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Abstract: The work is devoted to the study of harmonic waves in a hereditarily elastic plate with two viscoelastic coatings, 

the properties of the material, which are described by the equations of state in integral form. The fractional exponential 

function of Rabotnov and Koltunov-Rzhanitsyn was chosen as the kernel of the integral operator. Two cases are considered: 

the case of a stress-strain state symmetric and antisymmetric in the normal coordinate (VAT). In the study of natural 

oscillations, the properties of those modes that are time-dependent by harmonic law are investigated. For both cases, dispersion 

equations are derived, which are solved numerically. Asymptotics of the roots of dispersion equations for small and large 

frequencies are also obtained. The analysis of the obtained solutions made it possible to draw conclusions about the influence 

of hereditary factors on the behavior of dispersion curves. A comparative analysis of numerical solutions and their asymptotics 

is carried out. 
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1. Introduction 

The increasing need to reduce the vibrations of structural 

elements caused by loads with a broadband frequency 

spectrum (for example, aircraft body vibrations) has drawn 

attention to viscoelastic coatings as a possible solution to this 

problem. The frequency equation for such systems was 

obtained from the theory of elasticity, for example [1-3]. In 

[1] the problem of the propagation of waves of three-layer 

elastic beams led to a transcendental equation containing 

hyperbolic functions. The solution of the corresponding 

transcendental equation for the plates was obtained only for 

the two lower branches [2, 3]. The calculation of the lower 

branches was performed using the expansion of 

transcendental functions into power series, which limits the 

range of applicability of the results. Another type of solution 

was obtained in the problem of longitudinal oscillations of a 

cylindrical rod with a viscoelastic coating [4]. The 

propagation of bending waves in a plate with viscoelastic 

coatings in a simplified formulation is considered in [5, 6]. 

It is known that most of the information on the behavior of 

the waveguide is provided by the dispersion equation. 

Numerical analysis of the dispersion equations obtained 

during the investigation of the propagation of harmonic 

waves in a hereditarily elastic plate with two viscoelastic 

coatings is performed. 

Taking into account the rheological properties of the 

material is accompanied by dispersion of the waves. The 

mechanisms by which the energy of elastic waves is 

converted into heat are not entirely clear. Different loss 

mechanisms are proposed [7, 8, 9], but not one of them does 

not fully meet all the requirements. Probably the most 

important mechanisms are internal friction in the form of 

sliding friction (or sticking, and then slipping) and viscous 

losses in pore fluids; the latter mechanism is most significant 

in strongly permeable rocks. Other effects that are probably 

generally less significant are the loss of some of the heat 

generated in the phase of compression of wave motion by 

thermal conductivity, piezoelectric and thermoelectric effects 
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and the energy going to the formation of new surfaces (which 

plays an important role only near the source). 

Formulation of the problem. 

We consider the propagation of harmonic waves in an 

infinite hereditarily elastic layered body, bounded by the 

planes z = ± h in the Cartesian coordinate system (Figure 1). 

The Oyz plane is compatible with the middle surface of the 

layer. We shall consider the propagation of waves in the 

direction of the x axis. Dynamic layer VAT will be described 

by the equations of motion for the case of a plane problem 
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and the equations of state for hereditarily elastic material. 

 

Figure 1. The design scheme. 

In the present paper we take the equations of state in an 

integral operator form (the Rabotnov kernel [10]) 
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In (1) and (2) the following notation is used: 
( )n
ijσ  — 

components of the stress tensor, ( )n
iϑ  — displacement vector 

components, 
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Here E, ν- are the instantaneous Young's modulus and 

Poisson's ratio, mn, βn — parameters of the material. As the 

kernel of the integral operator we use the fractional 

exponential function of Rabotnov [12] 
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where Г(j) = ( )1

0

expjy y dy

∞
− −∫ - gamma function. 

In the case when the Koltunov-Rzhanitsen relaxation [19-

22] core is used in place (3), then the elastic modulus is 

replaced by the operators, i.e. nЕɶ – the elastic modulus of 

elasticity has the form [4,5]: 
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( )tφ – arbitrary time function; ( )EnR t τ− – relaxation 

core; 01E – instantaneous modulus of elasticity; We assume 

the integral terms in (4) to be small, then the functions 

( ) ( ) Ri tt t e ωφ ψ −= , where ( )tψ - a slowly varying function of 

time, Rω - real constant. Then [13], we replace (4) by 

approximations of the form 
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respectively, the cosine and sine Fourier images of the 

relaxation core of the material. As an example of a 

viscoelastic material, we take three parametric relaxation 

nuclei ( ) 1
/ jnn t

n nR t A e t
αβ −−= . On the influence function 

( )nR t τ−  The usual requirements of integrability, continuity 

(except for), signs - definiteness and monotonicity are 

imposed: 
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�
. 

