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Abstract: A limiting transition is performed in some systems of singularly perturbed differential equations in the case of 

change of stability. This phenomenon is found in laser physics, chemical kinetics, plastic deformation, biophysics, in the 

modified Zieglers system, and in the simulation of upland forest fires, safe combustion with maximum temperature, etc. Cases 

when such equations have explicit solutions are extremely rare. For sufficiently small values of the parameter to determine the 

behavior of the solution a daunting task even for super computers, but it is possible with the asymptotic series. Therefore, 

studies of singularly perturbed problems when the condition of asymptotic stability is relevant. 

Keywords: Singularly Perturbed, Cauchy Problem, Asymptotic Stability, Limited Equation, Solutions Asymptotic,  

Analytic Continue, Turning Point 

 

1. Introduction and Preliminaries 

The main aim of the study is to: Prove the asymptotic 

proximity of solutions of a singularly perturbed problem to 

the solution of the limit equation, in the case of change of 

stability. In a specific example is to prove that the whole 

range of unstable solutions of the Cauchy problem for a 

system of singularly perturbed ordinary differential equations 

with a turning point is asymptotically close to a solution of 

the limit system of equations. See the power of the method of 

analytic continuation. 

The methods used in the study: conversion method, 

method of successive approximations, analytic continuation, 

stationary phase method. 

The results: A new class of singularly perturbed ordinary 

differential equations with a turning point is identified. In this 

class the stability of the solution is stored in an unstable 

range. Passing to the limit in the case of change of stability is 

proved. We prove the asymptotic proximity of solutions of a 

singularly perturbed problem to the solution of the reduced 

equation on the interval [t0,+∞). Phenomenon, the delay of 

loss of stability in singularly perturbed systems, is found only 

in analytical systems. 

In applications macrokinetics [1], plastic deformation [2], 

a modified system of the Ziegler [2], safe combustion with a 

maximum temperature [4-6] are common differential 

equations with a small parameter in the highest derivatives. 

The basis of such equations laid A. N. Tikhonov. He was the 

first in 1952 to formulate sufficient conditions under which 

the solutions are asymptotically close singularly perturbed 

problem and the limit equation [7]. Proven A. N. Tikhonov's 

theorem is called the "theorem on passing to the limit." 

Among the conditions in this theorem there is a condition 

that is associated with the asymptotic stability of the rest 

point, called the adjoint system. Researchers interested in the 

question, what will be the asymptotic behavior of solutions of 

the perturbed problem in violation of the conditions of 

stability. 

In 1973, Shishkov M. A. for the first time in the particular 

example proved the possibility of passing to the limit, and if 

the condition of asymptotic stability [8]. The development of 

this approach is reflected in the papers [9-16]. 

In publications [12-15], the delay time of flow of the 

integral curves in violation of the conditions of asymptotic 

stability of course. In [16] first proved that the delay time of 

the integral curves of the flow when the condition of 

asymptotic stability can be endless. Continuing research in 

this area, we found a class of equations in which the interval 
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of instability as it "disappears", i.e. throughout this unstable 

range occurs limit. In this paper, we present a concrete 

example of this class of equations, and prove the asymptotic 

proximity of solutions of a singularly perturbed problem to 

the solution of the limit equation on the interval [–a/2, +∞). 

2. Statement of the Problem 

Consider the problem 

εx′(t,ε)=A(t)x(t,ε)+εα
f(t),           (1) 

x(t0,ε)=x
0
(ε), ||x

0
(ε)||<cε,           (2) 

where A(t) is a square matrix function of second order with 

elements ajm(t), f(t)=(f1(t) f2(t))
T
, ajm(t), fm(t) j, m=1, 2 are 

analytic functions in D (D is defined below), 1/2 <α∈R, x0(ε) 

=(x1
0
(ε) x2

0
(ε))

T
, t∈[t0, + ∞), t∈R, c> 0 is arbitrarily const. 

