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Abstract: In this paper, linear and non-linear Fredholm Integro-Differential Equations with initial conditions are presented. 

Aiming to find out an analytic and approximate solutions to linear and non-linear Fredholm Integro-Differential Equations, this 

paper presents a comparative study of He’s Homotopy perturbation method with other traditional methods namely the 

Variational iteration method (VIM), the Adomian decomposition method (ADM), the Series solution method (SSM) and the 

Direct computation method (DCM). Comparison of the applied methods of analytic solutions reveals that He’s Homotopy 

perturbation method is tremendously powerful and effective mathematical tool. 

Keywords: Homotopy Perturbation, Variational Iteration, Adomian Decomposition, Series Solution,  
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1. Introduction 

Many researchers and scientists studied the integro-

differential equations through their work in science 

applications like heat transformer, neutron diffusion, and 

biological species coexisting together with increasing and 

decreasing rates of generating and diffusion process in 

general. These kinds of equations can also be found in 

physics, biology and engineering applications, as well as in 

models dealing with advanced integral equations such as [1-

2], [22-23]. A new perturbation method called Homotopy 

perturbation method (HPM) was proposed in [8-19] by He in 

1997, and a systematical description was given in 2000 

which is in fact, a coupling of the traditional perturbation 

method and Homotopy in topology. This new method was 

further developed and improved by He and applied to various 

linear and non-linear problems. 

����� = ���� + 	 
��, ��
������� + ����������, ���0� = �� , 0 ≤ 
 ≤ �� − 1���                            (1) 

Where ����� is the n-th derivative of the unknown function ����  that will be determined, 
��, ��  is the kernel of the 

integral equation, ���� is a known analytic function, ����and ���� are linear and nonlinear functions of �respectively. For � = 0 the equation (1) turn out to be a classical Fredholm 

integro- differential equation. The Fredholm integro-

differential equations (1) arise from the mathematical 

modeling of the spatiotemporal development of an epidemic 

model in addition to various physical and biological models 

and also from many other scientific phenomena. Nonlinear 

phenomena, which appear in many applications in scientific 

fields, such as fluid dynamics, solid state physics, plasma 

physics, mathematical biology and chemical kinetics, can be 

modeled by partial differential equations and by integral 

equations as well. This paper shows a comparative study 

between He's Homotopy perturbation method [8-19] and four 

traditional methods for analytic treatments of linear and 

nonlinear integro-differential equations. He's Homotopy 

perturbation method, well-addressed in [8-19] has a 

constructive attraction that provides the exact solution by 

computing only a few iterations, mostly two iterations, of the 

solution series. In addition, He's technique may give the exact 
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solution for linear and nonlinear equations without any need 

for the so-called He's polynomials. Also this paper, will only 

focus on a brief discussion of He's Homotopy perturbation 

method because the details of the method are found in [8-19], 

and in many related works. For the sake of self-sufficiency of 

the article, the variational iteration method [7, 18-21], the 

Adomian decomposition method [5-6], the direct computation 

method (DCM) [3] and the series solution method [4] are 

reminded and employed for the comparison goal. 

2. Materials and Methods 

Homotopy perturbation method, Variational iteration 

method, Adomian decomposition method, series solution 

method, and Direct computation method have been applied to 

analyze the behavior of the solution of fredholm integro-

differential equations. Finally a comparative study has been 

made among these methods.  

2.1. Basic Idea of He’s Homotopy Perturbation Method 

The Homotopy perturbation method (HPM) proposed by 

Shijun Liao in 1992 is based on the concept of the Homotopy, 

a fundamental concept in topology and differential geometry. 

Consider the nonlinear differential equation, 

		���� + ���� = ����, � ∈ Ω                       (2) 

With boundary conditions, " #�, $%$�& = 0, � ∈ ' Where, L: 

A linear operator, N: A nonlinear operator, f(r): A known 

Analytic function, B: A boundary operator, ': The boundary 

of the domain Ω, By He’s Homotophy perturbation technique 

(He, 1999) Define a Homotopy )��, *�:Ω × -0,1. → �	 This 

satisfies 

0�), *� = �1 − *�-��)� − �����. + 	*-��)� + ��)� − �	���. = 0,	 (3) 

Or,	0�), *� = ��)� − ����� + 	*����� + 	*-��)� − �	���. = 0,  (4) 

Where, � ∈ Ω, * ∈ -0,1. is an embedding parameter and �� is an initial approximation, which satisfies the boundary 

conditions. Clearly 

0�), 0� = ��)� − ����� = 0, 

0�), 1� = ��)� + ��)� − ���� = 0 

As p changes from 0 to 1, Then v(r, p) changes from ����� 
to ���� . This is called a deformation and ��)� − ����� , 

��)� + ��)� − ���� are said to be Homotopy in topology. 

