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Abstract: In the hydrodynamic statement the filtration low from ditches, walled tongues of Zhukovsky is considered. The 

fluid moves through the layer of soil, underlain by a well-permeable pressure aquifer, which is contained waterproof area on 

the roof. For study the infiltration to the free surface of groundwater is formulated a mixed multi-parameter boundary value 

problem of the theory of analytic function, which is solved by the Polubarinova-Kochina's method and ways the conformal 

mapping areas of a special kind, which are characteristic for tasks of an underground hydromechanics. 
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1. Introduction 

In the hydrodynamic formulation is considered flat 

established incompressible fluid filtration by Darcy's law in 

construction ditches fences tongue Zhukovsky through 

homogeneous and isotropic soil layer underlained by a well-

permeable pressure aquifer on the roof that provides an 

impermeable land. During the study infiltration of the free 

surface groundwater formulated mixed boundary 

multiparameter problem of analytic function theory, which is 

solved by the method Polubarinova-Kochina and methods of 

conformal mappings of a special type, typical of underground 

fluid mechanics problems. Based on this model, an algorithm 

of calculation the filtration characteristics in situations when 

you have to take into account the combined effect of the 

picture movement of such important factors as the infiltration 

of the free surface, tight inclusion and backwater from the 

water well-permeable underlying aquifer. Using the exact 

analytical dependences and numerical calculations carried 

out hydrodynamic analysis of the structure and features of 

the modeled process and the effect of all physical parameters 

of the circuit on the filtration characteristics. The limiting 

case of flow associated with the absence of a backwater 

opaque area or infiltration and degeneration of ditches in a 

semi-infinite strip on the left of flooding. We give a solution 

of the problem for the circuit assuming a finite value of flow 

velocity at the tip of the tongue, which is an analogue of the 

classical problem of Zhukovsky. The results of calculations 

for all limiting cases are compared with the main filter 

model. 

The study of filtration flows from the construction pits, 

fenced symmetrical tongue Zhukovsky, related to work [1–

11]. It was assumed that the water-permeable layer of soil has 

unlimited power in some cases, in others underlying well-

permeable pressure reservoir was modeled by one or two 

drains in the form of a horizontal slit Zhukovsky [17]. In 

some studies examined free filtration, that is, for no 

backwater, and in some cases - the pressure, the presence of 

the free surface of neglect. In all these studies, infiltration 

records are not made. There were used function of 

Zhukovsky and method of Vedernikov-Pavlovsky, which 

reduce the case to a conformal mapping of rectilinear 

polygons and then using the Schwarz-Christoffel formula. 

As shown by the practical application of these methods 

[12-15] their direct use only lead to effective results when the 

boundary of the movement consists of horizontal and vertical 

watertight permeable areas. However, in actual hydraulic 

construction pits (canals, reservoirs) immediately below the 

overburden, together with the horizontal aquifers higher 

permeability (pebbles, gravel, coarse sand) often occur also 
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waterproof horizontal sections (tight turn, impermeable 

rock), that fundamentally affects the nature of the filtration 

processes. In such situations, the use of the Schwarz-

Christoffel integral does not lead to the goal, as in the areas 

of integrated flow rate already arise circular polygons, cannot 

be reduced directly to the straight line. 

In contrast to these researches below, as a direct 

continuation and development of the author's previous results 

[18-19], we study the problem of the flow of fluid from the 

pits through the dirt array ultimate power, underlain by a 

well-permeable pressure aquifer that comprising at its 

waterproof roof portion of infiltration in the presence of the 

free surface. We study the most general case of motion in 

which both permeable areas of the boundary flow filtration 

takes extreme values and point of zero flow rate enters the 

tongue. (that apparently has not yet occurred in the 

literature). There have been extreme cases of course, related 

to the lack of a backwater, a tight turn or infiltration, and the 

case of degeneration foundation ditches in a semi-infinite 

strip on the left of flooding previously studied by V.V. 

Vedernikov [10]. The results for the circuit that occurs in the 

absence of critical points in the case where the flow rate at 

the end of the tongue is finite; the resulting solution is an 

analogue of the classical problem of Zhukovsky [17]. 

