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Abstract: To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite 

element computational solution is presented for magnetohydrodynamic (MHD), incompressible, radiative and chemically-

reacting micropolar fluid flow, heat and mass transfer adjacent to a vertical porous plate embedded in a saturated homogenous 

porous medium. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A 

Darcy model is employed for the porous medium. The homogeneous chemical reaction of first order is accounted for in the 

mass diffusion equation. The numerical solutions of the system of non-linear partial differential equations which are rendered 

into non-dimensional form are obtained using a Galerkin formulation with a weighted residual scheme. The impact of Eringen 

coupling number, radiation-conduction number, chemical reaction parameter, plate moving velocity parameter, magnetic 

parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear 

velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical 

parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are 

verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and 

interpreted. 
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1. Introduction 

The flow of non-Newtonian fluid feature widely in an 

extensive range of technological applications including, food 

processing, plastic fabrication, biotechnology and paint 

emulsion manufacture. To simulate the complex shear stress-

strain characteristics of such fluids, numerous mathematical 

models have been developed. Researchers in this area were 

initiated by Eringen [1] introduced the microfluid model and 

later simplified this model to micropolar fluids which can 

describe sophisticated phenomena including couple stresses, 

body couples and exhibit gyratory motions, which cannot be 

analyzed with simpler non-Newtonian models and continued 

up to now in various case studies. Many recent aspects of 

micropolar hydrodynamics are documented in Eringen [2] 

and Lukaswiascz [3]. Extensive discussion of other 

applications in chemical and mechanical engineering are 

available in the articles of Airman et al. [4, 5].  

The current study is relevant to high temperature 

electromagnetic rheological flows in energy generators and 

magneto-rheological materials fabrication systems (where 

thermal radiation heat transfer is also significant). It is known 

that they arise in many diverse areas of technology including 

combustion in gas turbines, convective flows setup where the 

bounding surfaces absorb heat by solar radiation, design of 

efficient heat exchangers, etc. These flows require a more 

sophisticated approach to radiative heat transfer in the system 

which can substantially influence performance and modify 

characteristics of manufactured products. In addition to this, 

such regimes are strongly influenced by thermal boundary 

conditions. Earlier Raptis and Perdikis [6] presented the 

presence of radiation in viscoelastic flow. An important 

analysis in this regard was presented by Abo-Eldahab and 

Ghonaim [7] who addressed thermal radiation effects in heat 

transfer of a micropolar fluid through a porous medium. 

Rahman and Sultan [8] implemented an efficient, iterative, 
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finite difference method to study the thermal radiation 

interaction of the boundary layer flow of micropolar fluid 

past a heated vertical porous plate embedded in a porous 

medium with variable suction as well as heat flux at the plate. 

Ibrahim et al. [9] evaluated the viscous dissipation and 

radiation effects on mixed convection flow of micropolar 

fluid. Sudheer Babu et al. [10] described the effects of mass 

transfer on unsteady magneto-convection flow of micropolar 

fluid along a vertical moving porous plate through porous 

medium with viscous dissipation. Furthermore, detailed 

reviews of other investigations into radiative heat transfer in 

micropolar flows are provided by Reddy [11], Olajuwon et 

al. [12] and Mamatha et al. [13]. 

In the above investigations, the combined effects of Joule 

dissipation and chemical reaction in hydromagnetic 

micropolar transport have been excluded. In most simulations 

of magnetic heat transfer, the Joule dissipation term is 

conventionally neglected on the premise that under normal 

conditions the Eckert number is small based on an order of 

magnitude analysis, also in many industrial processes e.g. 

materials fabrication of powders chemical reaction may exert 

an influential role. These, chemical reactions take place, 

which may be destructive or constructive in nature and can 

influence significantly heat and mass diffusion phenomena. 

Generally, boundary layer flow models utilize first order 

chemical reaction effects and assume the reaction to be 

destructive. Rahman [14] studied the effects of viscous 

dissipation and Joule heating in convective flows of a 

micropolar fluid, observing that heat transfer rates are 

decreased with increasing Joule heating effect. Haque et al. 

