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1. Introduction

In this paper, A is assumed unitary, associative and not
necessarily commutative. A and B are algebras assumed
unitary, associative and not necessarily commutative as a ring
and unital as a A-module.

In general, the action of the functors Hom,(—,B),
— ®,4 B and Ext}(—,B) ona A-module M(resp. A-algebra
A) is not an algebra.

In this paper the conditions in which Hom,(M,B) and
Exty)(M,B) have a structure of algebra are given. The
conditions in which Homy(A,B) , AQ,B and
Ext} (A, B) have a structure of algebra are also given, and
the localization of its algebras with a multiplicatively closed
subsets satisfying the left Ore condition is studied.

The main purpose of this paper is to study the functorial
relations between the functor localization S™1() with the

functors Homy(—,B): Alg— A - B — Alg, — ®,B: Alg —
B - Alg — A and Ext}(—,B):Alg—A— B —Alg.

In this paper the following main results are shown:

In the section 3:

If A is a left (resp. right) A-algebra and S a central
saturated multiplicatively closed subset of A, then the left
(resp. right) S7'A -module S'A is a left (resp. right)
S~1A-algebra, furthermore A @, S™1A = S71A.

If B is a duo-ring, A a subring of B, S a central saturated
multiplicatively closed subset of A, Sp the set of regular
elements of S, A right A-algebraand B a (B — A)-bialgebra
then Homg-1,(S™*A, S B) is aleft S;'B-algebra.

If B is a duo-ring, A a subring of B, S a central saturated
multiplicatively closed subset of A, S the set of regular
elements of S, A a finitely presented right A-algebra and B
a (B — A)-bialgebra, then there exists the isomorphisms of
left S;!B-algebras,

Homy(A,B) Qg Sg'B = Sg*Homy (A, B) = Homg-1,(S *A,S™1B).

furthermore if P is a prime ideal of B, S = (B —P) N Z(B) and Sy the set of regular elements of S, then there exists the

isomorphisms of left S~!B-algebras,
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Homg(A,B) Qg S
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“1B = S"'Homg(A,B) = Homs-15(S71A,S71B).

And furthermore also there exists the isomorphisms of left S;!B-algebras,

Homg(A,B) Qg Sg'B = Sg*Homg (A, B) = Homg-153(S"*A, S B).

If B is a ring, S a saturated multiplicatively closed subset of Z(B), A a finitely presented right Z(B)-algebra and B a
(B — Z(B))-bialgebra, then there exists an isomorphisms of left S~ B-algebras,

HomZ(B) (c/q, B) ®B S~

'B = ST Homyp) (A, B) = Homg-1,.5) (S~ A, S™'B).

Furthermore if P a prime ideal of Z(B), then it exists the isomorphisms of left Z(B)p-algebras,

HomZ(B)(c/l, B) ®B B}) = HomZ(B)(c/l, B):p = HomZ(B)?(c/l?,B?).

In the section 4:
If A is a right A-algebra, B a (B — A)-bialgebra the
unitary left B-algebra, Exty (c/l B) is built as follows:

d
it PRSP PP RS0 s a

complex projective resolution of a right A-module A, then
Ext}(A,B) = [Kerdy,,]/(Imd;),
where

d,, = Homy,(d,, B): Hom,(P,_,,B) — Hom,(P,, B)

Pn > Pp o dy,

[Kerd; ] is the unitary B-algebra generated by Kerd;,
and (Imd,,) is the ideal of [Kerd, ;] generated by Imd,,.

If B is a noetherian duo-ring, A a subring of B, S a
central saturated multiplicatively closed subset of 4, SR the
set of regular elements of S, A a finitely generated right
A-algebra and B a (B — A)-bialgebra, then it exists the
isomorphisms of left S B-algebras,

Ext}(A,B) ®p Sg'B = Sg'Ext} (A, B) = Ext{-1,(S™'A,S™'B).

2. Preliminary Results

Definition 2.1

(1). A subset S of a ring A is called multiplicative if
1, €S and S is stable by multiplication
ieforall x, t€S, xt €S.

(2). Amultiplicative subset S of aring A is called closed if
forall s, s' € A suchthat ss"€ S= s€ S and s’ € S.

(3). Let S amultiplicatively closed subset of A. S satisfies
the left Ore conditions.

If:

(a) Va€ A, Vs €SIt €S and b € A such that ta = bs

(b) YVa € A, Vs € S such that sa = 0, then it exists t € S
such that at = 0.