According to the Homotopy perturbation method, the 

embedding parameter p can be used as a small parameter and 

assume that the solution of equation (3) and (4) can be 

expressed as a power series p, that is 

		) = )� + *)� + *1)1 +	………                  (5) 

For p=1, the approximate solution of equation (1) 

therefore, can be expressed as 

		) = lim6→� ) = )� + )� + )1 +	………            (6) 

The series in equation (6) is convergent in most cases and 

the convergence rate of the series depends on the nonlinear 

operator [Biazar and Ghazvini, 2009; He, 1999]. Moreover, 

the following judgments are made by He (1999, 2006) 

1. The second order derivative of ��)� with respect to ) 

must be small as the parameter may be reasonably large, that 

is, * → 1 

2. 7�8� #$9$:&7 Must be smaller than one, so that, the series 

converges 

2.2. Variational Iteration Method 

We consider the general n-th order integro-differential 

equations of the type [24] 

;��� + ����;��� + 	 
��, ��;�<���=> = ?���, @ < � < �	   (7) 

With initial conditions 

	;�@� =∝�, ;C�@� =∝�, …… , ;��8���@� =∝�8�	,	  (8) 

Where ∝D , E = 0,1, …… , � − 1,	 are real constants, m and n 

are integer and	F < �. In equation (7) the function f, g and k 

are given and y is the solution to be determined. Assume that 

the equation (7) has the unique solution. Here, change the 

problem to a system of ordinary integro–differential 

equations and apply the variational iteration to solve it, so 

that the Lagrange multiplier can be effectively identified. 

Using the following notation  

; = ;�, GHGI = ;1 , GJHGIJ = ;K, … , G�LMN�HGI�LMN� = ;� ,         (9) 

Rewrite the integro-differential equation (7) as the system 

of ordinary integro-differential equations 

GHNGI = ;�, GHJGI = ;K , GHOGI = ;P, …… , GHLGI = ?��� − ����;���� − 	 
��, ��;<Q������=>                       (10) 

With initial conditions  

;��∝� =∝�, ;1�@� =∝�, ;K�@� =∝1, … . , ;��@� =∝�8�	 
To illustrate the basic concepts of the variational iteration 

method, consider the following differential equation 

�-����. + �-����. = ?���, 
Where L is a linear operator, N is a nonlinear operator and 

g(x) is given continuous function. The basic character of the 

method is to construct a correction functional for the system, 

which reads 

��Q���� = ����� + 	 S-������ + 	��T���� − ?���.��,I>    (11) 

Where S  is a general Lagrange multiplier which can be 

identified optimally via variational theory, it is useful to 

summarize the Lagrange multipliers as 
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�C + ����U�, �C�U�� = 0, S = −1,	 
�CC + ����U�, �C�U�, �CC�U�� = 0, S = �U − �� 

�CCC + ����U�, �C�U�, �CC�U�, �CCC�U�� = 0, S = − 12! �U − ��1, 
…………… .. 

�� + ����U�, �C�U�, �CC�U�,… , ���U�� = 0, S = �−1�� �
��8��! �U − ����8��, 

��  is the n-th approximate solution, and �T�  denotes a 

restricted variation i.e, X�T� = 0.	According to the variational 

iteration method, to solve the system (7), construct the 

following correction functional 

;Y��Q����� = ;Y���� + 	 SY��, ��-;YC���� − ;T�YQ��� ���.��I
� , j=1, 2, …, n-1, 

;���Q����� = ;����� + Z S���, �� [;�C���� − ?��� + ����;T�����I
�

+Z 
��, \�=
> ;T<Q�� �\��\] ��,	 

Where the superscript (k) is the number of iterations steps. 

