator 7' defined by

(T)(x) =s; Of (u; " (x)), xO1;,

isomorphic  relation,

24

whose fixed pointis f(x)=0.

Theorem 1. Let F and 7 be the linear spaces
constructed above. Then they are isomorphic.
Proof. This follows from Lemmas 1 and 2.

Denote the isomorphism of F to7 by W . Note that for
fOF, the fixed point of T with P(f)=T is f.

3. Construction of LSFA of a Data Set

In this section, we prove that there exists the least squares
fractal approximation f in F of a data setand present an
algorithm for finding f by calculating approximately the
contraction operator7in 7  corresponding to f-

Let P be adata set given by

P={(X,z):i=0,1,.., m,

i’ 1

(25)

Xy = Xg, X, =X,)

(x0<xl<...<x m

where m>n

An f " is called the least squares fractal approximation
(LSFA) if f " is a solution of the following question:
(26)

r}amigg(f@)—?i)z :

First, we consider theexistence and unigeness of LSFA.
Theorem 2. If{xy, X, ..., x,} 0 {X, ..., X,,,}, then there

exist a unique solution f "OF of (26) and a unique

T,.OT whose fixed point is 7.
Proof. Define an operator B,, : 7 — R™*' by

SOF, By f = (f (X)), f(X), -+ (X)) (27)
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And denote B,,F by D.Then B, isa linear operator

and 9P is a linear subspace of R™! The question (26) is
represented by

min|| B, f-2|%, 28
min|| B,/ =} (3)

where 2=1{Zg, Z|, ..., Z,, ) OR™" and ||[||, is the

Euclidean norm.
Therefore, (26) is equivalent to the following question:

. )
min||z-z||%. 29
min|| 22| 29)

Because (R™", |0lz) is a Hilbert space and D is a

subspace of R™! | there exists a unique solution z of
(29).1f B, f =0, then from the hypothesis of the theorem

(f(x0)9 f('xl)’ Tty f(xn)) :(0705"'50) (30)

And f(x) =0 by the construction of F . Therefore, B,
is an injection and there exists a unique f L such that

Bmf* =z, ie. there exists a unique 7 = qJ_l(f*) o7 .
From Theorem 2, Equation (26) is equivalent to the
following question:

€2))

. A2
min|| B -Z||%.
min|| B,, /7 =2 I3

Now, we consider a construction of the LSFA.
Let W be the linear mapping defined by (9) and denote

Vi = qJ_l(e[)ﬂ e[ =(07 (ERE] 15 09 [ERE) 0) s i=1’ T n+l . (32)
Then {v,}"*' is a basis of F and there exist unique

A,..oA, OR such that f~ ZZAkvk . For fgOF,
k=0

define < f, g>0OR by <f,g>=) fZ)ZE).
k=0
We get a normal equation

Aa =b, 33)

A=(ay), a; =<v,,v,> b=(b), b, =Y (X)) (34)
k=0

tofind /" OF.
Since v;,i=1,---,n are fractal functions in (34), it

needs enormous operations. Therefore, we consider an
algorithm  for  calculating the  approximation of

*
contractionoperator 1’ P Wecalculateapproximately [ as

the fixed point of T’ EE

Now, for p,=(X,, X, ..., X,), let us denote

X, =p,XR"". Define an operator 7, on X, by

m

z =(209 Zly ceey Zm)DRm+1’ T;n(pO’ Z):(pO’ 2)9
(35)

Z=(Z0, 21 s Zm) s

where Z;, i=1,2,---,m are defined as follows:for X, ,
there exist /(L1{1,---,n}) and £({{0,1,...,m—1}) such

that X, 07, and X; <u; ' (X,)< X, . Then

~ _ -1,—

Z,=85;(zp Hz)/ 24 cuy (X)) +d,. (36)

The operator 7, is given by s;,¢; and d; ,
i=L2,..,n, where | s; <1, i=1,2,...,n and ¢ ,d;,

i=1,2, ..., nare calculated by (15), (16) and represented by
Yo» Vs +-+s Vu . Letus denote (T, (py,2)), =7 .
We find a Tr: such that

(T (Po» D)2 = 2l =2 —Zllp > min. (37

This problem is a minimization problem of a
multi-variable function with unknown y,, y;,..., y, . We

find yy, »,..., v, from this problem. Next we find the RB

operator T, .