Theorem 2.1 Let A a ring, M a left A-module and S a
multiplicatively closed subset of A satisfying the left Ore
conditions. The binary relation defined in S X M by

xm = ym'

(s, MR(s',m') & 3Ix,y €S/ { xx = ys'

is an equivalence relation.

Proof

See [14] m

Notation: S™M is noted the set of equivalence classes
modulo R (S X M/R).

If (s,m) €S X M, then the classe (s,m) is noted %, in
particular if M = A the classe (s,a) € S™14 is noted by %

Theorem 2.2 Let A a ring not necessary commutative, M a

left A-module and S a multiplicatively closed subset of A

satisfying the left Ore conditions, S~ A is a ring by the two

following operations:
1. %+ b — xa+yb

3 , where x,y € S:xt = ys
2.2><2=—,where (w,z) ES X A:wa = zs.
t N wt

S™IM is a left S7'A -module by the two following
operations:

1. %4_ ’:_,’ =T Where x,y € S such that xs = ys.
. %%— %, where (w,z) € S X A such that wa = zs.
Proof

See[13] and [14] m

Proposition 2.1 Let A and A two rings, and 0:A — A a
morphism of rings. Then A has a structure of left (resp. right)
A-module as follows:

CAXA > A
(a,x) — aex=0(a)x
(resp. *: A XA — A

(x,a) —m x*a=x0(a))

Proof

Easy.m

Definition 2.2 Let A and A two rings, and 0:A — A a
morphism of rings. Then (A,+,X,8) (resp. (A,+,X,*)) is
called a left (resp. right) A-algebra relatively to 6.
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Remark 1 This definition shows that to provide A with a

structure of left (or right) A-algebra it is enough to have a bg(a1az) = (01a2) - 14 = a1 - (a2 - 14)
morphism of rings from A to A.
Definition 2.3 Let A and A two rings, and 8: 4 — A a =a, [(a,-1)14] =a; - [14(a, - 1,)]

morphism of rings. If Im(0) € Z(A), then A is called a

A-algebra relatively to 6. _ _
Proposition 2.2 Let A and A two rings. = (@114)(az - 1) = 65(a1)0y(az).
(1).If A isaleft A-module such that a - (xy) = (a - x)y =

x(a-y),Va€AVx,y€A,then A isaleft A-algebra. A-aleeh here ”¢” the law induced by 6
(2).If A isaright A-module suchthat (xy)-a =x(y-a) = a'gebra wiere € 1aw Imaucec by Yg-

] S * Suppose that A is a left A-module such that (xy) - a =
(xPrc(l))O};, Va€Avx,y €A, then A isaright A-algebra. x(y-a), Va€A, Vx, y €A and show that A is a left

A-algebra.
Consider the canonical morphism of left A-modules:

So 6, is a morphism of rings, so (A, +,X,e) is a left

* Suppose that A is a left A-module such that a - (xy) =
(a-x)y=x(a-y), Va€A, Vx, y € A and show that A
is a left A-algebra. 04— A

Consider the canonical morphism of left A-modules:

0g: A — A a—1,-a.
It is enough to show that 8, is a morphism of rings.
a—a-1,. It is clear that 6, is a morphism of groups.
Let a;, a, €A
It is enough to show that 6, is an isomorphism of rings. Tflen'l’ 2

It is clear that 6, is a morphism of groups.
Let a;, a, € A we have:

0a(a1a;) =14 (a102) = (1 a1) - a; = [(1g - a) 4] - ax = (1 - a)) (g - a2) = 04(ay)84(az).

So 6, is a morphism of rings, so A is aright A-algebra.m ,
({a-x1 =b-x'; (1)

_ at1 = bt’l (2)
3. Functor S™1() and Functor 4
Hom,(—,B) in the Category A-Alg {a’ Xy = b x'y (1)
(resp. Alg-A) a't; =b't; (2)
3.1. Algebra of Fraction in the Non Commutative Case Whereas:

Theorem 3.1 Let A a left (resp. right) A-algebra and S a A < Y2 _ %
central saturated multiplicatively closed subset of A. Then the ti L 4l
left (resp. right) S™YA-module , STYA is a left (vesp. right) , .
S~tA-algebra. [ X1 gX2 _X1Xa

Proof \ 1 th thth

Show that S71A is a left S™1A-algebra.
Define a law of internal composition on S™1A.
Consider the following correspondence:

Whereas:

