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Abstract: More realistic human-mosquito population mathematical model in which re-infected asymptomatic humans are 

considered is presented. Six possible time-scale of events for model transition from non-endemic to endemic state are analyzed. 

Results show that the buildup of the latent asymptomatic humans at steady state is the main dynamics of malaria in the 

endemic region. This become evident in the time scale of about 1-2 weeks and thus influences the mode of infection in the 

malaria transmission analysis. 
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1. Introduction 

Malaria is a vector born disease that can be transmitted to 

humans through infected anopheles mosquito bites. The 

parasite’s life cycle is well described in literatures [1, 2]. 

Symptoms of the disease include vague, anemia, blood stools, 

convulsion, myalgia, diarrhea, nausea, vomiting and others 

[3]. The infection can also lead to damage of human organs 

such as the brain, lungs, kidneys and blood vessels [3, 4]. 

Extensive research efforts have been focused to the study of 

the transmission of the malaria parasite between humans and 

mosquitoes and how to control the disease in the endemic 

regions [5-7]. Despite substantial progress, it is still a major 

global problem in terms of morbidity and mortality especially 

in the endemic regions. In 2015, the World health 

organization reported 214 million high risk malaria cases and 

over 438,000 deaths worldwide [8].  

The complexity of the disease’s zoonotic nature makes it 

clinically impossible to understand fully the mechanism in 

which the disease spreads. Clinically, two methods are in use: 

one which reduces the risk and intensity of malaria 

and death and another which uses protective antimalarial 

immunity to reduce the number of parasites in an infected 

individual. In both methods, the tendency for malaria patients 

to become resistant to these methods makes many malaria 

patients temporarily asymptomatic parasite carriage [9, 10]. 

Although there is no standard definition for “asymptomatic” 

malaria infections, it is generally accepted to be malarial 

parasitemia of any density, in the absence of fever or other 

acute symptoms in individuals [7]. These infected individuals 

sustain malaria overtime and so are important source of 

malaria transmission and therefore a major obstacle to 

eradication programs. Ogutu et al. [11], reported in their 

that a large proportion of malaria infections are 

with microscopy-detection level as high as 39 percent on 

children under 10 years old in endemic regions. Based on 

findings they hypothesized without testing that a significant 

reduction of the malaria parasite pool could be obtained 

through the treatment of the asymptomatic class in endemic 

population.  

Some recent papers have used mathematical modeling 

approach to provide more insight of the effects of 

asymptomatic parasite carriage on malaria transmission in 

human and mosquito populations [2, 12-15]. These models 

have played important roles in influencing intervention 

strategies for preventing and controlling the transmission of 

malaria. However, of these papers, only one [2] made an 

attempt to study the evolution of malaria based on the 

reproduction number (
0

R ) and a reasonable timescale to 

demonstrate the existence and effects of the asymptomatic 

group in malaria dynamics. In their paper, Annan et al. 

analyzed the transition model by adducing sufficient 

conditions to show that malaria free state in which 

asymptomatic group is present is locally and asymptotically 

stable if 
0

1R <  and unstable for 
0

1R > . In addition, they 
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performed a preliminary time scale analysis to show that the 

asymptomatic individuals at steady state may be one of the 

main force in transmitting malaria in endemic regions.  

This paper explores this notion by providing detailed 

timescale analysis of the model formulated in [2]. The six 

main timescales predicted by the model are used with 

appropriate rescaling to explore the dynamics of malaria 

from early incidence (i.e. when a small infected mosquitoes 

are introduced into human-mosquito population) to endemic 

state. Finding the time to develop this asymptomatic status by 

malaria patients in an endemic state may be essential in 

planning control and eradication strategies.  

We organize the rest of the paper as follows. 