[15] examined the steady magnetic natural convection heat 

transfer in micropolar fluid with Joule heating and viscous 

dissipation. In numerous process engineering systems, 

chemical reactions take place, which may be destructive or 

constructive in nature and can influence significantly heat 

and mass diffusion phenomena. Generally, boundary layer 

flow models utilize first order chemical reaction effects and 

assume the reaction to be destructive. Several investigations 

have considered reactive heat and mass transfer in external 

boundary layer flows for micropolar and other fluids. Sheri 

and Shamshuddin [16] have addressed the problem of 

coupled heat and mass transfer in magnetohydrodynamic 

micropolar flow with both viscous dissipation and chemical 

reaction effects. Sheri and Shamshuddin [17] have further 

presented finite element numerical solutions for diffuso-

thermal and chemical reaction effects on transient free 

convection micropolar flow. Recently Ayano and Mathunjwa 

[18] studied the combined effect of chemical reaction and 

radiation on micropolar fluid flow over vertical plate with 

variable temperature. An interesting analysis of exothermic 

and endothermic kind of chemical reaction over micropolar 

fluid was investigated by Koriko et al. [19]. Further studies 

of reactive micropolar flows include Pal and Talukdar [20], 

Pal and Biswas [21] Modather et al. [22]. 

In the present article, motivated by simulating non-

Newtonian thermal materials processing of powders, we 

extended the analytical work of Sudheer Babu et al. [10] by 

taking into account of thermal radiation, Joule dissipation 

and first order chemical reaction effects and deriving finite 

element numerical solutions for generalized micropolar 

radiative-convection flow from a vertical surface in a porous 

medium. The perturbation approximation form solutions 

presented by Sudheer Babu et al. [10] provide a benchmark 

for the present finite element computational solutions. The 

effects of various emerging thermo-physical parameters on 

the velocity, micro-rotation (angular) velocity, temperature 

and concentration profiles as well as on local skin friction 

coefficient and wall couple stress is visualized and tabulated. 

The current problem, to the best knowledge of the authors, 

has not been communicated thusfar in the technical literature. 

2. Mathematical Model 

Free convective flow of an electrically conducting 

incompressible micro-polar fluid past a vertical plane in the 

presence of thermal radiation, Joule dissipation and chemical 

reaction is considered. The plane considered is permeable 

and is moving with constant velocity Up in a porous medium. 

The physical configuration is illustrated in Fig. 1. The 

Eringen [32] micropolar model is employed since it 

successfully captures microstructural characteristics of 

complex magnetic polymers i.e. it robustly simulates rotatory 

motions, gyration of fluid micro-elements. Micropolar fluids 

can support couple stresses, shear stresses, body couples and, 

also exhibit microrotational effects and inertia. Darcy’s law is 

assumed and low Reynolds number flow (viscous-dominated 

regime). A magnetic field of uniform strength 
0B is applied 

in a direction parallel to the y′ axis which is perpendicular to 

the flow direction. It is assumed that the induced magnetic 

field is negligible in comparison to the applied magnetic field 

[23]. Magnetic Reynolds number is very small. The 

magnetohydrodynamic (MHD) body force term is derived 

from an order of magnitude analysis of the full Navier-stokes 

equation. It is also assumed that applied or polarized voltage 

is neglected so that no energy is added or extracted from the 

fluid by electrical means. The fluid is considered to be a gray, 

absorbing-emitting but non-scattering medium and the 

Rosseland approximation is used to describe the radiative 

heat flux. The radiative heat flux in the x′ direction is 

considered negligible in comparison with that of y′ direction. 

Both wall temperature and concentration vary with the 

distance along the plate and they are always greater than their 

uniform ambient values existing far from the plate surface. 