(a-x)(a@ - x;) =a-[x(a - x;)] because A is a left

R:S1AXS 1A —STA A-algebra.
¢ x_l) L XX x =x,(a- (@' -x,)) because A isaleft A-algebra
t b t " e
Let (9:—1,9;—2 , (;ﬂ,’tﬁ) €S'AXS A such that = x;((aa’) - x;) because A isa A-module
1tz 1tz
&2 = 3 Iy

t1 ty try try

X = (aa") - (x,x,) because A isa left A-algebra.
Soitexists a, b, a’, b’ € S such that

Whereas also:

(b-x")® -x'y)=Db-[x'1(b"-x',)] because A is a left
A-algebra
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=x'y(b- (b -x';)) because A is aleft A-algebra
=x'1((bb") - x';) because A is aleft A-module

= (bb") - (x'1x",) because A isa left A-algebra.

Or (1) and (1) = (a-x)(@ -x) =D -x')B - x'y).

So (aa') - (x1x3) = (bb") - (x'1x"3) (%).

Whereas: (at;)(a’ty) = (aa’)(t;t;) because S c Z(A).

Similarly we have (bt';)(b't';) = (bb")(t'it',) because
ScZ(4)

(2) and (2)" = (aty)(a'ty) = (bt')(b't) =
(aa)(t1tz) = (bD)(t'1t'2) (*%).

Pose X = aa’ and Y = bb'.

Whereas
X(x1x2) = Y(x'1x'5)
X(tity) = Y(t'1t')
So
Xy _Xy X1 _x
Bk g
ti1 t tg t

Therefore X is a law internal composition.

After [14] S71A is a left ST1A-module, so to show that
S71A is a left S™1A-algebra, it is enough to show after the
proposition 2.2 that:

VIESTIA VL TESTIA S GR)=IR(E D) =
a X\ ~Xx/
G oxy
Whereas first:
%-(%52);—:) =%-i—:=% where (w,z) € S X A such that
wa = ztt' (E;).

Whereas second:

ISE D =IgZX 2% ywhere (W', 2") €S X A such
t S tr t wIs twrs

that w'a = z't’ (E,).
Since (w,tw) €SxS3(p,q) €ESXS such that

pw = qtw’ = pwa = qtw'a, so after (E;) et (E,) pztt' =
qtz't' = pztt' — qtz't' = 0 = (pzt — qtz")t' = 0,

so after the seconde Ore condition 31; €S such that
r(pzt — qtz") = 0 = rypzt = riqtz’ = rypzt - (xx') =
riqtz’ - (xx").

Calculate first r;pzt - (xx):

Whereas:

(rpzt) - (xx") = (r;ptz) - (xx") because zt =tz since
ScZ(A) = ((ript)z) - (xx") = (rypt) - (z - (xx")) because
A is aleft A-module.

Then calculate [(r,qt)z'] - (xx")

Whereas:

[(rqt)z'] - (xx") = (riqt) - (2’ - (xx")) because A is a
left A -module = (ryqt) - [x(Z' - x)] because A is a left

— ®4 B and Ext}(—,B) inthe Category of A — Alg

A-algebra.
Also since pw = qtw' then i tpw = r tqtw’

and since S © Z(A) then (rypt)(ws) = (r,qt)(tw").
Pose X =rypt and Y = nryqt
Whereas:

X(z- (xx)) =Y (x(z"- X))

z-(xxr) _ x-(z/a)

ws wtit
X(ws) =Y (tw")
So
a (x~x’) x~(a x)
— (- X=)=— — . —).
s t” ot st
a X ~ XI a X\ ~Xx/
In the same way we show that;-(?x;) = (;-?)x;.
So
LAYy ALY _rg il 2eg-t x
s (txtl) (s t)xt)é’ tx(s t/)’VsES A’Vt’
—eStA.

tr

Therefore S™1A is aleft S™1A-algebra. m

Proposition 3.1 Let B and A two rings.

(). If M is a right A -module and B is a (B —
A)-bialgebra, then the group Hom,(M,B) is a unitary left
B-algebra by the following operations:

(b - £)(m) = bf(m),Ym € M,¥f € Hom,(M,B),Vb € B,

(f 9)(m) = f(m)g(m),vm € M,Vf, g € Hom,(M,B).

(2).If M isaleft A-moduleand B isa (4 — A)-bialgebra,
then the group Hom, (M, B) is a unitary left A-algebra by the
following operations:

(a- f)(m) =af(m),vm € M,Vf € Homy(M,B),Va € 4,

(f 9(m) = f(m)g(m),vm € A,Vf, g € Hom,(M, B).