» using the method constructingthe fractal

its fixed point, that
{(an y0}9 {xl’ yl}s IR {xna yn}}
,S,, is our best fractal

interpolation and is the fractal

interpolation ~ with
and scale parameters s, S5, ...
approximation.

4. Estimation for Errors of the
Approximation

In this section, we consider a relation between 7, and
T and estimatean error betweenthe approximation solution
Jf,- and given data.

For  (pg, ¥), (py,g)0X,, and AOR , define

(po> ¥)+(po> &)» A(pg, y) and|[(py, ¥) || as follows:
(Po> ¥)+(Po> &)= (P> ¥+ 8), APy, ¥) = (py> Ay) (38)

(P> ¥)I:= max | y; |. (39)
0<ism

Lemma 3. T, isa contraction operatoron X, .
Proof. For

(Po> ¥), (P, 9O X, ,

we get
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— — s
|V, — & I—Eka Vi ~& ~ &k |,

|| Tm(p0> Y) _Tm (pon g) ||=|| (p0> s’) _(pong) ||
=l1(po. ¥~ 8) = max[y; ~g; .

s
SEl(|yk =& | Viw — &t D
ss;max|y; =g [=s; [ (po, y=8) Il

where ¢ =max{|s, |, ..., |s,|} <l. Therefore, T, is a
contraction operator with contraction constant c.

Because X, is equivalent to R”*', we identify X,

with R™' and get a diagram that shows the relation
between 7 and T, (see Fig1).

R m+1 R m+1

Fig. 1. Relation between T and T, .

xm - 'xO

Lemma 4. Let X, —X,_, = , fori=1,2,...,m. Let

T and 7, bedefined by thesame s;,¢; d;, i=12,...,n.

Then for g OF, we have
17Bng = BuTglx, - 0. (40)
Proof. By the definitions of B, and T, , we get

B,g=(g(x), g%, ... €(X,)), T,B,8=(8 &> g,)(41)

g =s/(g, +gk+1)/2+pl(ul_l(fi))7

x 01, % <u'(X)<X,,,, 58

and
Tg(x) =s5,8(u; (X)) + py () (), xOI;,  (43)
B, Tg = (Tg(%). Tg(%). ... Te(%,)).  (44)

Therefore, we have

(7,,B,8), =(B,Tg), |7 5,(g, + &)/ 2+ p (] (X))
=5,8u (X))~ p (] () =

=l 5/((gk *+ &en) /278 G|~ 0 (m — ),
which gives(40).

If T and T, are defined by the same s,,¢; and d,,
i=1,2,...,n, then since contraction constants of 7 and
T, aregivenby s,,7=1,2,..., n, the clements of 7 and
T,, have the same contraction constant c.

Theorem 3. Let T and T, be defined by the same s,, ¢;
Ty up (X0
{x¢, X1, .. x; 01, and/0O{l,---,n}, then we get
B,fr=T1,B, fr and

and d;, i=L2,...,n.If for Xy, X, ...

s X s

aie | A
1 Bonfr =2l T T2 =21 (45)

Proof. Since fT is the fixed point of T, we have

fr () =Tf(x) =5, UT(“I_I(X))-FPI(MI_I(X))’ x[01,,(46)

and by the definitions of B,, and T, , we get

(B, fr (), = s Uy @ G+ py ' (%) . (47)
Since
By fr =(fr (%) s f (X))
we have
T, B, fr =Ty (fr (%) oo f(X,)
and

