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Abstract: In this study a model based approach is adopted and a robust estimator of the jackknifed Nadaraya Watson 

estimator of the finite population total is proposed by incorporating the jackknifed procedure into the nonparametric regression 

estimator (the case of Nadaraya Watson). The study sought to estimate the finite population total using the proposed estimator 

(Jackknifed Nadaraya Watson). The study also looked at the various approaches of estimation of finite population totals and 

their properties. To measure the performance of each estimator, the study considered the average bias, the efficiency by the use 

of mean squared error and robustness using the rate of change of efficiency. Numerical study using simulated population was 

employed to examine the performance of the proposed estimator and compared it with the already existing estimators (Horvitz-

Thompson, Nadaraya Watson, Ratio estimator). The simulation experiment showed that the proposed estimator records better 

results in terms of Bias and mean squared errors (MSE). 
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1. Introduction 

In many complex surveys, available information about the 

study population can be used at the design and estimation 

stages to construct efficient procedures for the finite population 

quantities i.e. population total or mean so as to increase the 

precision of the estimators of such population quantities. The 

information can be collected by national census, official 

registers, natural resources inventories and remote sensing 

data. Estimation being the main concern in surveys, emphasis 

is usually on the use of the auxiliary information. One of the 

approaches is to assume a working model and more often a 

linear model describing the relationship between the survey 

variable and auxiliary variable is selected. Estimators are then 

derived from this linear model. However for efficient use of 

any of these estimators prior knowledge of the specific 

parametric structure of the population needs to be known and 

this is usually problematic especially if the model is to be used 

for many variables [1]. Because of these concerns more focus 

has been given to non-parametric models describing the 

relationship between the auxiliary variables and the study 

variables are assumed [2]. The idea of nonparametric traces its 

origin in works by [3]. Non-parametric based estimation is 

often more robust and flexible than inference based on 

parametric regression models or design probabilities (as in the 

case of design-based inference) [4]. A variety of approaches 

exist in the construction of more efficient estimators and they 

include; Model-based and design based methods. In Model-

based approach, the idea is based on super population models 

which assumes that the population under study is a realization 

of a random variable having a super population model �. The 

model �  is used to predict the non-sampled values of the 

population hence finite population quantities [5]. [6] First 

considered non parametric models for � and obtained a local 

polynomial regression estimator as a generalization of the 

ordinary generalized regression estimator. From the 

simulation, their study showed the proposed estimator 

performed better than the other parametric estimators. [7] 

Improved on [6] estimator and developed a model-based local 

polynomial regression estimator applicable to direct sampling 

designs i.e. simple random sampling and systematic sampling. 

Their estimator demonstrated better results than [7]. In this 

study auxiliary information is used to determine the estimate of 

finite population total using non-parametric regression in the 
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case where jackknifing procedure is incorporated into the 

Nadaraya Watson estimator. 

2. Review of the Jackknifing Estimator 

Jackknifing is one of the re-sampling techniques that are 

commonly used to reduce bias found in estimators and also 

assessing variability. Basically in jackknifing procedure, the 

idea is generalized into splitting the sample into g groups of 

size h each. This thus implies that � = �ℎ. The procedure 

involves the following: Let Y1, Y2,.. Yn be a sample of 

independent and identically distributed random variables. 

Again let �� be an estimator of the parameter �  based on 

sample of size n. Let ��	
  be the corresponding estimator 

based on the sample of size (� − 1)ℎ, where the i
th

 group of 

size h has been deleted. [8] and [9] defined that 

��
 = ��� − (� − 1)��	
 	���	� = (1,2,3, …�)	        (1) 

Then the estimator 

�� = ��∑ ��
�
�� = ��� − (� − 1) ��∑ ��	
�
��            (2) 

It’s important to note that the estimator (2) has the property 

that it eliminates the order 
���  term from bias of the form � ��! = � + #$� + %( ���) 

3. Jackknifing in Model Based 

Estimation of Finite Population Totals 

The algorithm of estimating the total using the Nadaraya 

Watson with the Jackknife technique is given in this section. 