Proof

o the group Hom, (M, B) is a unitary left B-algebra.

* After [18] Hom,(M,B) is a left B-module.

* Show that Hom, (M, B) has a structure of ring via the
operation defined above.

Let f,g,h € Hom,(M,B), m € M, we have:

[(f@hl(m) = (fg)(m)h(m) = (f (m)g(m))h(m)
= f(m)(g(m)h(m)), because B is a ring

= fm)(gh)(m) = [f(gM)](m).

So (fg)h = f(gh), so the internal composition law is
associative.
Whereas also:

[f(g + M](m) = f(m)(g + h)(m)
= f(m)(g(m) + h(m))
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= fm)g(m) + f(m)h(m) = (fg + fh)(m).

So f(g +h) =fg+ fh, so the internal composition law
is distributive compared with the addition.

Therefore, Hom,(M,B) has a structure of ring of unit
element,

1:M — B.

me— 1g

* Show that the two laws are compatible

LetbeEB, f,g € Homy(M,B), ne M
whereas  [b - (fg)](m) = b(fg)(m) = b(f(m)g(m)) =
(bf (m))g(m)
because B is a left B-algebra = (b f)(m)g(m) =[(b -
Hglm)
whereas also [b - (fg)](m) = b(fg)(m) = b(f(m)g(m))

= f(m)(bg(m)) because B is a left B-algebra.

=fm)(b-g)(m) = [f (b - g)](m).

Sob-(fg)=(-fg=f(b-9)).

So after the proposition 2.2 Hom,(M,B) is a left
B-algebra.

¢ The item 2. is showing the same way. ®

Corollary 3.1

(1). If A is a right A -algebra and B is a (B —
A)-bialgebra, then the group Homy, (A, B) is

a unitary left B-algebra by the following operations:

(b - f)(x) = bf (x),Vx € A,Vf € Homy(A, B),Vb € B,

(f ) = f(x)g(x),Vx € A,Vf,g € Homy(A,B).

(2).If A isaleft A-algebraand B isa (4 — A)-bialgebra,
then group Homy (A, B) is a left A-algebra by the following
operations:

(a-f)x)=af(x),¥x € A Vf € Homy(A,B),Va € 4,

(f 9x) = f(x)g(x),Vf,g € Homy(A, B),x € A.

Proof

Just consider the A-algebra A as a A-module and you
have the results 1 and 2.m

Proposition 3.2 Let B and A two rings.

(1). If A is a right B -algebra and B is a (B —
A)-bialgebra, then the group A Q5 B is a

right A-algebra of unit element 14 & 15 by the following
operations:

x®y)a=xQ (y.a),Vx € A Vy€EB,Va€EA

xRy = (xx' ® yy"),Vx,x" € A,Vy,y €B.

(2).If A isaleft A-algebraand B isa (B — A)-bialgebra,
then the group A ®, B is a
unitary left B-algebra by the following operations:

b-x®y)=xQ (b.y),Vx € A, Vy € B,Vb €B,

xR RY) =(xx' @ yy"),vVx,x" € A,Vy,y' € B.
Proof

¢ A Q®p B isaright A-algebra.

* After [1] A @y B is aright A-module.

* It’s not difficult to show that A @p B has a structure of
ring.

* Show that the two laws are compatible.

Let x @y, x¥ @y € AR B and a € A.
whereas [(x @ y)(x' ® ¥)].a = (xx' ® yy').a = (xx') &
(vy"H.a) = (xx) ® (y(y'.a)) because B is a right
A-algebra. = (x @ Y)(X' @ y'.a) = (x @ V)[(x' ® y").a]
whereas [(x @ Y)(X' @ ¥yN].a=(0x" Q@ yy).a=(x)Q
(yy).a) = (xx") @ ((v.a)y") because B is a right
A -algebra. = (x Q@ (r.a)(xX' @) = [(x @ y).a](x' &
y)

So [(x® (X' @y)].a=(xQN( ®Y).a] =
[((x @ ¥).a](x' @ ¥").

So after the proposition 2.2 A @5 B is aright A-algebra.

e The item 2. is showing the same way.®

Theorem 3.2 Let B a duo-ring, A a subring of B, B a left
B -algebra vrelatively to 6 , S a central saturated
multiplicatively closed subset of A and Sg the set of regular
elements of S. Then S™'B is a left Sz'B-algebra.

Proof

After the theorem 3.1 S7!B is a left S1A -algebra
= S71B isaring.