The magnetic micropolar fluid contains a species which is 

reactive and obeys first order chemical reaction. To simplify 

the formulation of the boundary conditions, we assumed the 

size of holes in the porous plate is significantly larger than 

the characteristic microscopic length scale of the micropolar 

fluid. It is assumed that the plate is infinite in extent and 

hence all physical quantities depend only on y′ and t′ . 

Boussinesq approximation is taken in momentum equation. 

The balances of mass, linear momentum, angular momentum, 

energy, and concentration species in the Cartesian frame are 

written as follows: The continuity equation: 
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Figure 1. Geometry and coordinate system of the problem. 
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Where u′  and v′  are the velocity components in x′  and 

y′  axis respectively. N ′  is the micro-rotation component, 

ν  is the kinematic viscosity, rν  is the kinematic micro-

rotation viscosity, ρ  is the constant fluid density, σ  is the 

electrical conductivity of the micropolar fluid, g′ is the 

acceleration due to gravity, ( )∞−′ T
w

TTβ  and 

( )∞−′ C
w

CCβ  denote the thermal and concentration 

buoyancy effects respectively, 0
B  is the strength of the 

transverse magnetic field, Cp  is the specific heat at constant 

pressure, K ′  is the permeability of the porous medium, mD  

is the molecular diffusivity of species and cK ′  is the 

dimensional chemical reaction rate constant. Implicit in the 

present analysis is constant permeable plate velocity in the 

direction of the fluid flow. The appropriate initial and 

boundary conditions for velocity, angular velocity (micro-

rotation), temperature and concentrations fields are 
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Where p
u ′  is plate velocity, it is clear from the equation of 

continuity that suction velocity normal to the plate is either a 

constant or a function of time. Hence it is assumed that the 

suction velocity takes the form: 

0Vu −=′                                       (7) 

Where 0
V  is a scale of suction velocity and 0

0
>V . The 

negative sign indicates that the suction velocity is towards 

the plate. The radiative heat flux term is given by 

4
4

3

T
qr
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′∂

                             (8) 

Here σ  and k are the Stefan-Boltzmann constant and 

mean absorption coefficient respectively. The assumed 

Rosseland model has been shown to be generally valid for 

optically-thick fluid media, as considered in viscous fluids 

[24]. Implementing eqn. (8) results in a highly nonlinear 

energy equation inT and it is difficult to obtain a solution. 

However, researchers have resolved this problem by 

assuming small temperature differences within the fluid flow 

[25, 26]. In this situation, Rosseland’s model can be 

linearized about ambient temperature ∞′T  assuming that the 

difference in the temperature within the flow is such that 
4

T ′ can be expressed as a linear combination of the 

temperature. Using Taylor’s series expansion about T ′  the 

expansion of 4
T ′  can be written as follows, neglecting 

higher order terms: 

( ) ( ) ......TTTTTTTT +∞′−′∞′+∞′−′∞′+∞′=′ 2263444       (9) 

Neglecting higher order terms beyond the first degree in

( )∞′−′ TT , we have 

434 34 ∞∞ ′−′≅ TTTT                         (10)
 

Differentiating equation (8) w.r.t y′ and using (10), we 

obtain:  
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Now simply replacing 
3

T ′  in Eq. (8) with 3∞′T , Eq. (4) can 

be expressed as follows: 
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In order to write the governing equations and boundary conditions in dimensionless form, the following non-dimensional 

quantities are introduced: 
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In view of equation (13) the basic field equations (2)- (5) 

can be expressed in non-dimensional form as 
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Where ,β ,Gr ,Gm ,M ,K ,rP ,Ec ,Sc Kc  denotes the 

Eringen micropolar vortex viscosity parameter, Grashof 

number, Modified Grashof number, Magnetic field 

parameter, Permeability of the porous medium, Prandtl 

number, Thermal radiation parameter, Heat absorption 

parameter, Viscous dissipation, Schmidt number and 

Chemical reaction parameters respectively. 