Condition 1. Let A(t) is matrix function of the second order, 

has a complex conjugate eigenvalues λ1,2(t)=(a–t)(t±ib), 0<a, 

3 b≥a, t0=–a/2.  

The system (1) can be considered as a perturbation in 

relation to the degenerate system 

A(t)x*(t)=0.             (3) 

Degenerate system (3) has the trivial solution x*(t)=0. 

For the eigenvalues λ1,2(t) function A(t) satisfies the 

inequalities: 

Re(λ1,2(t))=–t(t–a)<0, for t∈(–∞,0)∪(a, +∞); 

Re(λ1,2(t))=–t(t–a)>0 for t∈(0,a); 

Re (λ1,2(t))=–t(t–a)=0 for t=0, t=a. 

In the terminology of W. Wasow or M. V. Fedoryuk point t 

=a is called a turning point, as λ1(a)=λ2(a). 

Definition 1. The interval where the inequality 

Re(λ1,2(t))<0, we call sustainable. A interval, for which the 

condition Re(λ1,2(t))>0, is called unstable interval. 

Definition 2. The point t=t* is called the transition point, if 

the real part of the eigenvalues changes sign when passing 

through this point. 

In the present case t∈(–∞,0)∪(a, +∞) is steady interval; 

t∈(0,a) is intermittent interval; t=0, t=a is transition point. 

In the stable range of all the conditions of Theorem A. N. 

Tikhonov passing to the limit, and therefore the equality: 

x(t,ε)=x*(t), t∈[t0,0), 

i.e., solution of the perturbed problem is asymptotically close 

to the solution of the limiting equation. As noted above, in 

the unstable range remains an open question. 

The novelty of this work is to prove the equality 

x(t,ε)=x*(t)=0 for t∈[t0, +∞)⊃[0, a]. 

To bring the A(t) diagonalized perform the following 

conversion B
–1

(t)A(t)B(t)=Λ(t), where  

( ) ( ) ( )
( ) ( )

11 12

21 22

a t a t
A t

a t a t

 
 =
 
 

, В(t)=

( ) ( ) ( ) ( )
( ) ( )

1 22 2 22

21 21

t a t t a t

a t a t

λ λ − −
  
 

, Λ(t)=diag(λ1(t), λ2(t)). 

Suppose that in D the inequality det B(t)≠0. This condition 

is satisfied, for example if 

A(t)=
( ) ( )
( ) ( )

t t a b t a

b t a t t a

 − − −
 
 − − − − 

, then B(t)=
1 1

i i− 
 
 

, det 

B(t)=2i≠0. 

Equation (1) using the transformation x(t,ε)=B(t)y(t,ε) 

brought to the form 

εу′(t,ε)=Λ(t)у(t,ε)+εα
h(t)+εg(t)у(t,ε),        (4) 

y(t0,ε)=y
0
(ε), ||y

0
(ε)||=O(ε),           (5) 

where h(t)=B
–1

(t)f(t), g(t)=–B
–1

(t)B'(t). 

The Cauchy problem for differential equations (4)-(5) we 

replace the integral equation: 

( ) ( ) ( ) ( ) ( ) ( )( )∫ ττε+εττετ+ε=ε −α
t

t

dhygtEyttEty

0

10

0
,,,,,,  (6) 

where ( ) ( ) .)/exp(,, ∫
τ

ε=ετ
t

dssΛtE  

To solve the integral equation (6) apply the method of 

successive approximations: 

Let у0(t,ε)≡0, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ττε+εττετ+εε=ε −α
−

t

t

nn dhygtEyttEty

0

1

1

0

0 ,,,,,,  

then 

( ) ( ) ( ) ( ) ( )∫ ττετε+εε=ε −α
t

t

dhtEyttEty

0

,,,,, 10

01 , 

( ) ( ) ( ) ( ) ( )∫ τεττετ+ε=ε −

t

t

nn
dygtEtyty

0

,,,,,
11 . 