Since Sy is the set of regular elements of the duo-ring B,
so Sp is a saturated multiplicatively closed subset of B
satisfying the Ore conditions, so after [13] Sz1B is also a ring.

So it is enough to show that this following correspondence
is a morphism of rings:

0':S;'B — S™'B

b_ o)

S S

So after the remark 1 S™1B is aleft S;B-algebra.m

Theorem 3.3 Let B aring, B aleft B-algebra relatively to
6 and S a saturated multiplicatively closed subset of Z(B).
Then S™B is a left ST B-algebra.

Proof

The proof is similar to the previous one.m

Theorem 3.4 Let B a duo-ring, A a subring of B, S a
central saturated multiplicatively closed subset of A, Sp the
set of regular elements of S, A right A-algebra and B a
(B — A)-bialgebra. Then Homg-1,(S™A,S™'B) is a left
Sz 1B-algebra,

Proof

After the theorem 3.1, S™1A is a right S™'A-algebra and
S71B is aright S~*A-algebra.

After the theorem 3.2, S™!B has a structure of left
Sz 1B-algebra.

So S7'B is a (Sg'B — S!A) -bialgebra, so after the
proposition 3.1, Homg-1,4(S7*A,S™1B) has a structure of
left S;!B-algebra.m

3.2. Relationship Between Functors S™1(), Hom,(—, B)
and — Q B in the Category A — Alg (resp. Alg — A)

Proposition 3.3 Let B a (B — A) -bialgebra.Then the
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correspondence
Homy,(—,B):Mod — A - B — Alg

(1). who has any right A-module M, we associate the left
B-algebra Hom, (M, B),

(2). who has any morphism of right A-modules f: M — M’,
we associate f*Homy(f,B): Homy(M',B) » Hom,(M,B)
is a contravariant functor.

Proof

* After the proposition 3.1
Hom,(M,B) € Ob(B — Alg).

* Let f:M —» M' a morphism of right A-modules, show
that

f*=Homy(f,B):Homy(M',B) » Homy(M,B) is a
morphism of left B-algebras..

Let @, € Homy(M,B), x € M.

We have

[ (@)](x) = [(p¥) © f1(x) = @ (f (P(f (x))

M € Ob(Mod — 4) =

=@ HEW )
=g HWHIX)

= [ (@ f WM1).

So we have f*(o¥) = f*(@)f"(¥).
Let ¢ € Homy(M,B),b € B, x € M.

We have
[f*(bp)](x) = [(b) ° f](x) = (be)(f(x)) = b(¢ ° f)(x)

= [b(f (@]

So we have f*(bg) = b(f*(p).

Therefore f*, for all n >0, is a morphism of left
B-algebras.

* Let f:M - M' and g: M’ - M"" two morphism of right
A-modules, x € M, we have:

Hom,(g ° f,B)(¢)(x) = [ ° (g ° /)] (x)
= [Hom,(f,B) ° (¢ ° 9)1(x)

= [Hom,(f,B) e Hom, (g, B)(9)] (%)

= [Hom,(f,B) e Hom,(g, B)](¢)(x).

So we have Homy(g e f,B) = Homy(f,B)
Homy(g,B).
* Let @: M — B a morphism of left B-algebras, x € M,

we have:

[Hom, (1, B)(@)](x) = @ o 1y (x) = ¢(x) =
Hom,(1y, B)(¢) = ¢.

SO HOmA(lM, B) = 1HOmA(M,B) al’ld
Homy(—,B) is a contravariant functor.m
Theorem 3.5 Let A a A -bialgebra and S a central

therefore

Functors S™1(), Homu(—,B), — ®4 B and Ext}(—,B) in the Category of A — Alg

saturated multiplicatively closed subset of A. Then it exists an
isomorphism of left S~1A-algebras,

AQ,STA=S1A.

Proof
Consider ¥ 4: A X S™1A — S71A

a xa

(x,2) ——.
We have 4 is A-bilinear, so according to the universal
property of the tensor product it exists a map A -linear

84:AQ®SIA — S™1A such that

6 Z ®ai _inai
al( Xi Si)_ s
Let 9 0:S71A > AR STA
LR
X S

It is clear that ¢ is well defined.
We have

92284 % @ = 0@ =X 0a(LH =
inai®i=2xi®%-

So @q°64 =14gs5-14, P4 and 64 are inverse of each
other.