The corresponding initial and boundary conditions in non-

dimensional form as follow 
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The mathematical statement of the problem is now 

complete and embodies the solution of Eqs. (14)- (17) with 

modified boundary conditions (18). The system is well-

posed. 

3. Method of Numerical Solution 

The finite element method (FEM) is employed to solve the 

transformed, coupled boundary value problem defined by 

eqns. (14) - (17) under (18). FEM is the most popular and 

adaptable method available to engineers. The general details 

of the variational finite element method are described at 

length in Reddy [27] Rao [28] and Bathe [29]. FEM has been 

applied to study many transport problems of micropolar 

fluids and magnetic liquids. The fundamental steps involved 

in the finite-element analysis of a problem are as follows: 

Discretization of the infinite fluid domain into finite elements: 

The whole domain is divided into a finite number of sub 

domains, processes known as discretization of the domain. 

Each sub domain is termed as finite element. The collection 

of elements is then denoted the finite-element mesh. 

Derivation of element equations: 

The derivation of finite element equations .,.ei  algebraic 

equations among the unknown parameters of the finite 

element approximation, involves the following three stages. 

A typical element is isolated from the mesh and 

constructing the variational formulation of the differential 

equation on that typical element. 

Assume the form of the approximate solution over a 

typical finite element. 

Derive the finite element equations by substituting the 

approximate solution into variational formulation. 

These steps result in a matrix (known as stiffness matrix) 

equation of the form [ ]{ } { }eee FuK = , which defines the 

finite element model of the original equation. 

Assembly of element equations: 

The algebraic equations so obtained are assembled by 

imposing the inter-element continuity conditions (i.e. the 

values of the nodal variables at the nodes are identical for 

two or more elements). This yields a large number of 

algebraic equations known as the global finite element 

model. This governs the whole flow domain.  

Imposition of boundary conditions: 

The initial and final boundary conditions defined in equation 

(18) are imposed on the above obtained assembled equations. 

Solution of assembled equations: 

The final matrix equation obtained can be solved by any 

efficient iterative scheme. 

In one-dimensional space, linear and quadratic elements or 

higher order can be taken. Here the entire flow domain is 

considered by dividing it into successively sized grids of 

order 81x81, 101x101 and 121x121 in the y-axis direction. 

After many tests a grid size with 101 intervals has been 

adopted. Thus, all the computations are executed with 101 

intervals of equal step size 0.01. At each node, 4 functions 

are to be evaluated and after assembly of the element 

equations, a set of 404 non-linear equations are obtained 

which necessitate an iterative solution subject to the specified 

boundary conditions. The iterative process is terminated 

when the following condition is met: 
6

10
1 −≤∑ −+

j,i

nn ξξ

where θξ ,N,u=  and ϕ  are velocity along x axis, 

microrotation, temperature and concentration respectively. n
denote the iterative step. To see the effects of step size (h) the 

finite element code is run with step sizes as h=0.01 and very 

good agreement is obtained for different profiles.  

The skin friction coefficient, couple stress coefficient, 

Nusselt number and Sherwood number are important 

parameters for this type of boundary layer flow and frequently 

used in materials processing simulations and design. 

The skin-friction at the plate in non-dimensional form is 

given by: 
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The couple stress coefficient at the plate in non-

dimensional form is given by: 
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Nusselt number is computed in non-dimensional form as: 
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Sherwood number is evaluated as in non-dimensional form 

by: 
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Here 
ν

xoV
xRe =  is the local Reynolds number based on the plate suction velocity. 

Table 1. Variations of in 
11 −−

x
ReShand

x
ReNu,

w
C,

f
C  for different MandGm,Gr,β . 