3. Main Results 

Estimation successive approximations. In assessing the 

successive approximations {yn(t,ε)} real variable t, we 

assume complex variable t=t1+it2, t1, t2∈R, i= 1− . 

( ) ( ) ( ) ( )∫
+

−α τ+τττεττε+εε=
21

0

).(,,,,,,,,
21212121

10

0211

itt

t

idhttEytttEy

( ) ( ) ( )∫
+

− τ+τεττττεττ+=
21

0

).(,,,,,,,
212112121211

itt

t

nn
idygttEyy  
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Let yn(t,ε)=(y1,n(t,ε) y2,n(t,ε))
T
, h(t)=(h1(t) h2(t))

T
, g(t)={gjm(t)}, 

j, m=1, 2. 

Then 

( )
( )

( )
( ) ( )

( )
1 2 1 2 1 21 2

0

, , ,

1

,1 1 2 1 2,
j j ju t t u t t ut it

j j

t

y O e h e d i

τ τ
αε εε ε τ τ τ τ

−+
−= + +∫ , 

( )
( ) ( )

( )
1 2 1 21 2

0

, ,

, ,1 1 1, 1 2 2, 1 1 2

j ju t t ut it

j m j j m j m

t

y y g y g y e d i

τ τ
ε τ τ
−+

− −= + + +∫  

j=1,2; m>1, ( ) ( )
1 2

0

1 2,

t it

j j

t

u t t s dsλ
+

= ∫ . 

Asymptotic estimates for the functions yj,m(t1,t2,ε) j =1, 2, 

m∈N calculate in D: D=D1∪D2, where D1={(t1,t2): 

Re(uj(t1,t2))≤0, t0≤t1≤a, j=1,2}, 

D2={(t1,0): a<t1<+∞}. 

Note that [t0, + ∞) ⊂D at t2≠0 and [t0, + ∞)=D at t2 =0. 

Consider now the function 

( ) ( )
1 2

0

1 2,

t it

j j

t

u t t s dsλ
+

= ∫ , j=1,2, t0= –a/2: 

u1(t1,t2)=u11(t1,t2)+iu12(t1,t2), u2(t1,t2)=u21(t1,t2)+iu22(t1,t2), 

where u11(t1,t2)= –(t1–a)
3
/3–a(t1–a)

2
/2+(t1–a/2)

2

2t –bt2(t1–a), 

u12(t1,t2)=
3

2t /3–
2

2t b/2 –(t1–a)
2
(b/2–t2)–at2(t1–a), 

u21(t1,t2)=u11(t1,–t2), u22(t1,t2)=u12(t1,–t2). 

Getting Started to the construction area D1. Since 

u11(t1,t2)=u21(t1,–t2), so that lines u11(t1,t2)=0 and u21(t1,t2)=0 

are symmetric about the real axis. 

From the equation u11(t1,t2)=0, we have: 

(t1–a/2)
2

2t –k(t1–a)t2–(t1–a)
3
/3–a(t1–a)

2
/2=0, 

or  ((t1–a/2)t2–ϕ1(t1,a,b)/2)(t2–ϕ2(t1,a,b))=0, 

where ϕ1(t1,a,b)=(t1–a)(b+ 2 2 2

1/ 3 4 / 3b a t− + ), 

ϕ2(t1,a,b)=(t1–a)(b– 2 2 2

1/ 3 4 / 3b a t− + )/(2t1–a), 

By the condition 1, holds 0<a, b≥a/ 3 , so b
2
–a

2
/3+4

2

1t

/3≥0. Separately consider the cases: 1) b>a/ 3 ; 2) b=a/ 3 . 

I. Let b>a/ 3 , whereas smooth line ϕ2(t1,a,b) connecting 

point (t0, 0) and (a, 0). 

Construct graphs of implicit functions u11(t1,t2)=0 and 

u21(t1,t2)=0 using the package Maple: 

 

Figure 1. Case 3 b>a, for a=1, b=2. 

 

Figure 2. Case 3 b=a, for a=1. 