Calculating variation with respect to ;Y��^ = 1, 2, 3, … , �� 
respectively, and noting that 	X;Y��� = 0, We have  

X;Y��Q����� = X;Y���� + X Z SY��, �� `;YC������ − ;T�YQ����� ���a ��I
> 	= X;Y������ + SY��, ��X;Y������|cdI −Z eSY��, ��e�

I
> X;Y��������	 

= #1 − SY��, ��& X;Y���� + Z f−eSY��, ��e� gI
> X;Y������ = 0, ^ = 1, 2, … . , � − 1, 

X;���Q����� = X;������� + X Z S���, �� [;�C������ − ?��� + ����;Tc���� + Z 
��, \�;T<Q���� �\��\=
> ] ��I

>  

	= �1 + S���, ���X;������� + Z f−eS���, ��e� gI
> X;��������� = 0 

For arbitrary X;Y���, ^ = 1, 2, … . , �, the following stationary conditions are obtained: 

	− $hN�I,c�$c = − $hJ�I,c�$c = ⋯ = − $hL�I,c�$c = 0,                                                              (12) 

And the natural boundary condition 

1 + SY��, �� = 0, ^ = 1, 2, … , �. 
The Lagrange multipliers therefore, can be identified as	SY��, �� = −1, ^ = 1, 2, … , �.	And the following iteration formula 

can be obtained as  

;Y��Q����� = ;Y������ − Z -;YC������ − ;YQ����I
> ���.��, where	^ = 1, 2, … , � − 1, 

;���Q����� = ;������� − 	 -;�C������ − ?��� + ����;����I> ��� + 	 
��, \�;<Q���� �\��\=> .��.                                (13) 

Beginning with ;������� = n�, ;1������ = n�, ;K������ =n1, … ;���� = n�8�,  by the iteration formula (13), we can 

obtain the numerical solution of equation (7). 

2.3. The Adomian Decomposition Method 

The principal of the ADM when applied to a general 

nonlinear equation in the following form 

�� + �� + �� = ?                          (14)	
Invers operator L, with �8��. �  =	 �. ���I� , equation (14) 

can be written as, 

� = �8��?� − �8����� − �8�����                (15)	
The decomposition method represents the solution of 

equation (15) as the following infinite series 

� = ∑ ��p�d�                                     (16) 

The nonlinear operator Nu=q��� is decomposed as  

�� = ∑ r�p�d� 	                                   (17)	
Where r� are Adomian polynomial which are defined as, 

	r� = �
�!

GL
GsL q-∑ tDpDd� ;D.sd�� = 1, 2, 3…      (18) 

Substituting equation (16) and (17) into equation (15) we 

have, 

� = ∑ �� = 0 − �8����∑ ���� − �8�p�d�p�d� �∑ r�p�d� � (19)	
Consequently, it can be written as  

�� = u + �8�, �� = −�8�������� − �8��r��, �1 = −�8�������� − �8��r��,…,�� = −�8�����8�� − �8��r�8��	
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2.4. The Series Solution Method 

Assuming that u(x) is an analytic function, it can be represented by a series given by	 
���� = ∑ @���p�d� ,	                                                                                 (20) 

Where @�  are constants that will be determined recursively. The first few coefficients can be determined by using the 

prescribed initial conditions where we may use 

@� = ��0�, @� = �C�0�, @1 = 12! �CC�0�, ….	 
Substituting (20) into both sides of (7), and assuming that the kernel v��, �� is separable as	v��, �� = ?���	ℎ��), obtain 

�∑ aypyd� xy�� = ���� + ?��� 	 ℎ���{��∑ @�p�d� ��� + ��∑ @�p�d� ���|I� ��                            (21) 

2.5. The Direct Computation Method 

Assume a standard form to the fredholm integro-differential equation given by 

	������� = ���� + 	 v��, ��������, �����0� = �� , 0 ≤ 
 ≤ �� − 1���                                  (22) 

Where ������� indicates the n-th derivative of u(x) with respect to x and �� are constants that define the initial conditions. 