Dimensionless model is described in section 2, Basic 

Reproduction Number in section 3 and Timescale Analysis in 

section 4. Finally, discussions and conclusion of the analysis 

are given in sections 5 and 6, respectively 

2. Dimensionless Model 

We adopt the dimensionless form of the model formulated 

in [2] as, 

h m

S m h h h S

dS T
I A I S S S I A

dt N
λ γ β λ α θ= + + − − + +    (1) 

h m

m h h h h S A

dl T
I S L L L I L

dt N
β η λ α θ= − − + +       (2) 

mA
m A A A S A

TdL
I A L L L I L

dt N
β η λ α θ= − − + −       (3) 

2( )s

h A S S

dI
L L I I

dt
η η α γ ρ λ α= + − + + + +        (4) 

(1 )m

S m S

TdA
I I I A

dt N
ρ β λ α θ= − + + − +          (5) 

(1 )m

m S m m A m m m

dS
q S bI S dAS dL S hI S

dt
= − − − − +       (6) 

( )m

S m m A m m m m

dL
bI S dAS dL S f g L hI L

dt
= + + − + +      (7) 

2( )m

m m m

dI
fL h q I hI

dt
= − + +               (8) 

With  

( ) , ( ) ,S m m m mdN dt I N N dT dt hI T q g Tα λ µ= − + − = − + −
 

and the model’s parameter values defined in Table 1. 

Table 1. Dimensionless parameters and their values. 

Dimensional Dimensionless Value Value in ε  

(0) (0)h m aeT l Nβ  β  62.43 ( )2ε −Ο  

h alη  η  11.1 1ε −
 

Dimensional Dimensionless Value Value in ε  

h alµ  µ  0.0056 ( )2εΟ  

s ae lβ  b  7.2 ( )1ε −Ο  

a ae lβ  d  38.2 ( )1ε −Ο  

h alλ  λ  0.017 ( )1ε −Ο  

h alα  α  0.01 ( )2εΟ  

s ar l  γ  11.5 ( )1ε −Ο  

a ar l  ρ  54.45 ( )2ε −Ο  

h alψθ  θ    

m alη  f  14 ( )1ε −Ο  

m alλ  q  21.45 ( )1ε −Ο  

m alµ  g  20.62 ( )1ε −Ο  

m alα  h  1.45 (1)Ο  

By definition, ε  is the ratio of the proportion of time for 

the latency period (
h

η ) compared to the mean asymptomatic 

state timescale (
a

l ). For 1,ε ≪  it means that asymptomatic 

humans remain infectious for a longer time compared to the 

latency period of humans.  

In the adapted model, the human population is divided into 

compartments of susceptible (
h

S ), latent (
h

L ), latent 

asymptomatic (
A

L ), symptomatic (
s

I ) and asymptomatic 

( A ) carriers. The mosquito population is subdivided into 

susceptible (
m

S ), latent (
m

L ), and infectious (
m

I ) 

compartments. Detailed model description including state 

variables, schematic flow diagram, and assumption are 

described in [2]. The rate at which infected mosquitoes bites 

is 
m

eI , e  is a constant value of the biting rate per human 

per unit time, 
h

β  is the number of human infections per bite, 

a
β  being the probability that a bite by a susceptible 

mosquito on an asymptomatic infectious human transfers the 

infection to the mosquito, and 
s

β  depicting the probability 

that a susceptible mosquito gets infected after biting a 

symptomatic infectious human.  

We also state here that the susceptible mosquitoes are 

recruited into the mosquito population through a constant 

birth rate 
m

λ  with 
m

eT  bites by mosquitoes on humans. 

However, only 
h

S N  of these bites are made on susceptible 

humans. The proportion that a bite is made by an infectious 

mosquito is 
m m

I T . 
h

β  assumes that not all bites by an 

infectious mosquito on a susceptible human can lead to 

infection with the parameter [ ]0,1hβ ∈  depicting the 

proportion of bites by an infectious mosquito that passes on 

the infection, where 1
h

β =  implies all bites transmits the 

disease.  

Furthermore, those in the 
h

L  class are already in the 

process of transition into the 
s

I  class who are entitled to 

treatment. Thus, the incubating humans become infectious 

after a mean latency time 1
h

η . Also, all humans who die 

naturally have a per capita rate of 1
h

µ , while some 
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individual in the 
s

I  group die at rate 
h s
Iα  from the 

In addition, those who survive receive treatment and are 

recovered with complete clearance to join the susceptible 

at a rate 
s s

r I  (treatment period 14-days), or only recover 

from symptoms (after a 3-day mono-therapy) without 

clearance to join the A  class at a rate 
a s

r I . The post 

symptomatic class A  still carry merozoites and produce 

gametocytes. So, they can infect biting mosquitoes. Since 

patients can be in this state for several weeks or months they 

can play an important role in sustaining an epidemic. Thus, 

consider a putative treatment which removes individual from 

A  and 
A

L  classes down to 
h

S  and 
h

L , respectively, with 

the effect of the treatment parameter being 
h

ψθ , where ψ  

are those being treated. Similarly, mosquitoes in the 

incubating class die naturally at a rate 
m m

Lµ  and the rest get 

infected at a rate 
m m

Lη  to join the infectious class which 

remain until their death either naturally or are killed by the 

parasite at rate 
m m

Iα .  