In the neighborhood of the point (a,0) function u11(t1,t2) 

(u21(t1,t2)) divides the plane into four equal sectors in which 

signs of the functions u11(t1,t2), u21(t1,t2) alternates. Both 

functions are negative in the sector, which contains the real 

axis Ot1. From the intersection of the domains u11(t1,t2)≤0 and 

u21(t1,t2)≤0 ranging t0≤t1≤a we obtain the desired region D1. 

Consequently, the boundary area D1 (figure 1) is composed 

of smooth line t2=–ϕ2(t1,a,b) and t2=ϕ2(t1,a,b), connecting 

points (t0,0) and (a, 0). 

We proceed to the estimation the functions yj,1(t1,t2,ε) in D. 

For this we first compute the integrals: 

( ) ( )
( ) ( )

( )
1 2 1 2, ,

1 2 1 2 1 2, , ,
j j

j

u t t u

j j
L

J t t h e d i

τ τ
εε τ τ τ τ
−

= +∫ , j=1,2. 

If (t1,t2)∈D1, then J1(t1,t2,ε) integration path L1=L11∪L12, 

where L11 is the line τ2=ϕ2(τ1,a,b) at t0≤τ1≤t1; L12 is the line 

τ1=t1 when 
*

2t ≥τ2≥t2, 
*

2t =ϕ2(t1,a,b). Symmetrical line L2 to 

L1 with respect to the real axis will determine the path of 

integration for J2(t1,t2,ε). 

We proceed to the calculation of integrals: 

( ) ( ) ( )1 2 1 1 2 2 1 2, , , , , ,j j jJ t t j t t j t tε ε ε= + , j=1,2 
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where ( ) ( )( ) ( )
1

1 1 2 1

0

, , /

11 1 2 1 1 2 1 1, , , , ,

t

u t t

t

j t t h a k e d
τ εε τ φ τ τ= ∫

ɶɶ , 

( )( ) ( )( ) ( )( )1 1 2 1 1 1 2 1 2 1, , , , , , 1 ' , ,h a b h a b i a bτ φ τ τ φ τ φ τ= +ɶ , 

( ) ( ) ( )( )1 1 2 1 1 1 2 1 1 2 1, , , , , ,u t t u t t u a bτ τ φ τ= −ɶ ; 

( ) ( ) ( ) ( )( )2

1 1 2 1 1 2

*
2

, , /

12 1 2 1 1 2 2
, , ,

t
u t t u t

t

j t t i h t e d
τ εε τ τ−= ∫ ; 

( ) ( )( ) ( )
1

2 1 2 1

0

, , /

21 1 2 2 1 2 1 1, , , , ,

t

u t t

t

j t t h a k e d
τ εε τ φ τ τ= ∫

ɶɶ , 

( )( ) ( )( ) ( )( )2 1 2 1 2 1 2 1 2 1, , , , , , 1 ' , ,h a b h a b i a bτ φ τ τ φ τ φ τ= − −ɶ , 

( ) ( ) ( )( )2 1 2 1 2 1 2 2 1 2 1, , , , , ,u t t u t t u a bτ τ φ τ= − −ɶ ; 

( ) ( ) ( ) ( )( )2

2 1 2 2 1 2

*
2

, , /

22 1 2 2 1 2 2
, , ,

t
u t t u t

t

j t t i h t e d
τ εε τ τ−

−

= ∫ ; 

u1(τ1,ϕ2(τ1,a,b))=i(τ1–a)
2
p1(τ1,a,b), 

p1(τ1,a,b)=
( )2

2 2

13

9

2162

b a a
O

b
τ

+   + −  
  

; 

Re(u1(t1,t2)–u1(t1,τ2))=(t2–τ2)((t1–a/2)(t2+τ2)–b(t1–a))= 

=(t2–τ2)((2t1–a)ζ+b(a–t1))<0, ζ∈(t2,τ2); 

u2(τ1,–ϕ2(τ1,a,b))=u1(τ1,ϕ2(τ1,a,b))=i(τ1–a)
2
p1(τ1,a,b); 

Re(u2(t1,t2)–u2(t1,τ2))=(t2–τ2)((t1–a/2)(t2+τ2)+b(t1–a))= 

=(t2–τ2)((2t1–a)ζ1–b(a–t1))<0, ζ1∈(τ2, t2). 