β  Gr  Gm  M  C
f

 
Cw

 1−
x

ReNu  1−
x

ReSh  

0.0 2.0 2.0 2.0 3.4848 3.4789 0.5372 0.7113 

0.1 2.0 2.0 2.0 0.7551 0.7550 0.5375 0.7113 
0.5 2.0 2.0 2.0 0.7097 0.7096 0.5310 0.7113 

0.1 4.0 2.0 2.0 1.7222 1.7129 0.5345 0.7113 

0.1 2.0 4.0 2.0 1.7174 1.7115 0.5050 0.7113 
0.1 2.0 2.0 1.0 1.1444 1.1445 0.5368 0.7113 

Table 2. Variations of in 
11 −−

x
ReShand

x
ReNu,

w
C,

f
C  for different ScandEc,RPr, . 

Pr  R  Ec  Sc  C
f

 
Cw

 1−
x

ReNu  1−
x

ReSh  

0.71 2.0 0.01 0.6 3.4847 3.7937 0.5372 0.7113 

5.0 2.0 0.01 0.6 0.6873 0.6372 0.6722 0.7113 

0.71 1.0 0.01 0.6 0.7845 0.7844 0.4151 0.7113 
0.71 2.0 1.0 0.6 1.6181 0.6180 0.7116 0.7113 

0.71 2.0 0.01 0.2 0.9494 0.9493 0.5390 0.3109 

Table 3. Effects of Kc  on 
11 −−

x
ReShand

x
ReNu,

w
C,

f
C  for with 01027102250500010101 .Ec,R,.Pr,GmGr,M,.,.Up,.,.n,t =========== βε . 

parameter values C
f
 

Cw
 1−

x
ReNu  1−

x
ReSh   

Kc 
1.0 2.4215 2.7313 0.5663 1.4615  

2.0 2.3312 2.7215 0.5633 1.4821  

 
Table 1 and Table 2 document the friction factor, surface 

heat transfer and mass transfer rate dependency on the 

emerging thermo-physical parameters. Table 1 depicts the 

effect of M,Gm,Gr,β on 
x

Re/Sh,
x

Re/Nu,wC,fC

respectively. It is observed that the skin friction decreases as 

Gm,β increases while it increases as Gr increases. As M

decreases skin friction increases. The same trend is observed 

in case of wall couple stress. Further, it is observed that the 

Nusselt number decreases as Gm,Gr,β increases but as M

increases, Nusselt number decreases. Sherwood number has 

no significant effect on M,Gm,Gr,β . Table 2 depicts the 

effect of Sc,Ec,RPr, on 
x

Re/Sh,
x

Re/Nu,wC,fC  

respectively. The skin friction coefficient decreases as 

R,EcPr,  increases, while it decreases as Sc decreases. The 

same trend is computed in the case of wall couple stress (wall 

micro-rotation gradient). Further, it is observed that the  

Nusselt number decreases as R decreases. Nusselt number 

increases as Sc decreases, while it increases as EcPr,

increases. Sherwood number decreases as Sc decreases No 

tangible modification is computed in Sherwood number (wall 

mass transfer rate) with a change in R,EcPr, . Numerical 

values of the coefficients proportional to the skin friction 

fC , couple stress coefficient wC , Nusselt number Nu and 

Sherwood number Sh  are given in Table 3 for the general 

model with all parameters invoked. It is evident from Table 3 

homogeneous chemical reaction parameter Kc  increase, the 

skin friction coefficient fC  and wall couple stress coefficient 

wC  both decrease. Also, it is apparent that as chemical 

reaction Kc increases, a significant increase is computed in 

Sherwood number, Sh . 

4. Results and Interpretation 

The nonlinear boundary value problem solved in the 

previous section is dictated by an extensive number of 

thermal and hydrodynamic parameters. In order to gain a 

clear insight into the physical problem, numerical 

calculations for distribution of the velocity, microrotation 

(angular) velocity, temperature and concentration for 

different values of these parameters is conducted with 

graphical illustrations (Figures 2-17). For the purpose of our 

computations, we adopted the following default parameters: 