3. The Basic Reproduction Number 

Since there are no trivial equilibrium points as long as 

and
h m

S S  are not zero. The implication is that 

( , , , , , , , , )
h h A s m m m m

S L L I A T S L I (0,0,0,0,0,0,0,0,0)≠  and 

the population is not extinct. Therefore, we define a domain 

of biological interest for our model in the form 

{ }10( , , , , , , , , , N) | they are 0 for all 0 ,h h A s m m m mS L L I A T S L I t+Ω = ∈ ≥ >ℝ

such that the basic reproduction number, 
0

R , is determined by 

the Next Generation Matrix (NGM) method by [2] as 

2 3 1

0 2

0

( ) ( (1 ) )
.

( )( )( )(1 )( )

bb db b f b d
R

f q h qb

β βη λ θ ρ
η λ λ θ α γ ρ λ

+ + + += =
+ + + + + + + +   (9) 

The NGM operator approach approximates the number of 

secondary infections produced by one infected individual and 

expresses 
0

R  as the product of the expected duration of the 

infectious period and the secondary rate infectious. When 

0
1R < , each infected individual produces on average less 

than one new infected individual so we would expect the 

disease to die out. On the other hand if 
0

1R > , each 

individual produces more than one new infected individual so 

we would expect the disease to spread in the population. This 

implies that the threshold quantity for eradicating the disease 

is to reduce 
0

R  to less than one. 

Using equation (9), the stability analysis of the 

equilibrium in the domain Ω  is attained from the 

eigenvalues of the Jacobian matrix evaluated at equilibrium 

point detailed in [2]. The analysis revealed that the 

disease-free equilibrium is locally and globally 

stable if 
0

1R <  and an endemic equilibrium is not feasible. 

However, since normally 
0

1R ≫  and the asymptomatic 

infectious humans to mosquitoes is significantly large, a 

possible treatment is to reduce the infectivity of the 

asymptomatic humans, ,d and the symptomatic humans, b  

by increasing the parameters andθ λ . 

4. Time Scale Analysis 

The asymptotic analysis on and
m

N T  equations depict 

that 
m

T  changes on the time scale ( )εΟ  while N  changes 

on ( )2ε −Ο . Therefore, an assumption that 
m

T N  is constant 

over the time scale of the model by setting 0θ =  gives,  

2 4 2 4 4 ,h

S m h h h S

dS
I A I S S S I

dt
ε ε λ εγ ε β ε λ ε α= + + − − +

⌢ ⌢ ⌢⌢
  (10) 

2 4 4 ,h

m h h h h S

dl
I S L L L I

dt
ε β εη ε λ ε α= − − +

⌢ ⌢⌢ ⌢
      (11) 

2 4 4 ,A
m A A A S

dL
I A L L L I

dt
ε β εη ε λ ε α= − − +

⌢ ⌢⌢ ⌢
     (12) 

2 4 4 4 2( ) ,s

h A S S

dI
L L I I

dt
ε εη εη ε α εγ ρ ε λ ε α= + − + + + +

⌢⌢ ⌢ ⌢ ⌢ ⌢ ⌢
   (13) 

2 2 4 4( ) ,S m S

dA
I I I A

dt
ε ρ ε β ε λ ε α= − + + −

⌢ ⌢⌢ ⌢
     (14) 

(1 ) ,m

m S m m A m m m

dS
q S bI S dAS dL S hI S

dt
ε ε= − − − − +

⌢ ⌢ ⌢ ⌢⌢
  (15) 

( ) ,m

S m m A m m m m

dL
bI S dAS dL S f g L hI L

dt
ε ε= + + − + +

⌢ ⌢ ⌢ ⌢ ⌢⌢
   (16) 