Therefore A ®,S A= S"1A. m

Theorem 3.6 Let B a duo-ring, A a subring of B, S a
central saturated multiplicatively closed subset of A, Sy the
set of regular elements of S, A a finitely presented right
A-algebra and B a (B — A)-bialgebra. Then there exists the
isomorphisms of left Sg'B-algebras,

Homy,(A,B) Qg Sg'B = S Homy, (A, B)
= Homg-1,(S7 1A, S71B).

Proof

e Since A is a right A -algebra and B is a (B —
A)-bialgebra, then after the proposition 3.1, Homy, (A, B) is
a left B -algebra, we have also Sz'B is a (Sz'B —
B)-bialgebra, so after the proposition 3.2 and the theorem 3.5
we have,

Hom,(A,B) Q5 Sg1B = Sy*Homy (A, B).

o Show that Sg*Hom, (A, B) = Homg-1,(S™1A,S™1B)
is an isomorphism of left S;!B-algebras.

After [6] Sg'Homy(A,B) = Homs-1,(S71A,S71B) is
an isomorphism of left Sz'B -module and since
Homg-1,(S7*A,S7'B) is a left S;z'B -algebra, so by
structure transport SgHomy(A, B) is a left S;'B-algebra.

Therefore  Sg*Hom,(A,B) — Homg-1,(S7*A,S™1B)
is the isomorphisms of left Sz1B-algebras.m

Theorem 3.7 Let B a ring, S a saturated multiplicatively
closed subset of Z(B), A a finitely presented right
Z(B)-algebra and B a (B — Z(B))-bialgebra. Then there
exists the isomorphisms of left S™1B-algebras,
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HomZ(B)(cﬁl,B) ®B S_lB = S_lHomZ(B)(cﬁl,B)
= H0m5—1Z(B)(S_1c/l,S_lB).

Proof

¢ The first isomorphism is shown in the same way as that of
the previous theorem.

o We have A is aright Z(B)-algebra = S™1A is a right
S™1Z(B)-algebra.

Also B is a (B — Z(B))-bialgebra = S™1B a (§71B —
S™1Z(B))-bialgebra. So Homg-1,(5)(S™*A,S™'B) is a left
S71B -algebra and since there is a bijection between
S~ Homy gy (A, B) and Homg-1,5 (S~ A, S™B), then by
structure transport
S~ Homy gy (A, B) = Homg-1,5(ST'A,S7'B) is an
isomorphism of left S™1B-algebras.m

Proposition 3.4 Let B a duo-ring, P a prime ideal of B,
A a finitely presented right B -algebra, B a (B —
B) -bialgebra, S =(B—P)NZ(B) and Sy the set of
regular elements of S. Then it exists the isomorphisms of left
S™1B-algebras,

Homg(A,B) ®p S™IB = S~ Homg (A, B)
= Homg-15(S7*A,S™1B).

Furthermore it exists the

Sz 1B-algebras,

isomorphisms of left

Homg(A,B) ®p Si'B = SgtHomg (A, B)
= Homg-15(S7 1A, S™1B).

Proof

Since B is a duo-ring, then B — P is saturated
multiplicatively closed subset, so S =(B—P)NZ(B) is a
central saturated multiplicatively closed subset of B.

So after the theorem 3.6 we have,

Homg(A,B) ®p Si'B = SgtHomg (A, B) =
Homg-15(S7*A,S71B) and

Homg(A,B) Qp Si'B = SgtHomg (A, B) =
Homg-15(S7*A,S7'B). m

Proposition 3.5 Let B a ring, P a prime ideal of Z(B), A
a finitely presented right B -algebra and B a (B —
B) -bialgebra. Then it exists the isomorphisms of left
Z(B)p-algebras,

HOTTlZ(B)(c/q, B) ®B B:p = HOTTlZ(B)(c/q, B)y
= HomZ(B)?(cﬂp,BgJ).

Proof

Since A is a right B-algebra and B a (B — B)-bialgebra,
then in particular A is a right Z(B) -algebra and B a
(B — Z(B))-bialgebra.