,001.0=ε ,.n 10= ,t 1= ,.
p

U 50= ,.10=β ,Gr 2=
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,Gm 2= ,M 2= ,K 1= ,.Pr 710= ,.Sc 60= ,.R 01=
,.Ec 010= 01.Kc = and all graphs therefore correspond to 

these values unless specifically indicated otherwise on the 

appropriate graph. The permeability in all the figures plotted 

is set at 0.5 which corresponds to a highly porous regime, 

characteristic of certain materials processing systems. The 

value of Pr is taken to be 0.71 which corresponds to air at 

20°C and 1 atmospheric pressure and the value of Sc is 0.6 

(water-vapour). Numerical values of the coefficients 

proportional to the skin friction fC , couple stress 

proportional to the skin friction fC , couple stress coefficient

wC , Nusselt number Nu and Sherwood number Sh are given 

in Table 1, Table 2 and Table 3 for the general model with all 

parameters invoked. 

Figures 2-3 illustrate the response of microrotation 

velocity parameter β  on velocity and micro-rotation. It is 

seen that as β increases, the velocity gradient near the porous 

plate decreases, and then approaches to the free stream 

velocity. Also, it is noteworthy that velocity distribution 

across the boundary layer is lower for Newtonian fluid ( β = 

0) as compared with stronger micropolar fluid ( β = 0.2) for 

the same conditions and fluid properties. Micropolarity (i.e. 

increasing vortex viscosity of micro-elements) therefore 

consistently induces deceleration in the flow adjacent to the 

plate. All profiles are parabolic and peak at some distance 

from the wall, decaying smoothly to vanish in the free 

stream. In addition, the magnitude of microrotation at the 

wall is decreased as β  increases. However, the distribution 

of microrotation across boundary layer does not show 

consistent variations with increase of β . 

The effect of thermal radiation-conduction parameter ( R ) 

on temperature is presented in Figure 4. This parameter is 

defined as kk/TR 3
3

16 ∞= σ  and features in the augmented 

thermal diffusion term in eqn. (16) i.e. ( )221 y// ∂∂Γ θ . It 

defines the relative contribution of thermal radiation heat 

transfer to thermal conduction heat transfer. When 1<R

thermal conduction dominates. When 1=R both thermal 

conduction and thermal radiation contributions are equal. For 

1>R thermal radiation dominates over thermal conduction. 

In the present simulations, we confine attention to the last of 

these three cases i.e. 1>R wherein thermal radiative flux is 

substantial. Increasing radiation-conduction parameter is 

found to decrease temperatures in the boundary layer. 

Thermal boundary layer thickness is therefore reduced with 

greater values of R . 

Figure 5 represent the influence of chemical reaction 

parameter ( Kc ) on concentration profiles. The reaction 

parameter is based on a first-order irreversible chemical 

reaction which takes place both in the bulk of the fluid 

(homogeneous) as well as at the plate which is assumed to be 

catalytic to chemical reaction. We consider the destructive 

type of homogenous chemical reaction. It is noticed that 

concentration distributions decrease when the chemical 

reaction increases. Physically, for a destructive case, 

chemical reaction takes place and progressively destroys the 

original species. This, in turn, suppresses molecular diffusion 

of the remaining species which leads to a fall in 

concentration magnitudes and a decrease in concentration 

boundary layer thickness.  

Figure 6 illustrates the influence of Prandtl number (Pr) on 

temperature profiles. Prandtl number represents the relative 

rate of momentum diffusion to energy diffusion. With 1>Pr  

the momentum diffusion rate also exceeds the thermal 

diffusion rate in the fluid. It is observed that there is a strong 

depression in temperature with greater Prandtl number (Pr), 

greater Prandtl number corresponds to a lower thermal 

conductivity. This leads to a reduction in thermal energy 

convected through the fluid from the plate (Gr >0 i.e. plate 

cooling) and depresses the thermal boundary layer thickness. 

Figure 7 present the effects of the viscous dissipation 

parameter i.e., the Eckert number Ec on temperature field. 

