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Abstract: The purpose of this paper is to study some results of homological algebra in the category A-Alg (resp. Alg-A) of left 

(resp. right) A-algebra in the noncommutative case. In this paper A is a subring of B. So the main results of this paper are, if B is 

a noetherian duo-ring, S a central saturated multiplicatively closed subset of A, SR the set of regular elements of S, " a finitely 

presented right A-algebra and �  a (B-A)-bialgebra, then ����
��", �� ⊗# �$

��%  is isomorphic to �$
������

��", �� , also 

�$
������

��", �� is isomorphic to ���&'(�
� ����", �����, for any integer n. 
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1. Introduction 

In this paper, �  is assumed unitary, associative and not 

necessarily commutative. "  and �  are algebras assumed 

unitary, associative and not necessarily commutative as a ring 

and unital as a �-module. 

In general, the action of the functors �����
, �� , 


 ⊗� � and ����
��
, �� on a �-module )(resp. �-algebra 

") is not an algebra. 

In this paper the conditions in which �����), ��  and 

����
��), ��  have a structure of algebra are given. The 

conditions in which �����", �� , " ⊗� �  and 

����
��", �� have a structure of algebra are also given, and 

the localization of its algebras with a multiplicatively closed 

subsets satisfying the left Ore condition is studied. 

The main purpose of this paper is to study the functorial 

relations between the functor localization �����  with the 

functors �����
, ��: � ! 
 � → % 
 � !, 
 ⊗� �: � ! 

% → � ! 
 � and ����

��
, ��: � ! 
 � → % 
 � !. 

In this paper the following main results are shown: 

In the section 3: 

If "  is a left (resp. right) � -algebra and �  a central 

saturated multiplicatively closed subset of � , then the left 

(resp. right) ���� -module ���"  is a left (resp. right) 

����-algebra, furthermore " ⊗� ���� ≅ ���". 
If % is a duo-ring, � a subring of %, � a central saturated 

multiplicatively closed subset of � , �$  the set of regular 

elements of �, " right �-algebra and � a �% 
 ��-bialgebra 

then ���&'(�����", ����� is a left �$
��%-algebra. 

If % is a duo-ring, � a subring of %, � a central saturated 

multiplicatively closed subset of � , �$  the set of regular 

elements of �, " a finitely presented right �-algebra and � 

a �% 
 ��-bialgebra, then there exists the isomorphisms of 

left �$
��%-algebras, 

�����", �� ⊗# �$
��% ≅ �$

�������", �� ≅ ���&'(�����", �����. 

furthermore if . is a prime ideal of %, � / �% 
 .� ∩ 1�%� and �$ the set of regular elements of �, then there exists the 

isomorphisms of left ���%-algebras, 
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���#(", ℬ) ⊗# ���% ≅ ������#(",ℬ) ≅ ���&'(#(���", ���ℬ). 
And furthermore also there exists the isomorphisms of left �$��%-algebras, 

���#(", ℬ) ⊗# �$��% ≅ �$�����#(",ℬ) ≅ ���&'(#(���", ���ℬ). 
If % is a ring, � a saturated multiplicatively closed subset of 1(%), " a finitely presented right 1(%)-algebra and ℬ a (% − 1(%))-bialgebra, then there exists an isomorphisms of left ���%-algebras, 

���2(#)(", ℬ) ⊗# ���% ≅ ������2(#)(", ℬ) ≅ ���&'(2(#)(���", ���ℬ). 
Furthermore if . a prime ideal of 1(%), then it exists the isomorphisms of left 1(%).-algebras, 

���2(#)(", ℬ) ⊗# %. ≅ ���2(#)(", ℬ). ≅ ���2(#).(". , ℬ.). 
In the section 4: 