The technique of deleting a single case from the Original 

sample (delete one jackknife) sequentially will be adopted. 

Suppose that a database consists of n vectors (&
 , '�
 , '(
 … , '�
) , where &
  is the study variable and '�
 , '(
 … , '�
  are considered auxiliary variables. Let '
 = '�
, '(
 … , '�
  and 	)* = (+* , ,*) , - = 1,2, … , �  denote 

the values associated with the �./	observation. In this case, 

the set observations is the vector ()�, )(, … )�) . Then the 

Jackknife Procedure based on delete one is as follows: 

i. Draw �	sized sample from a population randomly and 

label the elements of the vector )* = (+* , ,*) , -	 =	1,2,3, . . . , �. 
ii. Omit one observation of the vector )* = (+* , ,*) , -	 = 	1,2,3, . . . , � . and label the remaining � − 1  sized 

observations set &�0 = (+�, +(, … , +�	�)	 and '�0 =(,�, ,(, … , ,�	�) as delete -one Jackknife sample )�0. 

iii. Obtain the Nadaraya Watson estimate 12 0�	from )�0. 
iv. Omit another observation of the vector )
 = (+
 , ,
), 

and label the remaining � − 1	 Sized observations set &(0 = (+�, +(, … , +�	�)	 and '(0 = (,�, ,(, … , ,�	�) as delete -one Jackknife sample )(0. 
v. Obtain the Nadaraya Watson estimate 12 0(	from )(0. 
vi. Similarly omit one of the n observations (there are � 

jackknife samples and each of them and have � − 1 

observations) and estimate the Nadaraya Watson 12 03 ,4!, 
where 12 03 ,4! is the Jackknife Nadaraya Watson estimate 

after deleting the-./ observation from )* = (+* , ,*). 
4. The Proposed Estimator 

Dorfman [3] introduced a non-parametric regression 

estimator for finite population total based on a sample drawn 

from the population. Taking into consideration a population 

consisting of N units, the author sought to estimate the finite 

population total defined by: 

5 = ∑ +
67�� 	���	� = (1,2,3, …8)                 (3) 

We propose the Jackknife estimate of the population total 

to be defined as 

5�4�9 = ∑ +
�
�� + ∑ 12064:
 (,4)                  (4) 

= ∑ +
�
�� +∑ ��64:
 ∑ ;
4�*�� (,
4)+
4              (5) 

Where 12 0 ,4! = 1�< 124*�
*�� (,4) 

Now on deriving the asymptotic variance of the error term, 

we note that It’s easy and it can be shown that  �=>̂
4@ = 0. 

Therefore, 

BC�=>̂
4@ = �=>
4(D @ 
= �=&
4 − Ê ,70!@( 

= �=&²
4@ − 2�=&
4Ê ,
4!@ + �=Ê ,
4!@( 

But 

G�H &
4 , E ,
4!	! = � I&
4 , Ê ,
4!J − � &
4)�(E(,
4)! 

From this we get that 

BC� >̂
4! = BC� &
4! − �=&
4@( − 2G�H I&
4,Ê ,
4!J + 2�=&
4@�=Ê ,
4!@ + BC� IÊ ,
4!J + �=Ê ,
4!@² (4.4) 

But &
4  and Ê ,
4!	are independent, hence the above equation (4.1) simplifies to 

BC�=>̂
4@ = BC� &
4! + BC� IE ,
4!J 

= K² ,
4! + BC� IE ,
4!J                                                                     (6) 
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ComputingBC� IE ,
4!J, we have that 

BC�=Ê ,
4!@ = BC� L �� − 1<(� − 1)¯¹O¯¹P I,
4	,
4O J &
4
QR
S I)R ,T
4!J ¯¹ 

= I �� − 1J ²	<(� − 1)