Eckert number signifies the quantity of mechanical energy 

converted via internal friction to thermal energy i.e. heat 

dissipation. Increasing Ec values will therefore cause an 

increase in thermal energy contributing to the flow and will 

heat the regime. Positive Eckert number implies cooling of 

the wall and therefore a transfer of heat to the micropolar 

fluid, also convection is enhanced. Temperatures are 

markedly increased with greater Eckert number. For all non-

zero values of Ec the temperature overshoot near the wall is 

distinct; this overshoot migrates marginally further into the 

boundary layer with an increase in Ec. Very smooth decays in 

temperature profiles are observed for all values of Eckert 

number and the convergence of profiles in the free stream 

indicates that an adequately large infinity boundary condition 

has been imposed in the finite element model. 

The profiles of the velocity and microrotation in the 

boundary layer for various values of the plate moving 

velocity pU are shown in Figures 8 -9 in the direction of the 

fluid flow. It is noticed that the peak value of velocity across 

the boundary layer increases near the porous plate as the 

plate velocity increases. The results also show that the 

magnitude of microrotation on porous plate decreases as pU  

increases. The linear flow is therefore accelerated with 

greater plate velocity whereas the micro-rotation (angular 

flow) of micro-elements is inhibited i.e. decelerated. 

Figures 10-13 represents the influence of Grashof number 

Gr  and modified Grashof number Gm  on velocity and 

microrotation profiles. The thermal Grashof number, Gr , 

quantifies the relative magnitude of the buoyancy force and 

the opposing frictional (viscous) forces acting on the 

micropolar fluid. Physically the positive, negative and zero 

)GrandGr,Gr.,e.i( 000 =<>  values of the Grashof number 

correspond to cooling, heating of the boundary surface and 

absence of free convection currents, respectively. The species 

(solutal) Grashof number i.e. Gm embodies the relative 

contribution of species buoyancy force to viscous 

hydrodynamic force. It is observed that the velocity increases 

as Gr or Gm  increases. Furthermore, the peak value of 

velocity increases rapidly near the wall of the porous plate. 

However, the converse behavior is computed in the case of 

micro-rotation profiles. Thermal and species buoyancy 
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therefore modify linear and angular velocity fields in a 

different fashion with different implications for boundary 

layer thicknesses. 

Figures 14-15 show the pattern of the velocity and 

microrotation for different values of magnetic field parameter

M . It is observed that the amplitude of the velocity as well 

as the boundary layer thickness decreases when M is 

increased. Physically, in magnetohydrodynamic materials 

processing, the applied magnetic field exerts a retarding 

effect on the free convective flow, transverse to the direction 

of imposition of the magnetic field. With increasing the 

values of M , this type of resisting force slows down the 

fluid i.e. with stronger magnetic field strength the flow is 

decelerated and this is confirmed with the decreasing velocity 

distribution across the boundary layer. In case of figure 15 an 

increase in magnetic parameter is observed to significantly 

accelerate the angular velocity i.e. enhance the magnitude of 

micro-rotation, although the effect is more localized at the 

plate surface and progressively grows further from the plate. 

In both figures 14 and 15 asymptotically smooth solutions 

are obtained indicating that a sufficiently large infinity 

boundary condition is prescribed in the free stream. Linear 

momentum boundary layer thickness is therefore increased 

with greater magnetic parameter whereas angular momentum 

boundary layer thickness is reduced. 

Figures 16-17 visualize the effect of the porous medium 

permeability parameter (K) on both velocity and microrotation 

fields. This parameter characterizes the hydraulic 

transmissivity of the porous medium. With increasing 

permeability, the regime, the quantity of solid fibers 

progressively decreases. The Darcian bulk impedance to flow 

is therefore also decreased. This results in acceleration in the 

velocityu , as observed in Fig. 16. This behaviour is sustained 

across the boundary layer i.e. for all values of transverse co-

ordinate, η . It is also apparent that micro-rotation i.e. angular 

velocity is enhanced with greater permeability parameter 

although the effect is more prominent near the plate surface 

and is weakened with further distance into the boundary layer. 