If "  is a right � -algebra, ℬ  a (% − �) -bialgebra the 

unitary left %-algebra, �����(", ℬ) is built as follows: 

if 3: 3� ⟶56 3��� ⋯ ⟶ 38 ⟶59 3� ⟶5( 3: ⟶; " ⟶ 0  is a 

complex projective resolution of a right �-module ", then 

�����(", ℬ) = [>?@A�B�∗ ]/〈G�A�∗ 〉, 
where 

A�∗ = ����(A�, ℬ): ����(3���, ℬ) ⟶ ����(3� , ℬ) 

	J� ⟼ J� ∘ A�, 

[>?@A�B�∗ ] is the unitary %-algebra generated by >?@A�B�∗  

and 〈G�A�∗ 〉 is the ideal of [>?@A�B�∗ ] generated by G�A�∗ . 

If %  is a noetherian duo-ring, �  a subring of % , �  a 

central saturated multiplicatively closed subset of �, �$ the 

set of regular elements of � , "  a finitely generated right � -algebra and ℬ  a (% − �) -bialgebra, then it exists the 

isomorphisms of left �$��%-algebras, 

�����(", ℬ) ⊗# �$��% ≅ �$�������(", ℬ) ≅ ���&'(�� (���", ���ℬ). 
2. Preliminary Results 

Definition 2.1 

(1). A subset �  of a ring �  is called multiplicative if 1� ∈ � and � is stable by multiplication 

i.e for all �, � ∈ �, �� ∈ �. 

(2). A multiplicative subset � of a ring � is called closed if 

for all O, O′ ∈ � such that OOQ ∈ 	� ⇒ 	O ∈ � and O′ ∈ �. 

(3). Let � a multiplicatively closed subset of �. � satisfies 

the left Ore conditions. 

If : 

(a) ∀T ∈ �, ∀O ∈ �	∃� ∈ � and V ∈ � such that �T = VO 

(b) ∀T ∈ �, ∀	O ∈ � such that OT = 0, then it exists � ∈ � 

such that T� = 0. 

Theorem 2.1 Let � a ring, )  a left �-module and � a 

multiplicatively closed subset of �  satisfying the left Ore 

conditions. The binary relation defined in � × ) by 

(O, �)ℛ(O′, �′) ⟺ ∃�, Z ∈ �/	[�� = Z�′�� = ZO′  

is an equivalence relation. 

Proof 

See [14] ∎ 

Notation: ���)  is noted the set of equivalence classes 

modulo ℛ (� × )/ℛ). 

If (O, �) ∈ � × ), then the classe (O, �) is noted 
]̂

, in 

particular if ) = � the classe (O, T) ∈ ���� is noted by 
_̂
. 

Theorem 2.2 Let � a ring not necessary commutative, ) a 

left �-module and �  a multiplicatively closed subset of � 

satisfying the left Ore conditions, ���� is a ring by the two 

following operations: 

1. 
_̀ + b̂ = c_Bdbd^ , where �, Z ∈ �: �� = ZO 

2. 
_̀ × b̂ = ebf`, where (g, h) ∈ � × �: gT = hO. ���)  is a left ���� -module by the two following 

operations: 

1. 
]̂ + ]Q^Q = c]Bd]Qd^ , where �, Z ∈ � such that �O = ZO. 

2. 
_̀ ⋅ ]̂ = e]f` , where (g, h) ∈ � × � such that gT = hO. 

Proof 

See [13] and [14] ∎ 

Proposition 2.1 Let � and " two rings, and j: � ⟶ " a 

morphism of rings. Then " has a structure of left (resp. right) �-module as follows: 

•: � × " ⟶ " 

(T, �) ⟼ T • � = j(T)� 

(resp. ∗: " × � ⟶ " 

(�, T) ⟼ � ∗ T = �j(T)	) 
Proof 

Easy.∎ 

Definition 2.2 Let � and " two rings, and j: � ⟶ " a 

morphism of rings. Then (", +,×,•)  (resp. (", +,×,∗)) is 

called a left (resp. right) �-algebra relatively to j. 
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Remark 1 This definition shows that to provide " with a 

structure of left (or right) �-algebra it is enough to have a 

morphism of rings from � to ". 