2( ) ,m

m m m

dI
fL h q I hI

dt
ε ε ε= − + +

⌢ ⌢ ⌢⌢
         (17) 

with initial conditions 

0 0 0

(0) 1, (0) 0, (0) 0, (0) 0, A(0) 0,

(0) , (0) 1 , (0) 0, 1, ,

h h A s

m m m

S L L I

L l S l I lε ε
= = = = =
= = − = ≪ ≪

 

and the parameters expressed in terms of their size as powers 

of ε  as follows, 

2 2

2

2

2

, , , , , ,

, , , , , , .

b d
b d

f q g
f q g h h

β ηβ η µ ε µ λ ε λ
ε ε εε
γ ρα ε α γ ρ
ε ε ε εε

= = = = = =

= = = = = = =

⌢ ⌢⌢ ⌢
⌢⌢

⌢⌢ ⌢ ⌢ ⌢
⌢⌢

 

Using singular perturbation method and setting the time 

scale 
2

,t tε=
⌢

 we noticed that susceptible humans (
h

S ) and 

latent mosquitoes (
m

L ) are decaying linearly in time from 

their initial values due to the i) latent mosquitoes converting to 

the infectious class and ii) susceptible becoming infected as a 

result of infectious contact with mosquitoes in the 
m

L  class. 

Similarly, by setting 
4 3t tε=
⌢

, we observe that all the leading 

order solutions are the same except that variables and
m m

S L  
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have an additional term, 
0 .dA
⌢⌢

 This introduces a reaction of 

infection from asymptomatic class in the susceptible 

mosquitoes into the susceptible human population. Thus, 

creating a stability between the amount of mosquitoes 

converting to the infectious class and the amount becoming 

infected by biting humans in the asymptomatic infectious 

class. However, there is a notable difference between 

and
m m

S L  with an accelerated rate of mosquito infection 

from asymptomatic infectious humans when the initial 

conditions 
1 0 0
(0) 0, (0) 0, (0) 0,h h AS L L= = =
⌢ ⌢ ⌢

 
0
(0) 0,sI =
⌢

10A (0) 0, (0) 0,mL= =
⌢ ⌢

 
1 0
(0) 0, (0) 0,m mS I= =

⌢ ⌢
 are used. 

Thus, the flow of the solution may change direction especially 

when the amount of mosquitoes being infected becomes 

greater than the inflow of new born mosquitoes. 

By setting 
5 4t tε=
⌢

, we observe that equations (10)-(17) 

are unchanged. However, due to the dominant contribution of 

the asymptomatic infectious humans on the infection of 

mosquitoes, the rate of change of 
1m

L  and 
1m

S  are 

proportional to the amount of asymptomatic humans. In 

addition, 
0m

I  is proportional to 
1m

L . So, with the following 

initial conditions  

1 0 0 0

1 1 0 0 0 0

0(0) 0, (0) 0, (0) 0, (0) 0, A (0) 0,

(0) 1, (0) 1, (0) 0, (0) (0) (0) 0,

h h A s

m m m m m m

S L L I

L S I I I I

= = = = =
′ ′′ ′′′= = − = = = =

 

The time solution for our system equations grow 

exponentially as follows 

1 4 1 4 1 4 1 4

1 0 0 0

1 4 1 4 1 4 1 4

1 1 0

2

1 2 1 2 1 21 4

0 1 2 1 2

, , , ,
4 4 432

1 1
, , , ,

4 44 4

t t t t

t t t t

h h A s

m m m

f f f f
S e L e L e I e

d

f f
A e S e L e I e

δ δ δ δ

δ δ δ δ

β β β βη
δ δ ρδδ

βη
δ δ

−

−

⌢ ⌢ ⌢ ⌢

⌢ ⌢ ⌢ ⌢

⌢ ⌢ ⌢ ⌢⌢ ⌢ ⌢ ⌢ ⌢
⌢ ⌢ ⌢ ⌢
∼ ∼ ∼ ∼⌢ ⌢

⌢ ⌢⌢ ⌢
⌢
∼ ∼ ∼ ∼

 

where we have set dfδ βη=
⌢⌢⌢ ⌢

. If we allow 1 4

0
δ δ= , the 

approximations for this time-scale is not a good one because 

( ) ( )0

1

1 2

0hS e t l
δ ε= Ο = Ο
⌢

. In other words, when 

( )1 2

0 0lnt lε δ=
⌢

, the asymptomatic human becomes 

infected with new asexual parasites due to contact with 

infectious mosquitoes. 