For the solution of a mixed boundary value multi-

parameter problem of theory of analytic functions used 

method Polubarinova-Kochina [12-16] and areas designed 

for specific species [20-21]
 
of conformal mapping of circular 

polygons [22-24], which are typical for problems of 

underground hydromechanics. Accounting for the 

characteristics of movement allows us to represent the 

solution through a special, and in some cases, elementary 

functions, making them easy and convenient use. 

Based on the constructed exact analytical dependences and 

numerical calculations performed by the hydrodynamic 

analysis of the influence of the physical parameters of 

scheme on picture effects and highlights some of the features 

developed models. Mathematical modeling results for all 

extreme cases compared with the primary filter circuit. 

Highlights were announced earlier [25]. 

2. The Basic Model: Formulation of the 

Problem 

We consider the planar steady flow from the excavation 

A'A width 2l, fenced symmetrical tongue Zhukovsky same 

length S through the permeable capacity of soil layer T with 

the underlying aquifer E'E, containing or underground 

artesian water wherein the pressure has a constant value H0 

(Figure 1). On the roof of the reservoir is waterproof section 

D'D, simulated horizontal segment of length 2L. By the 

symmetry of pictures motion, we shall restrict the right half 

of the study filtration area ABCDEGR. 

 
Figure 1. The flow for pattern for base model, calculated in the base case. 

Ground water, flowing tongue ARG under the influence of 

the difference of pressures in the trench and the underlying 

good permeable aquifer, raised him to a certain height RG 

and breaking point M zero speed on the tongue, form the free 

surface of GE, which receives infiltration water intensity ε (0 



 International Journal of Theoretical and Applied Mathematics 2017; 3(4): 129-137 131 

 

<ε <1), referred to the soil filtration coefficient κ = const. 

The task is to determine the position of the curve GE 

depression, and, therefore, raise the height of the RG 

groundwater of the tongue, that is, the value of S –d. 

We assume that the movement of groundwater obeys the 

Darcy’s law with a known filtration coefficient κ and takes 

place in a homogeneous and isotropic soil, which is 

considered incompressible. The rate of flow at the tip of the 

tongue vR assumed infinite (up to s. 5), the depth of water in 

the trench H remains unchanged over time. 

From a mathematical point of view the problem is to find 

the complex potential flow ω = φ + iψ, (φ – potential speed, 

ψ – current function) as an analytic function in the field of 

filtration of the complex coordinates z = x + iy with the 

following boundary conditions: 

0

: 0, ;  : 0,  0;  : , 0;   : , ,

: , ;   : , ( ),

AB y H BC x CD y T AG x l Q

DE y T H GE y T Q x l

ϕ ψ ψ ψ

ϕ ϕ ψ ε

= = − = = = − = = =

= − = − = − − = + −
                               (1) 

where Q – the desired filtration rate from the pit. A study 

carried out in terms of the above variables w and z, associated 

with the same name and the actual values ωf and zf by 

equalities ω = ωf / κT, z = zf / T. 

 
Figure 2. The area of complex velocity w. 

3. Construction of the Solution of 

Boundary Value Problem 

Turning to the field of complex velocity w (Figure 2), 

corresponding to the boundary conditions (1). This region, 

which is circular polygon with three cuts, the vertices N1 and 

N2 of two of which correspond to the extremes of the stream 

function at impermeable portions AB and DE, belongs to the 

class of polygons in polar grids [26] and coincides with that 

in the case previously examined [19] (Figure 2). However, in 

contrast to [19], in this case, on the border of the movement 

area, an additional corner point - the point B; the total 

number of singular points is equal to nine, which greatly 

complicates the task. 