Definition 2.3 Let � and " two rings, and j: � ⟶ " a 

morphism of rings. If G�(j) ⊆ 1("), then "  is called a �-algebra relatively to j. 

Proposition 2.2 Let � and " two rings. 

(1). If " is a left �-module such that T ⋅ (�Z) = (T ⋅ �)Z =�(T ⋅ Z), ∀	T ∈ �,	∀�, Z ∈ ", then " is a left �-algebra. 

(2). If " is a right �-module such that (�Z) ⋅ T = �(Z ⋅ T) =(� ⋅ T)Z, ∀	T ∈ �,	∀�, Z ∈ ", then " is a right �-algebra. 

Proof ∗ Suppose that " is a left �-module such that T ⋅ (�Z) =(T ⋅ �)Z = �(T ⋅ Z), ∀	T ∈ �, ∀�, Z ∈ " and show that " 

is a left �-algebra. 

Consider the canonical morphism of left �-modules: 

jm: � ⟶ " 

T ⟼ T ⋅ 1" . 

It is enough to show that jm is an isomorphism of rings. 

It is clear that jm is a morphism of groups. 

Let T�, T8 ∈ � we have: 

jm(T�T8) = (T�T8) ⋅ 1" = T� ⋅ (T8 ⋅ 1") 

= T� ⋅ [(T8 ⋅ 1")1"] = T� ⋅ [1"(T8 ⋅ 1")] 
= (T�1")(T8 ⋅ 1") = jm(T�)jm(T8). 

So jm  is a morphism of rings, so (", +,×,•)  is a left �-algebra where ”•” the law induced by jm. ∗ Suppose that " is a left �-module such that (�Z) ⋅ T =�(Z ⋅ T) , ∀	T ∈ � , ∀� , Z ∈ "  and show that "  is a left �-algebra. 

Consider the canonical morphism of left �-modules: 

j5: � ⟶ " 

T ⟼ 1" ⋅ T. 

It is enough to show that j5 is a morphism of rings. 

It is clear that j5 is a morphism of groups. 

Let T�, T8 ∈ � 

Then: 

j5(T�T8) = 1" ⋅ (T�T8) = (1" ⋅ T�) ⋅ T8 = [(1" ⋅ T�)1"] ⋅ T8 = (1" ⋅ T�)(1" ⋅ T8) = j5(T�)j5(T8). 

So j5 is a morphism of rings, so " is a right �-algebra.∎ 

3. Functor ���() and Functor ���	(−, �) in the Category 	-Alg 

(resp. Alg-	) 

3.1. Algebra of Fraction in the Non Commutative Case 

Theorem 3.1 Let " a left (resp. right) �-algebra and � a 

central saturated multiplicatively closed subset of �. Then the 

left (resp. right) ����-module , ���" is a left (resp. right) ����-algebra. 

Proof 

Show that ���" is a left ����-algebra. 

Define a law of internal composition on ���". 

Consider the following correspondence: 

×n: ���" × ���" ⟶ ���" 

(c̀ 	 , cQ`Q) ⟼ c̀ ×n cQ`Q = ccQ``Q . 
Let (c(`( , c9`9) , (cQ(`Q( , cQ9`Q9) 	 ∈ ���" × ���"  such that (c(`( , c9`9) = (cQ(`Q( , cQ9`Q9). 

So it exists T, V, T′, V′	 ∈ � such that 

op
q
pr [T ⋅ �� = V ⋅ �′�	(1)T�� = V�′�	(2)

[T′ ⋅ �8 = V′ ⋅ �′8	(1)′T′�8 = V′�′8	(2)′
  

Whereas: 

opq
pr ���� ×n �8�8 = ���8���8

�′��′� ×n �′8�′8 = �′��′8�′��′8
 

Whereas: 

(T ⋅ ��)(T′ ⋅ �8) = T ⋅ [��(T′ ⋅ �8)] because " is a left �-algebra. 