Applying the method of stationary phase [17] for Jj(t1,t2,ε) 

in D we obtain the following asymptotic estimate: 

J1(t1,t2,ε)~O( ε )H1(a)+O(ε), 

J2(t1,t2,ε)~O( ε )H2(a)+O(ε), 

where H1(t1)=h1(t1, ϕ2(t1,a,b))(1+
( )2 1

1

, ,t a b

t

φ∂
∂

), 

H2(t1)=h2(t1, –ϕ2(t1,a,b))(1–
( )2 1

1

, ,t a b

t

φ∂
∂

). 

From here 

J1(t1,t2,ε)~O( ε ), J2(t1,t2,ε)~O( ε )       (7) 

If (t1,t2)∈D2, then L1=L11∪L12, where L11 is the line 

τ2=ϕ2(τ1,a,k) with t0≤τ1≤a; L12 is the line τ2=0 for a≤τ1≤t1. 

Similarly, the symmetric line L2 to L1 with respect to the real 

axis is obtained by integrating for J2(t1,t2,ε). We have: 

( ) ( ) ( )1 2 1 1 2 2 1, , , , , 0,j j jJ t t j t t j tε ε ε= +ɶ ɶ

, j=1,2 

where ( ) ( )( ) ( )1 1 2 1

0

, , /

11 1 2 1 1 2 1 1, , , , ,

a
u t t

t

j t t h a b e d
τ εε τ φ τ τ= ∫

ɶɶɶ ; 

( ) ( ) ( ) ( )( )1

1 1 1 1,0 ,0 /

12 1 1 1 1, 0, ,0

t

u t u

a

j t h e d
τ εε τ τ−= ∫ɶ ; 

( ) ( )( ) ( )2 1 2 1

0

, , /

21 1 2 2 1 2 1 1, , , , ,

a
u t t

t

j t t h a b e d
τ εε τ φ τ τ= ∫

ɶɶ ; 

( ) ( ) ( ) ( )( )1

2 1 2 1,0 ,0 /

22 1 2 1 1, 0, ,0

t

u t u

a

j t h e d
τ εε τ τ−= ∫ . 

Consequently, we obtain exactly the same estimate (7). 

II. Let b=a/ 3 , then we have:ϕ1(t1,a,b)=(t1–a)(a+2t1)/ 3 , 

ϕ2(t1,a,b)=–(t1–a)/ 3 , i.e. 

u11(t1,t2)=((t1–a/2)t2–ϕ1(t1,a,b)/2)(t2–ϕ2(t1,a,b))= 

=( 3 (2t1–a)t2–(t1–a)(a+2t1))( 3 t2+t1–a)/6, 

u21(t1,t2)=( 3 (2t1–a)t2+(t1–a)(a+2t1))( 3 t2–t1+a)/6. 

In the neighborhood of the points (a,0) and (0,b) function 

u11(t1,t2) divides the plane into four equal sectors in which the 

sign of the function u11(t1,t2) alternates. Similarly, the 

function u21(t1,t2) in the neighborhood of the points (a,0) and 

(0,–b) divides the plane into four equal sectors in which the 

sign of the functions u21(t1,t2) alternates. Both functions are 

negative in the sector, which contains the real axis Ot1. From 

the intersection of the domains u11(t1,t2)≤0 and u21(t1,t2)≤0 

ranging t0≤t1≤a we obtain the desired region D1. 

Consequently, the boundary area D1 (figure 2) consists of a 

line: 

t2=±(t1–a)(a+2t1)/( 3 (2t1–a)) at t0≤t1≤0 and 

t2=±(t1–a)/ 3  at 0≤t1≤a. 