(T,B, 1), =s, Uy (”l_l(fi)) D (”l_l(fi)) -
Hence, we have B, fr =T,,B,, fr and

[ Bufr =2l By fr =Tz [ +[| Tz = 2|

= ToBunfr = T2 [+ Tz~ 2|

<c|| B, fy 2+ T2~ £|

A 1 A A
Thus |8, /7 =2 IS 717,221

Lemma 5. [1] Let X be aBanach space and T a contraction
operator on X with the contraction constant c. Let f, be

the fixed point of T. If for fOX, || f—Tf ||< &€, then
I fr=fl<e/ld=c). (43)

Denote & =|| T;é -z || and
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& =N T, By e = By 121 T By S e = BT fre 1. (49)

Theorem 4. Let f..be the fixed point of T " defined by

the solution (y,, ..., »,) of(37). Then we have

1B, S 2l (& +&)/(1-¢), (50)

where ¢ is the contraction constant of the contraction
% . o,
operator 7T, . Especially, £ =0 under the conditions of

Theorem 3.
Proof. We caneasily see that

1By fre = 2|1 By Sy = St

+ £ =2

D

From Lemma 4, we have || T;Bme* -B,f.1-0.

Let us denote p:=Tm*Bme* =B, [ P=(P1s s Pi) s
For x,[11,, there exists a kJ{0,1,---,m} such that
X, <u;'(X)<X,,, - Then we get

Pi :S/(fT* (fk)+fT*()?k+l))/2+pl(ul_l()?i))
=5,/ ' &) = pi(] (X))
=5,((f- B+ [ B/ 2= £ (R)) . (52)

From Lemma 5, we have

|| Bme* _fT;,

<& /1=0) | f ~2< & /1=0), (53)
where c¢=max {|s,|, i=1, ..., n}.
By (51) and(53),we get(50).

5. Examples of Calculation

Example 1. Let P be a data set given by
P={(X, z)OR*:i=0, 1, ...,10} ={(0, 3.6), (0.1, 5.1),
(0.2,5.6), (0.3, 6.3), (0.4, 6.0), (0.5, 5.4, (0.6, 5.6), (0.7, 5.0),
(0.8,4.2),(0.9,3.2), (1, 1.7)}.

Let {x,, X, X,,X;,X,}=10,0.2,0.5,0.7, 1},

A={(0, %), (0.2, 1), (0.5, ,), (0.7, y;), (L, »,)} .

S ={S15 S27 S3a S4} ={_a ST _}

Then, 1, =[0, 0.2], I, =[0.2, 0.5], I3 =[0.5, 0.7]
1, =[0.7,1].

Let J, =[0,1], J, =[0, 1], J, =[O0, 1], J, =[O0, 1].

By (1) and (3), we have u,(x) =0.2x, u,(x)=0.3x+0.2,
uy(x)=02x+0.5, u,(x)=0.3x+0.7 and by (15) and(16),

and

¢,,d, i=1---,4 are given by

¢ ={-0.666667 o+ y,-0.333333 1,
04y,-nty,-04y,,

0.166667 ¥, - ¥, + V3 -0.166667 ¥, ,
0.142857 y, - V; +0.857143 , }

d={0.666667 Yy -0.4 Yy + , 0.166667 Yy + ¥, -0.142857
Yot Vst

Then, we have (V,, V>V, V3> V,) =(3.16738, 4.97274,

5.05272,4.84987, 1.66452) from the problem (37).
Hence, we getc =(2.30631, 0.681127,0.0476312, -2.97066),
d=(2.11159, 3.70579, 4.52482, 4.39739).

The attractor of IFS {Rz:wl,w2,w3,w4} ,

X u;(x)
w, = , 1=1,2,3,4,is the graph of the
y Siy + cix + dl'

found least squares fractal approximation(see Fig 2).

O.IZ 0?4 0.16 0.8 v

Fig. 2. LSFA of a data set. The points are one of the data set.

Example 2. Calculate LSFA of a coastline with a data set
taken from the coastline in Fig 3.