To solve the boundary value problem we use the method of 

Polubarinova-Kochina, which is based on the application of 

the analytical theory of linear differential equations of the 

Fuchs class [12, 16, 27]. We introduce the auxiliary 

parametric variable ζ and function z(ζ), conformally maps the 

upper half in the region z accordance with points 

ζE = 0, ζG = 1, ζC = k
–2

, ζD = ∞, 

and also derivatives 

,   
d dz

Z
d d

ω
ζ ζ

Ω = = .                          (2) 

Defining characteristic indicators of functions Ω and Z 

near the regular singular points [12], we find that they are 

linear combinations of the two branches next Riemann 

function [12, 27]: 
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                                    (3) 

It is evident that the point ζ = ζA and ζ = ζB – ordinary point of function Y, which represents the last symbol of Riemann. 

This symbol of Riemann corresponds to a linear differential equation of Fuchs class with seven regular singular points, which 
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is quite typical for the problems of underground hydromechanics [20, 21] and in this case has the form 

1 2

1 2

2

3 2
2 1 0

2

1 1 1 1 1 1 1

2 1

3
0.
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                                    (4) 

Recall that in addition to affix ζF, ζN1 and ζN2 in equation (4) accessory parameters λ0, λ1 and λ2 are unknown at the statement 

of the problem and should be identified during its solution. 

Change of variables 

ζ = sn
2
(2Kτ, k)                                                                                    (5) 

transforms the upper half into a rectangle ζ τ plane: 

0 < Reτ < 1/2, 0 < Imτ < ρ/2, ρ(k) = K'/K, K' = K(k'), 21k k′ = − , where K(k) – complete elliptic integral of the first kind 

for k module [27,28] at the corresponding points 

τE = 0, τG = 1/2, τC = (1 + iρ)/2, τD = iρ/2, 

and the integrals Y of equation (4), which correspond to the symbol of Riemann (3) and constructed according to the method 

developed earlier [22-24], converts to the form: 

3
1,2 0 1 2 2( ) ( ) ( ) ( ) ( )exp( )Y i i i iπτ ϑ τ ϑ τ γ ϑ τ α ϑ τ β τ−= ± ± ±∓ .                                          (6) 

Here sn (u, k) – Jacobi elliptic function (sinus) for k module, ϑ0(τ), ϑ1(τ) и ϑ2(τ) – theta function with parameter q = exp (-

πρ), which It is uniquely associated with the module k [27, 28], α, β, γ – some suitable constants. 

Taking into account the relations (3), (5) and (6), as well as the fact that the function w = dω / dz has previous form [18, 25] 

1 2

( )
 ( ) (1 ) (1 )

( )
,  ( ) ( )w i Y Yχ τε χ τ ε ε

χ τ
τ τ

+
±

−= = + −± ,                                          (7) 

th ( 2 )ε π ρ β α γ= + − − ,                                                              (8) 

we arrive at the source dependencies 
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+ −
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∆ ∆
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                         (9) 

Here N > 0 – constant scale simulation, A = sn(2Ka, k'), B 

= sn(2Kb, k'), a and b – unknown ordinates of points A and B 

domain τ. The representations (9) constant conformal 

mapping α, β and γ, which are connected by the relation (8), 

subject to the conditions 

0< α < r < β < m < a < b < ρ/2, 0 < γ < ρ/2,     (10) 

regulating the position in the current boundary field points of 

zero velocity M and the tip of the tongue R, and the well N1 

and N2; m and r - unknown ordinates of the points M and R in 

the plane τ. 

You can verify that the functions (9) satisfy the conditions (1), 

reformulated in terms of functions dω/dτ and dz/dτ, and thus, are 

parametric solution of the original boundary value problem. 

Writing equations (9) for different parts of the border 

region τ followed by integration over the whole contour of 

the sub-area leads to the closure motion field and thus serves 

as a computation control. 

The result is an expression for defined and the desired 

geometrical and filtration properties of the model 

1 2 2

0

2 1 2

0

0
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,

a b

RA AB CD BC

r a b

BC CD

b
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ρ

ρ
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Φ − Φ = −
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  (11) 

1 2

0

0

,EGd T H dt= − − Φ∫  
b

BC

a

Q dt= Ψ∫      (12) 

and coordinate EG depression curve points: 

1 2

( ) ,EG EG

u

x u l X dt= + ∫  
1 2

( ) ,EG EG

u

y u d Y dt= − + ∫  0 1 2u≤ ≤ .  (13) 
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Control accounts are other expressions for d, L, and 

filtration flow rate Q 

1 2 1 2 2

0

0 0 0

2 1 2

0 0

,   ,

.