Now, we set ( )
5 5

1 24 4
0 0

lnt l tε ε δ ε= +
⌢

, we are saying that 

the initial small amount of infection has developed into a full 

blown epidemic with and
h h

S L  becoming (1)Ο  and not 

depending on 
0

l . After rescaling our model equations reduces to 

0 0 0 0

0 0 0 0 0 0

01 1

0 0 0 0 1

0

0

0 0 0

, , , ,

, , , .

h h A s

h m h m m h

mm m

s m A A m

dS dL dL dI
S I S I A I L

dt dt dt dt

dIdS dLdA
I A I dA dL dA dL fL

dt dt dt dt

ηβ β β
ρ

ρ β

= − = = =

= − = − − = + =

⌢ ⌢ ⌢ ⌢
⌢

⌢ ⌢ ⌢ ⌢ ⌢ ⌢ ⌢

⌢ ⌢ ⌢ ⌢ ⌢

⌢ ⌢⌢⌢
⌢ ⌢ ⌢ ⌢ ⌢⌢ ⌢ ⌢ ⌢⌢ ⌢ ⌢ ⌢⌢

⌢ ⌢ ⌢ ⌢

 

Here, the asymptomatic humans become infected with new 

asexual parasites after contact with infectious mosquitoes and 

eventually reduce the number of the asymptomatic class ( )A  

to the latent asymptomatic class, ( )
A

L . Further examination 

shows that  

0 0 0 0

0 0

3

0

3

( )
0, , .

h h A m

h h

dS dL d L A d I
L fdL

dt dt dt dt
η η

+
+ = = =

⌢ ⌢⌢ ⌢ ⌢
⌢⌢⌢ ⌢⌢ ⌢

⌢ ⌢ ⌢ ⌢

 

In the first equation, 
0 0

1h hS L+ =
⌢ ⌢

, replacing this into the 

0hS
⌢

 equation yields a fourth-order nonlinear equation given 

by  

( ) ( )0

0

4 4

4 4

(ln )
1 , where ln .

h

h

d S d
e S

dt dt
δ= = − − =

⌢
ℏ

⌢ ⌢
⌢ ⌢ℏ
ℏ⌢ ⌢

 

When 
0

0 1hS= ⇒ =
⌢
ℏ , thus an unstable steady state is 

achieved. Let consider ( )( ) 1c eδ= − −
⌢
ℏ

⌢
ℏ , then for 

0 0 and for 0 0c c< ⇒ < > ⇒ >
⌢ ⌢
ℏ ℏ . As ,t → −∞

⌢
 we have 

0
0 1hS

− −→ ⇒ →
⌢
ℏ . Hence 0 asd dt t<

⌢ ⌢ ⌢
ℏ  increases. Thus, 

a significant amount of humans may become infected. For 

negatively large 
⌢
ℏ , 

4

4

d

dt
δ−

⌢
ℏ
∼⌢  with unresolved constants, 

'
i

sτ  in the general solution of the form 

4 3 2

1 2 3 4

1 1 1
,

24 6 2
t t t tδ τ τ τ τ= − + + + +

⌢ ⌢ ⌢ ⌢ ⌢
ℏ

 

Consequently, the solutions for the susceptible and latent 

human equations become 
0 0

and 1 , whereh hS L −
⌢ ⌢ ⌢⌢
∼ ℏ ∼ ℏ ℏ

is defined above. Thus, showing that the force of infection 

generated by infectious mosquitoes significantly lowers the 

size of the susceptible human population (
h

S ) while 

increasing that of the latent human (
h

L ) group. Now, due to 

the sudden drop in 
h

S , there may be series of transition 

timescale in which 2(1) fall to ( )
h h

S S ε= Ο = Ο . However, 

we analyze the main rebalance where the infected mosquito 

group become significant and the latent group dominate the 

human population.  

Thus, when t tε=
⌢

 and using the following rescaling 

variables: 
0

2
,h hS Sε

⌢
∼  

0
,h hL L

⌢
∼  

0 0 0 0 00, , , , , ,A A s s m m m m m mL L I I A A S S L L I Iε
⌢ ⌢⌢ ⌢ ⌢ ⌢

∼ ∼ ∼ ∼ ∼ ∼  

we notice that the susceptible group is now 2( )εΟ  and that 

most of human population are in the latent group. Substituting 

the scaling variables into the original model produces steady 

state solutions. However, the amount of latent humans decay 

quickly causing the latent asymptomatic humans to grow as a 

result of a massive inflow of asymptomatic humans being 

infected with asexual parasites. 