Pose S=Z(B)—P = S is a saturated multiplicatively
closed subset of Z(B). So after the theorem 3.7 we have:

Homz(B)(c/l,B)gJ = S_IHOTYLZ(B)(JZ, B) =
Homg-1,5)(S7'A,S™'B) = Homy(gy, (Ap, Bp) and

Homz(B)(c/l, B) ®B B:P = Homz(B)(c/l, B) ®B S_lB =
S™'Homygy(A,B) = Homyp) (A, B)p.®

4. Functor S~1() and Functor
Ext,(—,B) in the Category A — Alg
(resp. Alg — A)

4.1. Construction of the Derived Fonctor Ext,(—,B) in the
Category A — Alg (resp. Alg — A)

Theorem 4.1 Let A a right A -algebra, B a (B —
A)-bialgebra and
d ds dy €

P:B, 5Py, —P,— P, — Py — A—0 a
complex projective resolution of a right A-
module A. Then

[Kerdy,1]/(Imdy)
is a unitary left B-algebra, where

d, = Homy(d,, B): Homy(P,_1,B) — Hom,(P,,B)

P > Ppody

[Kerd; 1] is the unitary algebra generated by Kerd;
and (Imd,,) is the ideal of [Kerd, ;] generated by Imd,,.

Proof

By applying the contravariant functor we have,

Homy(P,B):0 — Homy(A,B) —
dn dn
< Homy (P,_1, B) — Hom,(PyB) — Homy(Pps1,B).

So after the proposition 3.1 Homy,(P,, B) has a structure of
left B-algebra, forall n > 0.

Show that d;, for all n >0, is a morphism of left
B-algebras.

Let ¢, € Homy(P,_1,B), x €EP, .
whereas

[dn(e)](x) = [(pY) © dy](x) = @(dn(x))P(dn(x))
= (pod)(X)(W e dp)(x)
= [(@ o dn) (@ 2 dn)](x)
= [dr(@)dn ()]0
So dn(pY) = dn(p)dn ().

Let ¢ € Homy(P,,_1,B),b € B, x € P,.
whereas
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[dn(bp)](x) = [(bg) © dy](x) = (bp)(dn(x))
= b(@ © dy)(x) = [b(dn(9)](X).

So dy(be) = b(d ().

Therefore d; , for all n >0, is a morphism of left
B-algebras.

It should be noted that Kerd,,,; is not in general a unitary
algebra, so take [Kerd;,,] the subalgebra of the unitary left
B-algebra Hom, (P, B) generated by Kerdy, 4.

On the other hand we have Imd;, c Kerd;,, C
[Kerdp,4].

It should be noted that Imd,, is not in general an ideal, so
take the ideal (Imd;) of [Kerd, ;] generated by Imd;,.

Therefore [Kerd;,,,]/{Imd;) is a unitary left
B-algebra.m

In this paper we note by Exty(A,B) = [Kerd,,,]/
(Imd,,).

Proposition 4.1 Let B a (B — A) -bialgebra.Then the
correspondence

Ext}(—,B):Mod — A — B — Alg

(1). who has any right A-module M, we associate the left
B-algebra Extj}(M,B),

(2). who has any morphism of right A-modules f: M —
M', we associate Exty(f,B): Extyj(M',B) —» Ext}(M,B) is
a contravariant functor.

Proof

* After the theorem 4.1 we have M € Ob(Mod — A) =
Ext}(M,B) € Ob(B — Alg), so the action of Exty(—,B)
on the objects of B — Alg makes sense.

* Let f:M - M' a morphism of right A-module. After the
comparison theorem the following commutative diagram is
obtained

Py:..—P,——PFP,_1--- Py of 0
f_l f_nl fn-—ll f_nl fl
P‘I'—)Pr/x—) llx—l“. P(; B 0

By applying the contravariant functor Hom,(—,B) we
have

Homa(Pn, AB) : 0 —— Homa(M,#B) — Homa(Py, B) - - -

Hum,ﬂf./})l H()'ll.-\(fu’?)l Hom,\(ﬁ,..ﬁ)l

Homa(Pryy B) : 0 —— Homa(M', B) — Hom (P}, B) - -+
So Hom,(f,B): Hom,(Py, B) — Homy(Py,,B) is a

morphism of chain complex.
Whereas

H,(Hom,(f,B)): H,(Hom,(Py, B))
— H,(Hom,(Py,, B))

z, — Hom,(f,, B)z,.

After the theorem 4.1 Homy(f,B)=f" and
Hom,(f,,B) = f,; are morphism of left B-algebras.

Functors S71(), Hom,(—,B), — ®4 B and Ext}(—,B) in the Category of A — Alg

So H,(Hom,(f,B)) = Ext}(f,B) is a morphism of left
B-algebra, so the action of Extj(—,B) on the arrow makes
sense.

* Whereas

Ext}(g o f,B) = Hy(Hom,(J o f,B))
= H,(Hom,(g o f,B))

= H,[Hom,(f,B) o Hom,(g,B)]
= Hn(Homy(f,B)) o H,(Hom,(g, B))

= Ext}(f,B) o Ext} (g, B).