QR

¯(O¯(P I,
4 − ,
4O J( K² ,
4! I)R ,T
4!J ¯( 

Now next we obtain the asymptotic expansion of BC�=Ê ,
4!@ as follows  

=)R ,
4!@¯� = =)R ,
4!@¯� U1 − O²)R ,
4!P()R" ,
4! + %(OW + (� − 1)	½O	½)Y 
Therefore 

=)R ,
4!@¯² = =)R ,
4!@¯² U1 − O²)R ,
4!P()R" ,
4! + %(OW + (� − 1)	½O	½)Y ²	 
= =)R ,
4!@² Z1 − [²\] ^_`!P()Ra ,
4! + %(OW + (� − 1)	½O	½)b                                      (7) 

But we know that 

P I,
4 − ,
4O J E ,
4! = OE ,
4!)R ,
4a ! + %(OW + O½) 
Then similarly 

P I,
4 − ,
4O J K ,
4! = K ,
4!)R ,
4! + %(OW + O½) 
Now 

cO	�(� − 1)¯¹P I,
4 − ,
*O JK ,
4!d( = O	((� − 1)¯=OK ,
4!)R ,
4! + %(OW + O½)@( 

= O	((� − 1)	(=O(K( ,
4!)R( ,
4! + 2OK ,
4!)R ,
4!%(OW + O½) + e%(OW + O½)f(@ 
= (� − 1)¯² cK( ,
4!)R( ,
4! + 2K² ,
4!)R ,
4!%(O( + O	½) + I%(Og + O	½)Jd 

Therefore 

<cO�(� − 1)¯¹P I,
4 − ,
*O JK ,
4!d(
QR
(� − 1)¯¹=K( ,
4! + %(Og + O	½) + %(Og + O	�)@ 

This then follows that 

BC� IE ,
4!J = I �� − 1J¼ < (� − 1)	(O	(P I,
4 − ,
*O J( K ,
4! I)iR ,
4!J
QR,
:*
(
 

So that 

BC� IÊ ,
4!J = I �� − 1J¼ j(� − 1)	�kK( ,
4!)R ,
4! + %(O( + O	½) + %(O( + O	�)l
∗ =)R ,
4!@	( U1 − O(

)R ,
4! P()R" ,
4! + %(OW + (� − 1)	½O	½)Yn 
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I �� − 1J	¼ (� − 1)	� oK( ,
4! + O(K( I,
4P()R ,
4!)" ,
4! + %(OW + (� − 1)	½O	½)Jp 

= I �� − 1J	¼ (� − 1)	�=K( ,
4! + %((� − 1)	½O	½)@ 
= I �� − 1J	¼ (� − 1)	�=K( ,
4! + %((� − 1)	½O	½)@ 
= I �� − 1J	¼ 1� − 1 =K( ,
4! + %((� − 1)	½O	½)@ 
	= I ��	�J	¼ Zq� ^_`!�	� + ��	�K( ,
4!((� − 1)	½O	½)b                                                     (8) 

But for large number of subgroups � − 1 ≅ �. sℎ>�>���> 

BC�=Ê ,
4!@ = K ,
4!� − 1 + % t(� − 1)	W(O	½u 

And as �O → 	∞	and so 

BC�=Ê ,
4!@ = K ,
4!� − 1  

Hence 

BC�=Ê ,
4!@ = K( ,
4! + K( ,
4!� − 1  

= �� − 1K( ,
4! 

But as �  tends to be large, � − 1 ≅ �  therefore follows 

that BC�=>
4@ = K(,
4  

5. Description of the Population 

In the study four populations are considered, which are 

generated from regression model [10] defined as; +
 = 1(,
) + >
 With the following mean functions; 

x��>C�:1� = 1 + 0.5 ∗ (' − 0.25) 
{|C)�Cs�}:1( = 1 + 0.5 ∗ (' − 0.25)( 

With the following regression functions; 	~�1��>�>�|�	���|xCs���: &� = 1^ + >
 ~>s>���>�>�|�	���|xCs���: &( = 1^ + >
 ∗ ' >
: rnorm (1000, mean=0, sd=.1) #the random error 