This yield, 

	������� = ���� + ?��� 	 v��, ��������, �����0� = ��, 0 ≤ 
 ≤ �� − 1���                              (23) 

It can easily observe that the definite integral in the 

integro-differential equation (18) involves an integrand that 

completely depends on the variable t, and therefore, it seems 

reasonable to set that definite integral in the right side of (23) 

to a constant α, that is we set 

∝= 	 ℎ��� ��������.                              (24) 

With α defined in (24), the equation (23) can be written by 

	������� = ����+∝ ?���.                           (25) 

It remains to determine the constant n	to evaluate the exact 

solution ����. To find α, we should derive a form for ���� by 

using (25), followed by substituting this form in (24). To 

achieve this we integrate both sides of (25) n times from 0 to 

x, and by using the given initial conditions  

�����0� 	= 	 �� , 0	 ≤ 	
	 ≤ 	 ��	– 	1� 
Obtain an expression for ���� given by 

	���� = *��; ∝�,                                 (26) 

Where *��; 	n� is the result derived from integrating (25) 

and by using the given initial conditions. Substituting (26) 

into the right hand side of (24), integrating and solving the 

resulting equation lead to a complete determination of α. The 

exact solution of (22) follows immediately upon substituting 

the resulting value of α into (26). 

 

 

 

 

3. Results and Discussions 

3.1. Solving the Following Linear Fredholm  

Integro-Differential Equation by Different Methods 

Example: Consider the Fredholm Integro-Differential 

equation 

�CCC��� = 	−��\� + � + Z ��CC�����,
�J
� 	��0� = 0,	

	�C�0� = 1, �CC�0� = 0,	                  (27) 

3.1.1. Using He’s Homotopy Perturbation Method 

A Homotopy can be readily constructed as follows 

0�), *� = )�CCC��� + ��\� − �� + 	 �)�CC�����,�J� � = 0 (28) 

Substituting ) = )� + *)� + *1)1 +	……  into (28) and 

rearranging the resultant equation based on power of p-terms, 

one has 

	*�:	)�CCC + ��\� = 0,                        (29) 

	*�	: )�CCC − � − 	 �)�CC������J� = 0,                  (30) 

*1	: )1CCC − 	 �)�CC������J� = 0                     (31) 

and so on 

With the following conditions  

)��0� = 0, )�C �0� = 1,	 
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	)��0� = 0, GGc )��0� = 0, � = 1,2,3, ……            (32) 

With the effective initial approximation for )�  from the 

conditions (32) and solution of (29), (30), (31) can be written 

as follows 

)���� = �E��, 
	)���� = 	)1��� = 0, 

and so on. 

In the same manner, the rest of components were obtained 

using the Mathemtica package 

���� = lim6→� = )���� + )���� + )1��� +	………… (33) 

Therefore, substituting the values of )����, )����, )1���	@��	)K��� in (33) yields  

���� = �E��. 
3.1.2. Using Variational Iteration Method 

In the view of variations iteration method, construct a 

correction functional for this equation (27) is given by,  

	��Q���� = ����� + S	 #��CCC�U� + ��\U − U − 	 U�T�CC������J� &�UI
�  (34) 

Where S is a Lagrange multiplier, therefore 

	S�U� = − �
1! �U − ��1.                      (35) 

Now, the following variational iteration formula can be 

obtained 

	��Q� = ����� − �
1!	 �U − ��1���CCC�U� + ��\U − UI� −
	 U��CC�������U�J�                          (36) 

We can use the initial condition to select 	����� = ��0� +
��C�0� + IJ

1! �CC�0� = � 

Using this selection into the correction functional gives the 

following successive  

Approximations 

����� = �, 
From (36) we have, 

����� = � − � + �P4! + �E��,	 
�1��� = �K�P1152 − �K�P1152 + ���P27648 + �E��, 

and so on. 

The variation admits the use of ���� = lim�→p ����� 
gives the exact solution ���� = �E��. 