10

9

2 4 6 8 10 12

Fig. 3. The coastline.

We take the following data set: P={(2.0, 5.82), (2.1, 5.86),
(2.2,5.9),(2.3,5.92), (2.4, 5.92), (2.5, 5.92), (2.6, 6.0), (2.7,
6.22), (2.8, 6.29), (2.9, 6.31), (3.0, 6.29), (3.1, 6.27), (3.2,
6.39), (3.3, 6.63), (3.4, 7.15), (3.5, 7.29), (3.6, 7.47), (3.7,
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7.49), (3.8, 7.55), (3.9, 7.59), (4.0,
7.42), (4.3, 7.26), (4.4, 7.28), (4.5,
7.40), (4.8, 7.40), (4.9, 7.36), (5.0, 7.32), (5.1, 7.42), (5.2,
7.38), (5.3, 7.38), (5.4, 7.28), (5.5, 7.01), (5.6, 6.75), (5.7,
6.54), (5.8, 6.23), (5.9, 5.52), (6.0, 5.48), (6.1, 5.44), (6.2,
5.36), (6.3, 5.46),(6.4, 5.34), (6.5, 5.18), (6.6, 5.24), (6.7, 5.28),
(6.8,5.16), (6.9, 5.14), (7.0, 5.12), (7.1, 5.16), (7.2,5.12}, (7.3,
5.10), (7.4, 5.06), (7.5, 5.1), (7.6, 5.48), (7.7, 5.82), (7.8, 5.98),
(7.9,5.98), (8.0, 5.84), (8.1, 5.70), (8.2, 5.62), (8.3, 5.58), (8.4,
5.4), (8.5, 5.28), (8.6, 5.20), (8.7, 5.24), (8.8, 5.2), (8.9, 5.14),
(9.0,5.12), (9.1, 5.20), (9.2, 5.50), (9.3, 5.50), (9.4, 5.54), (9.5,
5.56),(9.6, 5.42), (9.7, 5.40), (9.8, 5.6), (9.9, 5.64), (10.0, 5.68),
(10.1, 5.64), (10.2, 5.64), (10.3, 5.60), (10.4, 5.62), (10.5,
5.70), (10.6, 5.74), (10.7, 5.74), (10.8, 5.78),(10.9, 5.86), (11.0,
5.88), (11.1,5.88), (11.2, 5.70), (11.3, 5.76), (11.4, 5.84), (11.5,
5.78), (11.6, 5.74), (11.7, 5.74), (11.8, 5.68), (11.9, 5.58),
(12.0, 5.52)}

7.61), (4.1, 7.54), (4.2,
7.36), (4.6, 7.36), (4.7,

10

Fig. 4. A data set of the coastline.

Then, we have I=[2, 12],

AZ{XOy xla x29 X3, X4, xSs xﬁy x75 x85 X9, xlO} s 11:[2’ 3] }
I, =[3,4], 13=[4,5], I, =[5,6], Is=[6,7], Is=[7.8],
1, =[8,9] , Ig=[9,10] , [Iy=[10,11] , [I;,=[1112]

(Yos V1> Y25 V35 Yas Vss Yes V75 Vss Vo Yig) = (5.71008,
6.22253, 7.4376, 7.58819, 5.95495, 4.91328, 5.74059,
5.12894, 5.59619, 5.83781, 5.6046),c= (0.0522994, 0.122562,
0.0161142, -0.162269, -0.103113, 0.0837858, -0.0601096,
0.0477794, 0.0252167, -0.0222661), d= (5.03448, 5.4064,
6.83436,7.34172,5.59017,4.1747,5.2898, 4.46238, 4.97475,
5.31133).

The

E

attractor ~ of  IFS  {R®:w,w,,--,w,}

W,(XJ:( u,(x) J’ i=1,2,---,10 is the graph of the
y Siy+ciX+di

found least squares fractal approximation (see Fig 5).

2 4 6 8 10 12

Fig. 5. The fractal approximation of the coastline.
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