X: runif (1000, min = 0, max = 1) #the explanatory 

variable 

6. Simulation Results 

The results of the study are summarized in the tables 1 to 8 

and the plots 1 to 4. On each population the performance of 

each estimator is analyzed using the average bias and mean 

squared error. The average bias is an indication of the 

measure of how close the estimator is from the true value, 

while the MSE is used to assess the efficiency of an 

estimator. For each combination of mean functions, standard 

deviation (s.d=0.1), and at optimal bandwidth h=0.1429514, 

1000 replicates from samples of the four (4) populations are 

selected and the estimators calculated. Each of the table 1-4 

show the ratios of the MSE’s for all the estimators. The 

performance of the Jackknifed Nadaraya Watson Estimator in 

the four selected populations (I, II, II, and IV) is consistently 

good. With respect to the MSE the Jackknifed Nadaraya 

Watson Estimator dominates all the other estimators. 

In table 3 the Jackknifed Nadaraya Watson estimator 

performs better than Nadaraya Watson estimator and the 

Ratio estimator except the Horvitz-Thompson estimator, this 

is because the mean function is correctly specified and the 

other estimators are considered competitive. 

The Biases for the Jackknifed Nadaraya Watson are 

smaller compared to the Horvitz-Thompson estimator and the 

Ratio Estimator but slightly larger compared to the Nadaraya 

Watson. Table 1-3 shows biases of the Jackknifed Nadaraya 

Watson having negative values a manifestation that the 

Jackknifed Nadaraya Watson estimator tends to 

underestimate the True population total while the Nadaraya 

Watson estimator also tends to overestimate the True 

population total but only in cases where the sample size is 

large enough. 

The confidence lengths generated by the Nadaraya Watson 

estimator are much tighter than those generated by JNW, HT, 

and Ratio estimator’s at large bandwidths but at lower 

bandwidths, the JNW gives much tighter confidence lengths 

compared to the other estimators. Note that the best 

performing estimator is one whose coverage rate is close to 

the true population total and its length is small i.e a smaller 

confidence length is better because it implies that the true 

population total is captured within a small range and 

therefore the results are more precise. 
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Table 1. Population I (Linear and Homoscedastic). 

 NW Estimator JNW Estimator HT Estimator RATIO Estimator 

Pop. Estimate 1122.905 1120.369 1121.751 1709.218 

Bias 1.239 -1.297 -4.278 587.553 

MSE 16.441 1.705 18.445 386049.800 

Confidence Length 5.357 5.992 7.915 293.345 

True Population Total is 1121.665 

Table 2. Population II (Linear and Heteroscedastic). 

 NW Estimator JNW Estimator HT Estimator RATIO Estimator 

Pop. Estimate 1123.959 1120.219 1122.934 1720.742 

Bias 0.982 -2.759 -5.680 597.764 

MSE 9.717 7.632 32.367 397490.700 

Confidence Length 4.165 4.985 6.957 284.892 

True Population Total is 1122.978 

Table 3. Population III (Quadratic and Heteroscedastic). 

 NW Estimator JNW Estimator HT Estimator RATIO Estimator 

Pop. Estimate 1071.964 1070.454 1071.479 1881.422 

Bias 0.523 -0.987 -0.169 809.981 

MSE 5.613 0.983 0.072 711719.400 

Confidence Length 3.207 3.600 4.694 337.541 

True Population Total is 1071.441 

Table 4. Population IV (Quadratic and Homoscedastic). 

 NW Estimator JNW Estimator HT Estimator RATIO Estimator 

Pop. Estimate 1070.912 1070.604 1070.296 1869.899 

Bias 0.781 0.477 1.231 799.769 

MSE 11.899 0.236 1.584 696017.500 

Confidence Length 4.503 4.825 5.540 343.391 

True Population Total is 1070.129 

6.1. Conditional Properties of the Nonparametric 

Estimators 

The figures below show behavior of the conditional bias 

for each estimator when various mean functions were used. 