3.1.3. Using Adomian Decomposition Method 

From (27) we have, 

	�CCC��� = 	−��\� + � + 	 ��CC�����,�J� 	��0� = 0, �C�0� = 1, �CC�0� = 0,	                           (37) 

Applying the three-fold integral operator �8� defined by, 

�8��. � = Z Z Z �. �
�J
� ������	

�J
�

�J
�  

To both sides of (37), that is integrating both sides of (37) 

thrice from 0	�� �
1, and using the given initial condition we 

obtain���� = �E�� + I�
P! + I�

P! 	 �CC������J�  

Using ���� = ∑ �����p�d�  and the recurrence relation we 

obtained, 

	����� = �E�� + �P4! , 	����� = −�P4! + �K�P1152,	 
Similarly,	�1��� = − �OI�

���1 + ��I�
1��P�, 

and so on. This gives the solution in the series form, 

���� = �E�� + �P4! − �P4! + �K�P1152 − �K�P1152 + ���P27648 + ����� 	
= �E�� 

and this converges to the exact solution 

���� = �E��. 
3.1.4. Using Series Solution Method 

Equation (27) gives, �CCC��� = 	−��\� + � +
	 ��CC�����,�J�  

��0� = 0, �C�0� = 1, �CC�0� = 0,                  (38) 

Substituting ���� by the series 

���� = ∑ @���p�d�                                   (39) 

Using (39) in both sides of equation (38) we have, 

��@���
p

�d�
�
CCC
= −��\� + � + Z ���@���

p

�d�
�

�J
�

CC
��	 

Differentiating the left sides twice and by evaluating the 

integral at the right sides  

∑ ��� − 1��� − 2�@���8K = #1 − IJ
1 + I�

1P − I�
�1�+	……& + � + 	 ��2@1 + 6@K� + 12@P�1 + 20@��K +⋯����J�p�dK   (40) 

Using the initial condition and equating the coefficients of 

the powers of x in both sides of (40) gives the recurrence 

relation, 
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	@� = 0, @� = 1, @1 = −2.43997, 	@K = − 13! , @P = 0, @�
= 15! , …… 

Substituting this results into, ���� = ∑ @���p�d�  gives the 

series solution, 

���� = �E�� − 2.43997�1.	 
This gives approximate solution. 

3.1.5. Using the Direct Computation Method 

We first set 

	n = 	 �CC������J�                     (41) 

So that given equation (27) can be written as 

�CCC��� = −��\� + � + n�                (42) 

Integrating three times both sides of equation (42) we have 

���� = �E�� + I�
1P + �I�

1P + �NIJ1 + �1� + �K	      (43) 

Applying initial conditions in (43) we have 

	���� = �E�� + # �1P+ �
1P& �P	                    (44) 

Now we have n = �
P� �−48 + �K − �Kn�  which gives n = −1	 

By putting this value of n  in (44) leads to the exact 

solution ���� = �E��. 

3.2. Solving the Following Non-Linear Fredholm  

Integro-Differential Equation by Different Methods 

Example: 

	�C��� = 	��\� − �I
P� + �

1P	 ��1�����,�� 	��0� = 0,	n   (45) 

3.2.1. Using He’s Homotopy Perturbation Method 

A Homotopy can be readily constructed as follows 

0�), *� = )�C ��� − ��\� + * #�IP� − �
1P	 �)�1�����	�� & = 0  (46) 

Substituting ) = )� + *)� + *1)1 +	……  into (46) and 

rearranging the resultant equation based on power of p-terms, 

one has 

*�:	)�C ��� − ��\� = 0,                      (47) 

*�	: )�C��� + �I
P� − �

1P	 �)�1������� = 0,            (48) 

	*1	: )1C ��� − �
1P	 �)�1������� = 0,            (49) 

and so on. With the following condition 

)��0� = 0, 

	)��0� = 0, GGc )��0� = 0, � = 1,2,3, ……          (50) 

With the effective initial approximation for )�  from the 

conditions (50) and solution of (47), (48), (49) can be written 

as follows 

)���� = �E��, )���� = )1��� = ⋯ = 0, 
In the same manner, the rest of components were obtained 

using the mathematica package  

	���� = lim6→� = )���� + )���� + )1��� +	……	    (51) 

Therefore, substituting the values of )����, )����, )1���r��	)K��� in (51) yields  

���� = �E��. 
3.2.2. Using Variation Iteration Method  

The correction functional for this equation (45) is, 

��Q���� = ����� − Z �I� ��C �U� − ��\U + �48 U
− 124Z U��������U,�

�  

Where, S	 = 	−1	for first-order integro-differential equation. 