EG EG DE

DE EG

d T H Y dt L l X dt X dt

Q dt X dt

ρ

ρ

ε

= − − = − −

= Ψ −
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∫ ∫

 (14) 

In the formulas (11) – (14) integrands – expression right 

side of (9) in the respective sections of the circuit area T. 

4. The Numerical Results for the Main 

Filter Model: Discussion of Results 

The representations (9) – (14) contain seven unknown 

constants: ordinates of a, b, r inverse images of points A, B, R 

in the plane T, the parameters of conformal mapping of α, β, 

γ, satisfying (8) and the inequalities (10), as well as a module 

the k (0 <k <1) and constant modeling N. To determine them 

at specified S, l, L, H, and T is the set of equations (11), 

which are used together with the relations 

1(1 2 ) 0,w ir− + =  

( )
1 2 2

0 0

0

a

EG CD GA BC

b

dt dt dt

ρ

Φ + Φ + Φ + Φ =∫ ∫ ∫ .  (15) 

The first of these relations means that the rate at the end of 

the tongue tends to infinity, and the second follows directly 

from consideration of the boundary conditions (1). After 

determining the unknown constants are unknown quantities d 

and Q from the formulas (12) and, finally, by the formulas 

(13) calculated coordinates of the free surface EG points. 

Figure 1 shows a flow pattern, calculated at 

ε = 0.6, T = 7, S = 3, H0 = 3, L = 15, H = 7, l = 10 

(Baseline values). Table 1 and 2 (varies within the 

acceptable range of one of these parameters, and the rest are 

recorded baseline values) shows the results of calculations of 

the effect of defining the physical parameters of ε, T, S, H0, L, 

H and l at depth d (d negative values indicate that the free 

surface is raised above the abscissa) and consumption Q. 

Figure 3 shows depending on the value of d (curve 1) and 

filtration flow rate Q (curve 2) of ε, T, S, H0, L, H, l. 

 

 

Figure 3. The dependence of d (curves 1 ) and Q (curves 2 ) for the base model from Ɛ,T,S,H0, L, H, l. 
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Analysis of the data tables and charts to the following 

conclusions. 

First of all, attention is drawn to the same qualitative 

character of dependent variables d and Q on the parameters T 

and l, S and H, and at the same time the opposite of the 

behavior desired characteristics when changing the 

parameters S and H on one side and on the other – L and H0. 

Increased infiltration intensity, width tight turn and head in 

the underlying reservoir and power reduction layer of the 

tongue length, water pressure in the pit and its width lead to 

reduction of the depth d, which increase ordinate of point G 

yield curve depression from under the tongue. 

Thus, according to the Table 1 and 2, an increase in the 

parameters ε, S, H0 and l in the 1.6, 2.0, 2.0 and 1.1 times 

accompanies the change in the value of d in 2.2, 1.1, 1.3 and 

1.6 times, respectively. However, the greatest impact on the 

depth d has an impermeable area: Data Tables 2 show that 

increasing the width L of 28% total depth d increases almost 

10-fold. 

Table 1. The results of calculations of values of d and Q for the base model when variation Ɛ,T,S,H0. 

ε d Q T d Q S d Q H0 d Q 

0.5 2.651 0.182 6.5 1.349 0.234 2.0 1.726 0.635 2.0 3.155 0.038 

0.6 1.804 0.394 7.0 1.804 0.394 2.5 1.745 0563 4.0 0.441 0.769 

0.7 0.586 0.457 7.5 2.299 0.457 3.5 1.844 0255 5.0 –0.93 1.159 

0.8 –1.195 0.094 8.0 2.745 0.627 4.0 1.873 0.129 6.0 –2.35 1.815 

 

Table 2. The results of calculations of values of d and Q for the base model 

when variation L,H, l. 