Finally, by setting 1ln( )t tε η ε ε−= +
⌢⌢

,

0 0

2
, ,h h h hS S L Lε ε

⌢ ⌢
∼ ∼

0
1, ,A s sL I Iε

⌢
∼ ∼  

0 0 00 , , , ,m m m m m mA A S S L L I Iε
⌢ ⌢ ⌢ ⌢

∼ ∼ ∼ ∼  and substituting 

into our model equation, we find that the variables in their 



 International Journal of Theoretical and Applied Mathematics 2017; 3(2): 88-93 92 

 

steady states remain unchanged except 1
A

L ∼ . Furthermore, 

the fraction of latent humans, 
h

L  increases as 
h

S  decreases. 

We also observed that 
h

L  is no longer (1)Ο  as 
A

L  grows to 

overtake 
h

L .  

5. Discussions 

We have analyzed six main time scales with appropriate 

rescaling to elucidate the dynamics of malaria disease as they 

evolve from small infection to endemic state. At 
2( ) 1 3 days,t ε= Ο ≈ −  introducing a small amount of 

infected mosquitoes into the system and biting susceptible 

humans causes human to get infected. The early infection 

indices itself into the population and grows linearly but their 

effect remains unnoticeable in the latent asymptomatic group.  

When 4 3( ) 7 8 days,t ε= Ο ≈ −  the susceptible 

mosquitoes get infected by biting asymptomatic infectious 

humans. We noticed that the amount of mosquitoes 

converting to the infectious group is balanced by the amount 

of mosquitoes being infected by biting humans in the 

asymptomatic infectious group. This observation is expected 

because individuals with clinical malaria have low level of 

gametocytes. Thus, the early infection of susceptible 

mosquitoes is likely to come from contact with asymptomatic 

infectious humans since they have high gametocyte density. 

The contribution of asymptomatic infectious humans has a 

significant effect on the dynamics of the disease. Now, as 

more mosquitoes get infected through contact with 

asymptomatic infectious population, (i.e. when 
5 4( ) 9 10 dayst ε= Ο ≈ − ), the amount of susceptible 

mosquitoes become optimized and starts to decline. However 

the feedback from infectious humans offsets the linear 

growth of the initial amount of infected mosquitoes 

introduced. Thus, causing the amount of latent mosquitoes to 

grow exponentially. 

For ( )
5 5

1 2 1 44 4
0 0 0ln where ( ) 2 weeks,t l t dfε ε δ ε δ βη= + = ≈

⌢⌢⌢⌢ ⌢  

the asymptomatic humans become infected with new asexual 

parasite as a result of contact with infectious mosquitoes. The 

amount of infected humans to the asymptomatic status is being 

balanced by the amount of asymptomatic human to the latent 

asymptomatic group due to a boost in their partial immunity 

level. Thus, more mosquitoes become infected and the overall 

distribution of infection results in a fast shift of susceptible 

humans into the latent group. After this time the disease is now 

visible with infected humans equal to (1)Ο . Also, the latent 

asymptomatic humans may still be infectious to the mosquitoes 

as , , and
h s

S I A  adjust to their equilibrium values and 
h

L  

decaying exponentially. At approximately two months after the 

initial introduction of infected mosquitoes, all human classes 

equilibrate and latent individuals become symptomatic. The 

mosquito classes also adjust to assume their equilibrium state.  

6. Conclusions 

We completed a detailed six main timescale analysis on 

the model adapted from [2] with appropriate rescaling to 

elucidate the dynamics of malaria from small infection to 

endemic state. In our analysis, 
h

S  remain proportional to 

h
L , thus showing that the level of the disease depends on 

the non-immune humans becoming infected. Thus, the 

buildup of the latent asymptomatic humans at steady state is 

the main dynamics of malaria in the endemic region. Also, 

we find that intervention programs may yield better result if 

implemented before the fourth timescale. During that time, 

the feedback from infection humans offsets the linear 

growth effect of the initial amount of infected mosquitoes 

and this equates to about 2-3 weeks from the initial 

infection. We also notice that the buildup of the latent 

asymptomatic humans at steady state is the main dynamics 

of malaria in the endemic region. This become evident in 

the time scale of about 1-2 weeks and thus influences the 

mode of infection in our analysis. 
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