Using the initial condition to select 	����� = 	��0� = 	0. 
This selection into the correction functional gives the 

following successive approximations 

����� = 0, 
����� = �E�� − 0.03272492349�1,	 
�1��� = �E�� − 0.000663791983�1,	 
�K��� = �E�� − 0.00156723251�1,	 

and so on. 

This gives the exact solution by 

���� = 	�E�� − 0.0349559478�1. 
3.2.3. Using Adomian Decomposition Method 

From (45), 

�C��� = 	��\� − �I
P� + �

1P	 ��1�����,�� 	��0� = 0,	 (52) 

Applying the integral operator �8�  defined by, �8��. � =	 �. ���	I�  

To both sides of (52), that is integrating both sides of (52) 

from0	��	�, and using the given initial condition, which gives 

���� = �E�� − �IJ
�� + �8� # �1P	 ��1������� & 

Using ���� = ∑ �����p�d�  and the recurrence relation  

	����� = �E�� − 0.0327249�1 

	����� = 0.026087�1 

Similarly, 	�1��� = 0.00420295�1 ,	�K���	and… .. so on. 

This gives the solution in the series form, 
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���� = �E�� − 0.0327249�1 + 0.026087�1+ 0.00420295�1 +	……	 
Thus	���� = �E�� − 0.00243495�1 

3.2.4. Using series Solution Method 

From (45), 

	�C��� = 	��\� − �I
P� + �

1P	 ��1�����,�� 	��0� = 0 (53) 

Substituting ���� by the series 

	���� = ∑ @���p�d�                 (54) 

Using (54) in both sides of equation (53), 

��@���
p

�d�
�
C
= ��\� − ��48 + 124Z � ��@���

p

�d�
��

�
1
��	 

Differentiating the left sides and by evaluating the integral 

at the right sides  

∑ �@���8� = #1 − IJ
1 + I�

1P − I�
�1�+	…… & − �I

P� + �
1P	 ��@� + @�� + @1�1 + @K�K + @P�P + @��� +⋯�����p�d�   (55) 

Using the initial condition and equating the coefficients of 

the powers of	�  in both sides of (55) gives the recurrence 

relation, 	@� = 0, @� = 1, @1 = −2.43997, 	@K = − �
K! , @P =0, @� = �

�! , ………	 Substituting this results into, ���� =∑ @���p�d�  gives the series solution,  

u�x� = Sinx − 2.43997x1. 
3.2.5. Using the Direct Computation Method 

First set, 

n = 	 �1����������                       (56) 

So that given equation (45) can be written as 

	�C��� = ��\� − �I
P� + �I

1P	                    (57) 

Integrating both sides of equation (57), 

	���� = �E�� − �IJ
�� + �IJ

P� + ��                (58) 

Applying initial conditions in (58) 

���� = �E�� − # �96 − n48& �1 

Thus from (56) and (58), 

n = �
P� �−48 + �K − �Kn�                        (59) 

Equation (59) gives, n =	2.11778. By putting this value of n in (59) leads to the approximate solution 

���� = �E�� + 0.0113954�1. 

 

Figure 1. A Comparison of He’s Homotopy Perturbation Method and 

Traditional Methods for Solving Non-Linear Fredhlom Integro-Differential 

Equation. 

�C��� = 	��\� − �I
P� + �

1P	 ��1�����,�� 	��0� = 0. 

4. Conclusion 

This paper shows He’s Homotopy perturbation method of 

solving linear and non-linear Fredholm Integro-Differential 

Equation and conducted a comparative study between He’s 

Homotopy perturbation method and the traditional methods 

that is Variational iteration method, Adomian decomposition 

method, Series solution method and Direct computation 

method. The main advantage of the He’s Homotopy 

perturbation method are the fact that it provides its user with 

an analytical approximation, in many cases an exact solution in 

rapidly convergent sequence with elegantly computed terms. 

Also this method handles linear and non-linear equations in a 

straightforward manner. The four traditional methods suffer 

from the tedious work of calculation. Other traditional methods, 

that is usually used to solve integro-differential equations 

analytically and numerically, were not examined in this work, 

due to the huge size of calculations needed by these methods. 

Generally speaking, He's Homotopy perturbation method is 

convenient and more efficient compared to other techniques. 
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