In the study of natural oscillations, we will investigate the 

properties of those modes (the modes are understood to mean 

particular solutions of the equations of motion in 

displacements that satisfy homogeneous boundary conditions 

on the face surfaces), which vary in time according to the 

harmonic law and satisfy the equations of motion (1), 

equations of state (2) and homogeneous boundary conditions 

on the faces: 
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- in the case of a rigid contact at the interface, the 

condition of continuity of the corresponding components of 

the stress tensor and 

vector of displacement, i.e. 

(1) (2) (1) (2)(1) (2) (1) (2)
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- If there is no friction at the interface, 
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- On the free surface, the condition of freedom from stress 

is set, i.e. 
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Thus, taking (5) into account, we arrive at the following 

system of equations: 
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with boundary conditions (6). 

2. Methods of Solution 

The solution of the system of differential equations (2) - 

(6) (or (7) and (6)) for 
( )n
ijσ  — components of the stress 

tensor and ( )n
iϑ  — the components of the displacement 

vector will be sought in the form 

( )n
ijσ  = 

n
ijσ (z)exp(iωt − ikx), 

n
jϑ  = V

n
j  (z)exp(iωt − ikx),                      (8) 

where 
n
ijσ (z) и V

n
j  (z) – amplitude complex vector - 

function (j=1,2); k ( k = kR +ikI ) – wave number; С (С = СR 

+iCi )– complex phase velocity; ω – complex frequency. 

To clarify their physical meaning, consider two cases: 

1) k = kR; С = СR +iCi, then the solution (8) has the form 

of a sinusoid with respect to x, the amplitude of which decays 

in time; 

2) k = kR +ikI; С = СR, Then at each point x the 

oscillations are steady, but with respect to x they decay. 

In both cases, the imaginary parts kI or CI characterize the 

intensity of dissipative processes. Substituting relations (8) 

into a system of partial differential equations (2), we obtain a 

system of ordinary differential equations of the first order, 

solved with respect to the derivatives: 
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At the interface (z=hn) (in the case of a rigid contact), the 

condition of continuity of the corresponding components of 

the stress tensor and the displacement vector is set, i.e. 
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- if at the interface (z= hn) there is no friction, then 

1 2 1 2 1 2
3 3; 0; ;zz zz хz хz V Vσ σ σ σ= = = =  

- on a free surface (z=hk) the condition of freedom from 

stresses is set, i.e. 

1 10; 0.zz zхσ σ= =                       (10) 

Thus, the spectral boundary value problem (9) - (10) is 
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formulated with respect to the parameter ω, which describes 

the propagation of waves in three-layer bodies. The posed 

spectral problem (7) - (8) in dimensionless variables is solved 

by the method of orthogonal sweep with a combination of the 

Muller method [23] on complex arithmetic: 
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2.1. Task 1 

Consider a plate in which the neutral plane coincides with 

the plane x, z, and y coordinate in the direction of thickness, 

in the x direction, the plate is propagated by harmonic 

bending waves (Figure 1). The main material of the plate 

occupies the region ,
2 2

b b
z− ≤ ≤  and for the covering, each 

of which have everywhere the same thickness h, occupies the 

region ,
2 2

b b
z h h z

 ≤ ≤ − ≤ ≤ − 
 

. Let В1, µ1 and ρ1 

respectively, the bulk modulus, the shear modulus, and the 

density of the plate material. Then the solution of the 

Rayleigh-Lembe problem for the base layer is obtained by 

methods of separating the variables and determining the 

displacements u, v, w (in the x, y and z directions, 

respectively) in the propagation of a harmonic wave with a 

frequency ω and a wave number k have the form [17] 
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parameter α1 and β1 are defined by expressions 
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On the basis of the ratios of the linear theory of elasticity 

between stresses and deformations of a homogeneous 

isotropic material, the plate has view 
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The expression for displacements of the points of the 

upper outer covering, satisfying the equations of motion [1], 

generally have the form: 

u=0; 
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Here B1, D1, F1, M1 – constant, and the parameters pα  and 

pβ  is determined by analogy with expressions (11) by the 

following dependences 
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where the subscript c refers to the characteristics of the 

coating material. For the region 

( )/ 2 / 2H h b z b− = − + ≤ ≤ −  it is possible to measure an 

analogous family of dependencies using the antisymmetric 

properties of the flexural wave 

( ) ( ) ( ) ( ) ( ) ( ); ;u z u z z z w z w zϑ ϑ= − = − = − −    (12) 