Graphs of implicit functions u11(t1,t2)=0 and u21(t1,t2)=0 are 

constructed in the system Maple. For the integrals: 

( ) ( )
( ) ( )

( )
1 2 1 2, ,

1 2 1 2 1 2
, , ,

j j

j

u t t u

j j
L

J t t h e d i

τ τ
εε τ τ τ τ
−

= +∫  

define the path of integration: 

If (t1,t2)∈D1, then J1(t1,t2,ε) integration path L1=L11∪L12, 

where L11 is the line τ2=ψ1(τ1,а)=(τ1–a)(a+2τ1)/( 3 (2τ1–a)) 

when t0≤τ1≤0; L12 is the line τ2=ψ2(τ1,t1,t2,k)=k+(t2–k)τ1/t1 

when 0≤τ1≤t1. Symmetrical line L2 to L1 with respect to the 

real axis is obtained by integrating for J2(t1,t2,ε). We have: 
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( ) ( ) ( )1 2 3 1 2 4 1 2, , , , , ,j j jJ t t j t t j t tε ε ε= +
, j=1,2 

where ( )( ) ( ) ( )( )( )1 1 2 1 1 1 1

0

0
, , , /

13 1 1 1 1 1, ,
u t t u a

t

j h a e d
τ ψ τ ετ ψ τ τ−= ∫ ɶ ; 

( )( ) ( ) ( )( )( )1

1 1 2 1 1 2 1 1 2, , , , , /

14 1 1 2 1 1 2 1

0

, , , ,

t
u t t u t t t k

j h t t k e d
ψ τ ετ ψ τ τ−= ∫ ɶ ; 

( )( ) ( ) ( )( )( )2 1 2 2 1 1 1

0

0
, , , /

23 2 1 1 1 1, ,
u t t u a

t

j h a e d
τ ψ τ ετ ψ τ τ− −= −∫ ɶ ; 

( )( ) ( ) ( )( )( )1

2 1 2 2 1 2 1 1 2, , , , , /

24 2 1 2 1 1 2 1

0

, , , ,

t
u t t u t t t k

j h t t k e d
ψ τ ετ ψ τ τ− −= −∫ ɶ ; 

u1(τ1,ψ1(τ1,a))=i4(τ1–a)
2
(a

2
–2τ1a+4(τ1)

2
)

2
/(9 3 (a–2τ1)

3
), 

u2(τ1,–ψ2(τ1,t1,t2,k))=u1(τ1,ψ2(τ1,t1,t2,k)). 

Evaluating the integrals, we obtain exactly the same 

estimate (7). 

If (t1,t2)∈D2, then for J1(t1,t2,ε) integration path 

L1=L11∪L12∪L13, where L11 is the line τ2=(τ1–a)(a+2τ1)/( 3

(2τ1–a)) at t0≤τ1≤0; L12 is the line τ2=ψ2(τ1,a,0,b)=–(τ1–a)/

3  at 0≤τ1≤a; L13 is the line τ2=0 for a≤τ1≤t1. Here, 

similarly, the symmetric line L2 to L1 with respect to the real 

axis is obtained by integrating for J2(t1,t2,ε). 

( ) ( ) ( ) ( )1 2 3 1 2 5 1 2 2 1 2, , , , , , , ,j j j jJ t t j t t j t t j t tε ε ε ε= + + ɶ , j=1,2; 

where jj3(t1,t2,ε), ( )2 1 2, ,jj t t εɶ , j=1,2 are as defined above; 

( ) ( ) ( )
1

2 1 2 1, , /

25 1 2 2 1 1

0

, ,

t

u t t
j t t h e d

τ εε τ τ= ∫
ɶɶ

, 

( ) ( ) ( )( )2 1 2 1 2 1 2 2 1 2 1, , , , , ,0,u t t u t t u t a bτ ψ τ= − −ɶ , 

( ) ( )( )( )2 1 2 1 2 1 2 1
) , ( , , 0, ) 1 ' , , 0,h h a b i a bτ τ ψ τ ψ τ= − −ɶ ; 