L d Q H d Q l d Q 

14 2.555 0.086 4.0 0.650 1.815 10.0 1.804 0.394 

16 1116 0.599 5.0 1.070 1.159 10.3 2.018 0.320 

17 0.413 0.888 6.0 1.441 0.769 10.6 2.229 0.253 

18 –0.256 1.084 8.0 2.155 0.038 11.0 2.478 0.230 

When ε = 0.8, H0 = 5 and 6 and L = 18, that is, for 

sufficiently large values of the parameters e, H0 and L free 

surface rises above the x-axis, the value of d becomes 

negative. If we introduce the dimensionless quantity h (d) = 

(S - d) / S, h (S) = 0, which characterizes the relative height 

of the lift groundwater of the tongue, the values for these 

parameters ε, and L, H0, we get h(–1.1945) = 1.3981, h(–

0.9297) = 1.3099, h(–2.3500) = 1.7833 and h(–0.2560) = 

1.0853 respectively, and the value h increases with increasing 

ordinate of point G yield curve depression from under the 

tongue. 

Dependencies depth d on the parameters T, H0, L and H 

are close to linear. 

As for consumption, the tight turn with increasing width of 

the Q-value is also increasing: Table 2 shows that an increase 

in the parameter L to 1.28 times the flow rate implies an 

increase of more than 12 times. Thus, it revealed a significant 

propping up effect of impervious area in relation to the 

filtering of the pit. 

This flow behavior is clearly observed how with increasing 

layer thickness, the width of the pit, and the pressure in the 

underlying horizon, and with a decrease in the length of the 

tongue and head to tail water. Table 2 shows that reduction of 

the H only 2 times accompanied by an increase in flow rate Q 

is almost 48 times, indicating that the greatest impact on the 

consumption of water pressure in the pit. 

5. Limiting Cases 

1
0
. Case H0 = 0. 

Let us consider, first of all, on the absence of 

pressurization, i.e. moving when H0 = 0. The solution for this 

limiting case is obtained from relations (9) - (14) with

* 0γ γ= = . With this value of the parameter γ circular 

incision EG field w, transforming, degenerates in the right 

semicircle (dashed line in Figure 2) and thus the source area 

is transformed into a circular hexagon, which falls right side 

of the semicircle |w – i(1 + ε)/2| < (1 – ε)/2. In the course of 

the plane z for *γ γ=  depression curve flattens out at point 

E, deviates from that merges its inflection point F and exits 

to the roof of the underlying horizon at right angle. 

Figure 4 shows the flow pattern is calculated with the basic 

version 

ε = 0.6, T = 7, S = 3, L = 15, H = 5, l = 10. 

Table 3 and 4 show the results of numerical calculations of 

the impact of the physical parameters of ε, T, S, L, H and l on 

the filtration characteristics d and Q. 

 

Figure 4. The flow pattern at H0=0, calculated in the base case Ɛ=0.6, T=7, 

S=3, L=15, H=5, l=10. 
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Table 3. The results of calculations of values of d and Q for the case H0=0 

when variation Ɛ,T,S. 

ε d Q T d Q S d Q 

0.4 1.974 0.624 6.0 –0.606 0.344 2.0 1.066 0.179 

0.5 1.395 0.448 6.5 –0.042 0.315 2.5 0.747 0.232 

0.6 0.572 0.276 7.5 1.258 0.226 3.5 0.471 0.307 

0.7 –0.657 0.107 8.0 2.085 0.172 4.0 0.419 0.327 

A comparison with the results for the base model shows 

that there is a completely different behavior of the values of d 

and Q by varying the parameters of S and H: now with 

increasing length of the dowel head and tail-to the contrary, d 

depth decreases and the flow rate Q increases. Moreover, the 

behavior of the quantities Q and d, parameters ε and L 

becomes qualitatively similar, and the parameters ε and l – 

opposite. 

Just as in the main filter circuit, a considerable influence 

on the value d has a water pressure in pond: Table 4 shows 

that change the argument H on 50% corresponds to a 

decrease of depth d almost 8 times. The greatest impact, as 

before, has a tight inclusion. Table 4 also shows that change 

the width L of just 1.3 times the flow rate implies a reduction 

by more than 18 times. 