* Whereas

Ext}(1y, B)(Zn) = Homy((Am)n B)(21)
= 1HomA(M,B)(Zn) = Z

So Ext};(1y,B) = Lpxe(m,3)-

Therefore  Ext}(—,B):Mod —A— B—Alg is a
contravariant functor.m

Theorem 4.2 Let B a duo-ring, A a subring of B, S a
central saturated multiplicatively closed subset of A, Sp the
set of regular elements of S and B a (B — A)-bialgebra.
Then the correspondence

Extg-1,(— S 'B):Mod —S™'A — Sz'B — Alg

is a contravariant functor.

Proof

just see that after the theorem 3.2, S™'B is a (Sz'B —
S~1A)-bialgebra .m

Corollary 4.1 Let B a duo-ring, A a subring of B, S a
central saturated multiplicatively closed subset of A, Sp the
set of regular elements of S and B a (B — A)-bialgebra.
Then the correspondence

Extg-1,(—S™'B):Alg —S™'A — Si'B — Alg

is a contravariant functor.

Proof

Whereas S™1A € 0b(Alg —S71A) = S7lA €
Ob(Mod — S™*A), so the conditions of the theorem 4.2 are
verified. m

4.2. Relationship Between Functor S~1() and Functor
Ext,(—,B) in Category A — Alg (resp. Alg — A)

Theorem 4.3 Let B a noetherian duo-ring, A a subring of
B, S a central saturated multiplicatively closed subset of A,
Sg the set of regular elements of S, A a finitely generated
right A-algebra and B a (B — A)-bialgebra. Then it exists
the isomorphisms of left Sg'B-algebras,

Ext™(A, B) @p Si'B = Sz Ext(A, B)
= ExtM,(S71A,S7'B).

Proof
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After the theorem 3.5 we have the following isomorphism
of left Sk'B -algebra
Ext}(A,B) ®p Sx'B = S Ext} (A, B).

* Since B is a noetherian ring and A is a finitely
generated left B -algebra, then A admits a projective
resolution P.

Also since A is a finitely generated left algebra over a
noetherian ring B, then A is finitely presented.

So after the theorem 3.6 we have the following
isomorphism of left Sz'B-algebra,

SptHomy (A, B) = Homg-1,(S"1A,S71B).
So we can deduce the following complex isomorphism:
Sg*Hom, (P4, B) = Homg-1,(S™1(Py),S™1B).
So,
H, (S Homy(Py, B)) = Hy (Homs-1,(S™"(P4), 57" B)).

Since the homological functor H, commutes with the
functor S~1(), then we have on the one hand,

H, (Sg*Hom,(P4, B)) = Sg*Hy(Hom, (P4, B))
= Sz Ext™(A, B).

On the other hand we have,
H,(Homs-1,(S71(P4),S71B))) = Extg_lA(S‘lcﬁl,S‘lB).

Therefore S Exty (A, B) = Extg-1,(S7'A,S7'B).m

Corollary 4.2 Let B a noetherian duo-ring, P a prime
ideal of B, A a finitely generated right B-algebra, B a
(B — B)-bialgebra, S = (B —P)NZ(B) and Sy the set of
regular elements of B — P. Then it exists the isomorphisms of
left S™1B-algebras,

SR'ExtR(A,B) = Ext!-1,(S'A,S7B).

Proof

Since B is a duo-ring, then B —P is saturated
multiplicatively closed subset, so S=(B—P)NZ(B) is a
central saturated multiplicatively closed subset of B.

So after the theorem 4.3 we have, Sp'Ext}(A,B) =
Extg1,(S7'A,S7'B). m

5. Conclusion

In this work the functorsHom,(—, B): Alg — A - B — Alg,
—®,4B:B—Alg - Alg— A and Ext}(—,B):Alg—A—
B — Alg are built and their relationship with the functor
S7™'() has been studied. The following algebra
structures: Homy(M,B) , Extjy(M,B) , Homy(A,B) ,
A Q4B and Extj(A,B) has been defined where M is a
module and A and B are algebras.

The covariant functors Homy(A,—) , A Q,— and
Ext}(A,—) will be studied in the category A — Alg (resp.
Alg — A) and their relationship with the functor S™1() will be
studied. In the future the result in [6] on the adjunction
between the functors Ext}(A,—) and Tor?(A,—) (resp.

Ext}(—,B) and TorA(—,B)) done in the category of
A — Mod will be generalized in the category A — Alg.
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