Since the permeability parameter does not arise in the angular 

momentum conservation (boundary layer) eqn. (15) the 

accelerating effect on micro-rotation is sustained via the boost 

in linear momentum experienced through the coupling terms 

which link both linear and angular momentum fields. The 

increase in permeability implies greater void space in the 

porous medium. This allows an enhancement in gyratory 

motions as the micro-elements are afforded greater space in 

which to spin. 

The concentration profiles for different values of Schmidt 

number, Sc are illustrated in Figures 18. The Schmidt number 

embodies the ratio of the momentum to the mass diffusivity 

i.e. D/vSc = . The Schmidt number therefore quantifies the 

relative effectiveness of momentum and mass transport by 

diffusion in the hydrodynamic (velocity) and concentration 

(species) boundary layers. For 1>Sc  momentum diffusion 

rate exceeds the species diffusion rate. The opposite applies 

for 1<Sc . For 1=Sc both momentum and concentration 

(species) boundary layers will have the same thickness and 

diffusivity rates will be equal. However, it is apparent that 

species (concentration) profiles gradually increase with 

higher Schmidt number. Smaller values of Sc are equivalent 

to increasing the chemical molecular diffusivity and vice 

versa for larger values of Sc. 

 
Figure 2. Velocity profiles for variou values of β . 

 
Figure 3. Microrotation profiles for various values of β . 

 
Figure 4. Temperature profiles for various values of R . 
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Figure 5. Concentration profiles for various values of Kc . 

 
Figure 6. Temperature profiles for various values of Pr . 

 

 
Figure 7. Temperature profiles for various values of Ec . 

 

 

Figure 8. Velocity profiles for various values of pU . 

 

Figure 9. Microrotation profiles for various value pU . 

 
Figure 10. Velocity profiles for various values of Gr . 
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Figure 11. Microrotation profiles for various values of Gr . 

 

Figure 12. Velocity profiles for various values of Gm . 

 
Figure 13. Microrotation profiles for various values of Gr . 

 

Figure 14. velocity profiles for Various values of M . 

 
Figure 15. Microrotation profiles for various values of M . 

 
Figure 16. Velocity profiles for various values of K . 
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Figure 17. Microrotation profiles for various values of K . 

 
Figure 18. Concentration profiles for various values of Sc . 

5. Conclusions 

A mathematical model has been presented for radiative 

magnetic free convection heat and mass in transient flow of 

an incompressible, micropolar fluid from an inclined plate in 

porous media. Heat source/sink and homogeneous chemical 

reaction effects have been included in the formulation. The 

conservation equations for momentum, angular momentum 

(micro-rotation component), energy and concentration have 

been non-dimensionlized with appropriate variables. The 

resulting non-linear, transient, coupled system of partial 

differential equations and set of initial and boundary 

conditions has been solved numerically, using the variational 

finite element method with a Galerkin weighted residual 

scheme. Computations have been executed in MATLAB 

software, and have shown that the flow is accelerated and 

momentum boundary layer thickness decreased with 

increasing values of Up, Gr, Gm, K and Ec but in case of β, 

M, R, Sc and Kc the flow is decelerated and momentum 

boundary layer thickness increased. Angular velocity 

(Microrotation) is suppressed as β, Up, Gr, Gm, and K 

increases, conversely angular velocity is elevated with M 

increases. Increasing Eckert number Ec elevates temperature 

and enhances thickness of thermal boundary layer. Increasing 

Schmidt number elevates concentration and enhances the 

thickness of the species boundary layer. Increasing 

homogeneous chemical reaction parameter decreases 

concentration and reduces concentration boundary layer 

thickness. Sherwood number (wall mass transfer rate) is 

enhanced with increasing permeability and homogeneous 

chemical reaction. 

The finite element code developed has resolved efficiently 

the nonlinear micropolar transport phenomena in vertical 

plate magnetohydrodynamic heat and mass transfer. Future 

studies will consider magnetic induction effects and will be 

reported soon. 
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