Further, using properties (12) and restricting ourselves to 

the investigation of the domain 0 z Н≤ ≤ . On the free 

surface z = H, the following boundary conditions must be 

satisfied: 

0.xz zz xzσ σ σ= = =  

In addition, on the surface of the contacts z = b, the 

continuity conditions of displacements must be satisfied 

( ) ( ) ( ) ( ) ( ) ( ); ,u b u b b b w b w bϑ ϑ− + − + − += = =    (13) 

and the conditions of equality 

( ) ( ) ( ) ( ) ( ) ( ); ;xz xz zz zz yz yzb b b b b bσ σ σ σ σ σ− + − + − += = = . 

On the basis of conditions (11), (12), (13) and the 

symmetry conditions, we form a system of six linear 

homogeneous algebraic equations with respect to unknown 

constant A1, B1, C1, D1, F1 and M1; the first two of these 

constants determine the deformed state of the plate, the other 

four - the deformed state of the upper layer of the coating. As 

a result, we obtain systems of homogeneous algebraic 

equations with complex coefficients [ ]{ } { }0С q = . A system 

of homogeneous algebraic equations has a nontrivial 

solution, under the condition that the determinant of the basic 

matrix 

[ ] 0С =                                (14) 
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The transcendental equation (14) can be solved 

numerically by the method of Muller [7,23]. 

2.2. Task 2. The Propagation of Waves in a Viscoelastic 

Three-Layer Body on a Rigid Base 

Suppose that in a Cartesian coordinate system a sequence 

of parallel planes is given. Suppose that the spaces between 

planes are filled with isotropic elastic media forming parallel 

layers. In the theoretical study of the described processes, we 

will assume that within each layer the wave propagation is 

described by the equations of elasticity theory (Lame). On 

the boundary of two bodies, the conditions of a rigid or 

sliding contact are set. With rigid contact at the interface, the 

condition of continuity of the corresponding components of 

the stress tensor and the displacement vector is established. 

On the free surface, the condition of freedom from stress is 

set. The problem is solved in the displacement potentials. The 

Sommerfeld radiation conditions satisfy the potential 

function at infinity. The dispersion equation has the form: 
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The remaining elements (15) of the determinant are written 

in a similar way *
1 1 2h h h= + . Now this equation will be 

solved with respect to ω/k for different values of k. The roots 

of the equation are calculated on a computer with the 

following values of the dimensionless parameters: 

С
2

L1=0.622; С
2

L2=3.360; С
2

L3=3.360; С
2

S1=0.776; 

С
2

S2=1.230; 

С
2

S3=3.000; µ1=0.170; µ 2=0.30; µ 3=0.3. 

3. Results 

The results are plotted as dependency curves (ξ = kH, H = 

h1+h2) from ω for h
*

1/ H =0.5. Let's consider two variants of 

the system. In the first variant, a homogeneous system is 

considered (Figure 4). coefficient behavior δ radically 

changed: dependence ωI ~ ξ became nonmonotonic. Of 

particular interest for practice is the minimum for fixing ξ 

value of the damping coefficient, the value of δ determines 

the damping properties as a whole. 

In the case of a homogeneous system, δ is determined by 

the imaginary part of the complex natural frequency modulo 

the first. In the case of an inhomogeneous system (RE2=0) 

The role of the global damping coefficient is imaginary parts 

of both the first and second frequencies (Figure 5). The 

mathematical and physical aspects of this effect are explained 

in [13, 14, 15, 16]. The change in the parameter, on which the 

global coefficient of damping depends so substantially, can 

be achieved by varying the geometric dimensions or physical 

properties, thereby opening up the perspective possibility of 

effectively controlling the damping characteristics of 

dissipatively inhomogeneous viscoelastic systems. 