Table 4. The results of calculations of values of d and Q for the case H0=0 

when variation L,H, l. 

L d Q H d Q l d Q 

12 2.506 1.425 4.5 1.013 0.041 9.50 0.223 0.108 

13 1.902 1.009 5.0 0.571 0.276 10.0 0.571 0.276 

14 1.252 0.628 5.5 10.174 0.513 10.5 0.914 0.449 

15 0.571 0.276 6.0 –0.191 0.753 11.0 1.248 0.630 

Impermeable portion most significant impact also on the 

flow rate by changing the last 26.6 times. 

For values of ε = 0.7, T = 6 and 6.5, L = 18, H = 6 and l = 

9, in which the value of d becomes non-positive, the 

parameter h takes values h = 1.2191, 1.2020, 1.0140, 1.0443, 

1.0638 and 1.0442, respectively. 

2
0
. Case l = ∞. 

Consider the case where the width of the pit increases 

indefinitely. If you make the transformation z '= z + l, moving 

the point A' to the origin and fix all the physical parameters of 

the model then with increasing width of the pit l, conformal 

mapping constant * 2b b ρ→ = . In the limit of l = ∞ 

parameters are *b b= , B = 1. In the z plane of motion points B 

and C merge to infinity, so the filtration area becomes a semi-

infinite strip on the left of flooding. In (9)–(14) where *b b=  

flow results obtained previously [18, 25]. 

3
0
. Case L = 0. 

In the main filter scheme discussed above, the absence of 

such a powerful factors as the tight incorporation, being 

limiting, serves as a background in the evaluation of the role 

of infiltration and pressure in the underlying reservoir and 

allows more contrast to trace the interaction of important 

physical parameters, such as ε and H0. 

If there is no impervious area on the roof of the underlying 

aquifer, the latter along its entire length becomes well-

permeable. When you merge points C, D in the area of 

complex velocity her left half-plane w cut off, a circular 

incision EG moves in the right half-plane, and source area is 

transformed into a circular triangle (Figure 5). In the 

movement plane z point D, merging with point C, yield on 

the axis, and rectangle of the plane τ is transformed to half-

strip 0 < Reτ <1/2, 0 < Imτ < ∞, because parameter ρ =K′/K = 

∞, K = π/2. 

The solution for this limiting case is obtained from the 

formulas (9)–(14), if we put k=0 in these formulas and 

consider that in this case the elliptic functions degenerate into 

trigonometric and theta-functions are cut off in their first 

terms or constants: 

2 2 2

sin 2 sin 2( ) sin 2( )
,  ,

sin 2 cos ( ) cos ( )

( ) ( sin )( sin )( sin ) ,   tg 2 ctg 2 .

r m r
N Z iN

m

a b c m r

τ τε
τ τ τ τ

τ τ τ τ ε

′ ′ ′− −Ω = − =
′ ∆ ∆

′ ′∆ = − − − =

 (16) 

Here arcsinm m′ = , arcsinr r′ = , m′, r′, c′ (0 < m′ < r′ 

< a′ < b′ < c′ < π/2) are inverse images of points M, R, C on 

the horizontal axis of the plane τ. This case is described in 

detail previously [19], where an analysis of the influence all 

of the physical parameters of the model. 

4
0
. Case ε = 0. 

Within the case L = 0 we focus on the absence of 

infiltration. Given the connection between the parameters m' 

and r', noted in (16), we see that in the case where ε = 0, 

there is implying the solution of the problem of dependences 

(16) where m′ = 0 that is when the plane τ point depression 

curve G, E are merged at the origin with point M zero speed. 

There is a solution to the problem, first examined V. V. 

Vedernikov [10], only in the other way. 