In figure 1 and 2 the Ratio estimator and the HT estimator 

performed well when a linear function was used. This is 

because the Ratio Estimator is the Best Linear Unbiased 

Estimator (BLUE). It can be observed that the biases to the 

left of the population mean of the auxiliary variable ( x
=248), are small but reduce towards the right. As the 

population grows larger the Jackknifed Nadaraya Watson 

estimator performs well than all the other estimators. 

In figure 3 and 4 the Quadratic mean functions were used. 

The proposed estimator (JNW) gives better estimates of the 

population total compared to the ones realized using 

Nadaraya Watson estimator that was proposed by [3] and the 

Ratio estimator. It can be observed that the biases of JNW 

remains lowest throughout. 

 

 

6.2. Plots for the Conditional Biases 

 

Figure 1. Plot of conditional biases (Linear and Homoscedastic). 
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Figure 2. Plot of conditional biases (Linear and Heteroscedastic). 

 

Figure 3. Plot of conditional biases (Quadratic and Heteroscedastic). 

 

Figure 4. Plot of conditional biases (Quadratic and Homoscedastic). 

6.3. Performance of the Estimators at Varying Bandwidths 

From table 5 and 6 the two estimators (Nadaraya Watson 

and Jackknifed Nadaraya Watson) perform well under the 

linear and homoscedastic condition. However in comparison 

with JNW the Nadaraya Watson estimator has lower bias and 

the values of JNW are negative indicating that it tends to 

underestimate the value of the True population total. The 

small values of the bias indicate that the estimated values of 

the population total are closer from the True population 

value. The values of the MSE from the JNW outperforms the 

Nadaraya Watson and this implies that the estimator (JNW) 

has efficiency in linear and homoscedastic population 

structure. 

Table 7 and 8 (Quadratic structure) of the population, it 

can be noted that the Nadaraya Watson estimator has the 

least absolute bias compared to the jackknifed Nadaraya 

Watson estimator. It’s important to also note that the 

Nadaraya Watson is the best estimator for Quadratic and 

homoscedastic population. The JNW estimator has the 

lowest MSE especially for small values of bandwidth (h) 

making it the most efficient estimator compared to the 

Nadaraya estimator. 

Table 5. Population I (Linear and Homoscedastic). 

 Bandwidth NW Estimator JNW Estimator 

Population 

estimate 

H=0.11 1122.924 1121.587 

H=0.12 1122.92 1121.577 

H=0.15 1122.892 1122.535 

H=0.2 1122.812 1121.445 

H=0.5 1122.325 1120.369 

H=1 1121.795 1118.337 

H=1.5 1121.698 1117.751 

H=2 1121.669 1117.494 

True Population Total is 1121.665 

Bias 

H=0.11 1.258162 -0.078820 

H=0.12 1.254551 -0.088061 

H=0.15 1.226852 -0.130155 

H=0.2 1.146493 -0.220614 

H=0.5 0.659967 -1.296946 

H=1 0.129356 -3.328162 

H=1.5 0.032733 -3.994402 

H=2 0.033173 -4.171915 

M.S.E 

H=0.11 16.43041 0.0324638 

H=0.12 16.43709 0.0339747 

H=0.15 16.43905 0.0430443 

H=0.2 16.45676 0.0744916 

H=0.5 18.47527 1.704679 

H=1 24.42786 11.0947 

H=1.5 27.65575 15.97182 

H=2 28.92265 17.42106 

Table 6. Population II (Linear and Heteroscedastic). 