The frequency equation (14) is solved by the Mueller 

method. In all cases, the Poisson's ratio of the middle layer is 

taken as 0.25; attitudes ρ1/ρ densities of the coating materials 

and the middle layer are 0.35, and the ratio G1/µ module of 

the volume compression of the coating material to the shear 

modulus of the material of the middle layer 0.20. The values 

given correspond to a system that consists of an elastic 

aluminum middle layer and a coating, is made of a typical 



 International Journal of Theoretical and Applied Mathematics 2017; 3(6): 191-198 196 

 

high-polymer material, and it is proposed that purely 

volumetric deformation of the coating during vibrations is 

not accompanied by energy dissipation. Various values of h / 

b were considered - the ratio of the thickness of the coating to 

the half-thickness of the middle layer and the different values 

of the coefficients γ - of the energy dissipation in the material 

under shear deformations The results are presented in the 

form of graphs of the dependences of the real part 2( )ωΩ  

and the coefficient of loss from the dimensionless wave 

number / / 2h x kh π=  (the ratio of the half-thickness of the 

middle layer to the wavelength). The absolute error in 

calculating the eigenvalues (with respect to the exact 

equations) lies in the limit 
6

14 10
−⋅ . Figure 2 shows the 

change in the real and imaginary parts of the complex 

frequency as a function of the dimensionless wavelength. γ = 

0,35 and the relative thickness of the coating h/ λ  = 0,1. 

In the case of a dissipative homogeneous system δ  (let's 

call it the global damping coefficient) is entirely determined 

by the imaginary part. First modulo complex natural 

frequency 

( )min , 1, 2,... .ik k nδ = Ω =  

 

Figure 2. Dependence of natural frequencies (ΩR) and the damping 

coefficients of the wavelength. 

In the case of dissipatively inhomogeneous mechanical 

systems [5, 6], a nonmonotonic dependence of the damping 

coefficient on the wavelength is observed. The role of the 

global damping coefficient is played here by the imaginary 

parts of the first and second eigenfrequencies. When the 

corresponding frequencies approach (ΩRk) intersection of the 

imaginary parts of the first and second, the modes of the 

natural frequencies. A similar effect was observed when 

using the fractional-exponential kernel of the heredity 

Rabotnov Yu.N [24,25]. A similar effect was found in studies 

of systems with a finite number of degrees of freedom. 

 

ω4 = 534,7 Hz 

 

ω5 = 620,2 Hz 

 

ω6 = 711,1 Hz 

 

ω7= 732,6 Hz 

 

ω1 = 116,5 Hz 

 

ω2 = 121,3 Hz 

 

ω3 = 327,9 Hz 
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Figure 3. Forms of plate vibrations at different frequencies. 

Figure 3 shows the change in the shape of the plate 

oscillations at different frequencies for h=0,01m, 
8

2 5,5.10Е = Pа, 10
1 3,5.10Е Pа= , 0.08 ,b m=  L=1m, 

1 27ρ = kg/m
3
. 

Rheological properties of the outer coating: 

0,048; 0,05; 0,1.A β α= = =  

4. Discussion 

Analysis of dispersion equations and their numerical 

solutions allows us to draw the following conclusions: 

 

Figure 4. Change of natural frequencies from the wave number (dissipative 

homogeneous system). 

 

Figure 5. Change of natural frequencies from the wave number 

(dissipatively inhomogeneous system). 

- for the dissipatively inhomogeneous mechanical systems, 

the "Troyanovskii-Safarov" effect [18] was found: the 

nonmonotonic dependence of the damping coefficients on the 

geometric and physico-mechanical parameters of mechanical 

systems; 

- there is a symmetry of the dispersion curves when the 

complex wave number kɶ  on− kɶ ; 

- the larger the value of the parameter of the fractional 

exponential parameter of the nucleus m and (or less the value 

β), the earlier the dispersion curves with the positive and 

negative imaginary parts begin to diverge kɶ ; 

- with a decrease in the values of m and (or) with 

increasing values β the behavior of the dispersion curves 

tends to the elastic case; 

-dispersion curves of the hereditary-elastic spectrum 

corresponding to the real branches of the elastic spectrum are 

complex with a positive imaginary part kɶ , which determines 

the attenuation of the coordinate solution; 

- in the vicinity of the locking frequencies of the elastic 

spectrum, the branches of the hereditary-elastic spectrum 

have the greatest curvature. Increasing the values of m, like 

decreasing the values β, leads to a smoothing of the 

dispersion curves in these regions. Thus, the elastic spectrum 

can approximately be regarded as asymptotic for the 

hereditarily elastic k → 0, β > 1. 
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