( ) ( ) ( )
1

1 1 2 1, , /

15 1 2 1 1 1

0

, ,

t

u t t
j t t h e d

τ εε τ τ= ∫
ɶɶ

, 

( ) ( ) ( )( )1 1 2 1 1 1 2 1 1 2 1, , , , , ,0,u t t u t t u t a bτ ψ τ= −ɶ , 

( ) ( )( )( )1 1 1 1 2 1 2 1
) , ( , , 0, ) 1 ' , , 0,h h a b i a bτ τ ψ τ ψ τ= +ɶ ; 

u1(τ1,ψ2(τ1,a,0,b))=i4(τ1–a)(a+2τ1)/9 3 , 

u2(τ1,-ψ2(τ1,a,0,b))=u1(τ1,ψ2(τ1,a,0,b)). 

Applying the method of stationary phase, we obtain a 

similar asymptotic estimates (7). 

As a result, we obtain asymptotic estimates for the first 

approximation: 

уj,1(t1,t2,ε)~O(ε)+O(εα–1/2
)~O(εα–1/2

), α–1/2>0, j=1,2. 

For the rest of successive approximations уj,k(t1,t2,ε) we 

have: 

уj,2(t1,t2,ε) ~ уj,1+O(1)(у1,1+у2,1)Jj,1(t1,t2,ε); 

уj,3(t1,t2,ε) ~ уj,1+O(1) (у1,2+у2,2)Jj,1(t1,t2,ε); 

… 

уj,n(t1,t2,ε)~уj,1+O(1)(у1,n–1+у2,n–1)Jj,1(t1,t2,ε). 

From, we have 

уj,2(t1,t2,ε) ~ O(εα–1/2
)(1+O(ε1/2

)); 

уj,3(t1,t2,ε) ~ O(εα–1/2
)(1+O(ε1/2

)+O(ε)); 

… 

уj,n(t1,t2,ε) ~ O(εα–1/2
)(1+O(ε1/2

)+O(ε)+…+O(ε(n–1)/2
)) or 

уj,n(t1,t2,ε)~ O(εα–1/2
)(1–O(εn/2

))/(1–О(ε1/2
)). 

уj(t1,t2,ε)= lim
n→∞

уj,n(t1,t2,ε)=O(εα–1/2
). 

Therefore, x(t, ε)=O(εα–1/2
), α>1/2. 

Correct is  

Theorem. Let condition 1 be satisfied then, the problem 

(1)-(2) has a unique solution x(t,ε) which is satisfy the 

estimates  

||x(t,ε)||≤cεβ
, for t∈[t0,+∞)⊃[0,a], 

where c>0 is arbitrarily const and β=α–1/2>0. 

Hence, it follows that the equality 

0
lim
ε →

x(t, ε)=x*(t)=0 for t∈[t0,+∞)⊃[0,a] is validity. 

4. Conclusion 

Built leading asymptotic term solutions of singularly 

perturbed systems of ordinary differential equations, when 

the complex conjugate eigenvalues are real and zeros in the 

complex plane. Zeros eigenvalues on the real axis referred to 

as the pivot point. The resulting asymptotic estimate for the 

solution of this problem is not improving. A specific example 

is proved that the entire range of unstable solution of the 

Cauchy problem for a system of singularly perturbed 

ordinary differential equations is asymptotically close to a 

solution of the limit system of equations. We prove a limit as 

inappropriate conditions for asymptotic stability. The 

asymptotic proximity of solutions of a singularly perturbed 

problem to the solution of the limit equation on the interval 

[t0,+∞). 

The set of systems of differential equations with such 

eigenvalues (or similar) form a new class of singularly 

perturbed systems of ordinary differential equations in which 

the unstable interval does not affect the stability of the 

solution. A system of singularly perturbed differential 
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equations with complex conjugate eigenvalues require further 

research. 
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