 Bandwidth NW Estimator JNW Estimator 

Population 

estimate 

H=0.11 1122.967 1121.295 

H=0.12 1123.965 1121.293 

H=0.15 1123.95 1121.276 

H=0.2 1123.898 1121.216 

H=0.5 1123.499 1120.219 

H=1 1123.016 1118.224 

H=1.5 1122.907 1117.563 

H=2 1122.897 1117.391 

True Population Total is 1122.978 
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 Bandwidth NW Estimator JNW Estimator 

Bias 

H=0.11 0.989576 -1.683056 

H=0.12 0.987078 -1.68474 

H=0.15 0.972403 -1.701852 

H=0.2 0.920972 -1.761982 

H=0.5 0.521613 -2.75904 

H=1 0.038213 -4.753231 

H=1.5 -0.07104 -5.414173 

H=2 -0.08026 -5.586416 

M.S.E 

H=0.11 9.671998 2.855903 

H=0.12 9.696557 2.861541 

H=0.15 9.773706 2.919371 

H=0.2 9.920756 3.127357 

H=0.5 12.23737 7.631814 

H=1 18.32091 22.60808 

H=1.5 21.58017 29.32666 

H=2 22.85392 31.22104 

Table 7. Population III (Quadratic and Heteroscedastic). 

 Bandwidth NW Estimator JNW Estimator 

Population 

estimate 

H=0.11 1072.881 1072.288 

H=0.12 1071.987 1072.299 

H=0.15 1071.928 1072.31 

H=0.2 1071.752 1072.253 

H=0.5 1069.863 1070.454 

H=1 1068.892 1068.844 

H=1.5 1069.679 1069.449 

H=2 1070.296 1070.045 

True Population Total is 1071.441 

Bias 

H=0.11 0.559088 0.8468487 

H=0.12 0.545464 0.8576714 

H=0.15 0.486597 0.8689436 

H=0.2 0.311249 0.8114198 

H=0.5 -1.57864 -0.987426 

H=1 -2.54926 -2.597221 

H=1.5 -1.76273 -1.992509 

H=2 -1.14563 -1.396723 

M.S.E 

H=0.11 5.578517 0.7259672 

H=0.12 5.583277 0.7443973 

H=0.15 5.592069 0.7637942 

H=0.2 5.607622 0.6669852 

H=0.5 9.383778 0.9823074 

H=1 15.37644 6.751466 

H=1.5 12.95653 3.97562 

H=2 11.57031 1.956261 

Table 8. Population IV (Quadratic and Homoscedastic). 

 Bandwidth NW Estimator JNW Estimator 

Population 

estimate 

H=0.11 1070.953 1072.56 

H=0.12 1070.942 1072.583 

H=0.15 1070.87 1072.57 

H=0.2 1070.666 1072.482 

H=0.5 1068.689 1070.604 

H=1 1067.671 1068.957 

H=1.5 1068.47 1069.556 

H=2 1069.097 1070.147 

True Population Total is 1070.129 

Bias 

H=0.11 0.824427 2.451085 

H=0.12 0.812937 2.454351 

H=0.15 0.741046 2.44064 

H=0.2 0.536770 2.352787 

H=0.5 -1.44029 0.4746665 

H=1 -2.45813 -1.172151 

H=1.5 -1.65901 -0.572738 

H=2 -1.03217 0.0177783 

M.S.E H=0.11 11.91843 6.019772 

 Bandwidth NW Estimator JNW Estimator 

H=0.12 11.88930 6.035778 

H=0.15 11.81215 5.968596 

H=0.2 11.66469 5.547329 

H=0.5 14.75919 0.2367553 

H=1 20.69225 1.383034 

H=1.5 18.34619 0.3367494 

H=2 17.05216 0.0089369 

7. Conclusions 

From the summary tables above, it can be seen that the 

proposed estimator generally gives a total with a very small 

bias as compared to the Nadaraya Watson, Horvitz -

Thompson, Ratio Estimator. Also, the proposed model can be 

seen to have a small Mean Square Error (MSE) as compared 

to Nadaraya Watson estimator. The graphs also shows that 

the population total estimate and conditional biases are more 

consistent in the proposed estimator as compared to 

Nadaraya Watson, Horvitz -Thompson, Ratio Estimator. 
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