 

Figure 5. The area of complex velocity at L=0. 
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6. The Case of a Finite Value of Flow 

Rate at the End of the Dowel: Analysis 

of Zhukovsky Problem 

Within the boundary value problem (1) we consider the 

case when the flow speed on the end of a tongue vR, 0 < vR < 

ε finite and stream function in the permeable sections AB and 

DE has no extremes. Then, in the complex velocity w there 

are disappearing both of the vertical incisions, the left half-

plane is truncated, as previously in the case of L = 0, but, 

unlike the latter, MR portion is transferred to the first 

quadrant (dashed line in Figure 5). As a result, the source 

region is transformed into a circular pentagon. Parametric 

solution of the problem is formally the same form (9) with 

the replacement of the integrals Y1,2(τ) and regular conformal 

mapping α and β on next [29, 30]: 

1
1,2 0 1( ) ( ) ( )exp( )Y i iπτ ϑ τ ϑ τ γ τ−= ± ± ,           (17) 

(1 ) 2iα β ρ= = + .                          (18) 

A similar solution to the problem in the case of lack of 

backwater flows from ideas (9), (17), (18) when *γ γ= . 

The analysis of the numerical results shows that in the case 

of vR < ∞ retained the qualitative nature of the dependencies 

of the filtration rate of the physical parameters of the circuit 

typical case when vR < ∞. For example, there is the same as 

before, the flow behavior of T and l values from one side and 

the opposite character of S and H parameters - on the other. 

Significant impact on consumption on Q, and as before, have 

infiltration, a dense layer switch and power. 

Figure 6 shows the pattern of motion calculated at 

ε = 0.5, T = 6, S = 3, H0=0, L=16.2, H = 3, l = 15. 

Noteworthy is the fact that all settlement options is d = S, 

and therefore, the value of h(d) = h(S) = 0. This means that in 

the plane of the current point G yield curve depression out of 

the tongue merges with the R point of his sharp; from the 

review of the field, comprehensive rate w implies that in this 

case the speed at the end of the tongue is equal to the 

infiltration rate: vR = ε, 0 < ε < 1. 

If you make the transformation τ′ = 1/2 + iρ′τ, sending 

rectangle auxiliary variable τ in the like with parameter ρ′ = 

1/ρ = K/K′, then the corresponding primary filter circuit on 

the parameters of inequality (10) takes the form: 

0 < b′ < a′ < r′ < ½,                  (19) 

where b′, a′, r′ – abscissa’s inverse images of points B, A, R 

in the plane τ. 

 

Figure 6. The flow pattern at 0 < vR < ε in base case Ɛ=0.5, T=6, S=3, H0 =0, L=16,2, H=3, l=15. 

Calculations show that for any value of the intensity of 

infiltration ε (0 < ε < 1) the ratio of d = S holds only for 

single values of r′ – its limit *r′ , when the plane τ' merge 

point G, and R: * 1 2r r′ ′= = . All other valid values lead to 

inconsistencies with the real picture of the flow - the 

relationship d > S, i.e., the separation of the flow. A similar 

result in the limit for this model when the water permeable 

layer of soil has unlimited power, there is no impenetrable 

plot and infiltration, when T = ∞ (k′ = 0, k = 1), L = 0 

( * 0b b′ ′= = ) и ε = 0 (m′ = 0), was first obtained in due time, 

N. E. Zhukovsky [17]. The solution for this limiting case is 

obtained from dependencies (9), (17), (18), if you put in them 

K = ∞, K′ = π/2, k′ = 0, k = 1, b′ = 0, q′ = 0 and consider that 

in this case the elliptic functions degenerate into hyperbolic, 
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and theta-functions which, this time characterized by the 

parameter q '= 0, break off on their first terms or constants. 

Thus, in the limiting case study scheme Zhukovskogo 

obtained solution of the problem only by other means. 

7. Conclusion 

Executed in consideration of flows of pits transformed 

from the basic filter circuits may serve to illustrate the variety 

of physical content multiparametric boundary value problem 

with a free surface. An important place is occupied with the 

extreme cases that seem to be bordered by the original 

simulated process in describing its boundary value problem 

and lead to transformations considered the main filter circuit. 

Access to such extreme cases is carried out on reaching any 

of the unknown parameters of a conformal mapping of its 

critical values. 
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