= ��(T ⋅ (T′ ⋅ �8)) because " is a left �-algebra 

= ��((TT′) ⋅ �8) because " is a �-module 

= (TT′) ⋅ (���8) because " is a left �-algebra. 

Whereas also: 

(V ⋅ �′�)(V′ ⋅ �′8) = V ⋅ [�′�(V′ ⋅ �′8)] because " is a left �-algebra 
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= �′�(V ⋅ (V′ ⋅ �′8)) because " is a left �-algebra 

= �′�((VV′) ⋅ �′8) because " is a left �-module 

= (VV′) ⋅ (�′��′8) because " is a left �-algebra. 

Or (1) and (1)′	 ⟹ (T ⋅ ��)(T′ ⋅ �8) = (V ⋅ �′�)(V′ ⋅ �′8). 

So (TT′) ⋅ (���8) = (VV′) ⋅ (�′��′8)	(∗). 
Whereas: (T��)(T′�8) = (TT′)(���8) because � ⊂ 1(�). 

Similarly we have (V�′�)(V′�′8) = (VV′)(�′��′8)  because � ⊂ 1(�) (2)  and (2)′	 ⟹ (T��)(T′�8) = (V�′�)(V′�′8) 	⇒	(TT′)(���8) = (VV′)(�′��′8)	(∗∗). 
Pose v = TT′ and w = VV′. 

Whereas 

xv(���8) = w(�′��′8)
v(���8) = w(�′��′8)  

So 

���� ×n �8�8 = �′��′� ×n �′8�′8 . 
Therefore ×n is a law internal composition. 

After [14] ���" is a left ����-module, so to show that ���" is a left ����-algebra, it is enough to show after the 

proposition 2.2 that: 

∀	 _̂ ∈ ����, ∀	 c̀, 
cQ`Q ∈ ���", 

_̂ ⋅ (c̀ ×n cQ`Q) = c̀ ×n (_̂ ⋅ cQ`Q) =(_̂ ⋅ c̀) ×n cQ`Q. 
Whereas first: 

_̂ ⋅ (c̀ ×n cQ`Q) = _̂ ⋅ ccQ``Q = e⋅(ccQ)f^  where (g, h) ∈ � × � such that gT = h��′	(��). 

Whereas second: 

c̀ ×n (_̂ ⋅ cQ`Q) = c̀ ×n eQcQfQ^ = ceQcQ`fQ^  where (g′, h′) ∈ � × � such 

that g′T = h′�′	(�8). 

Since (g, �g′) ∈ � × �	∃	(y, z) ∈ � × �  such that yg = z�g′ ⇒ ygT = z�g′T , so after (��) et (�8)	yh��′ =z�h′�′	 ⇒ yh��′ − z�h′�′ = 0 ⇒ (yh� − z�h′)�′ = 0, 

so after the seconde Ore condition ∃	@� ∈ �  such that @�(yh� − z�h′) = 0 ⇒ @�yh� = @�z�h′	 ⇒ @�yh� ⋅ (��′) =@�z�h′ ⋅ (��′). 

Calculate first @�yh� ⋅ (��′): 

Whereas: (@�yh�) ⋅ (��′) = (@�y�h) ⋅ (��′)  because h� = �h  since � ⊂ 1(�) = ((@	�y�)h) ⋅ (��′) = (@�y�) ⋅ (h ⋅ (��′))  because " is a left �-module. 

Then calculate [(@�z�)h′] ⋅ (��′) 

Whereas: [(@�z�)h′] ⋅ (��′) = (@�z�) ⋅ (h′ ⋅ (��′))  because "  is a 

left � -module = (@�z�) ⋅ [�(h′ ⋅ �)]  because "  is a left 

�-algebra. 

Also since yg = z�g′ then @��yg = @��z�g′ 
and since � ⊂ 1(�) then (@�y�)(gO) = (@�z�)(�g′). 

Pose v = @�y� and w = @�z� 

Whereas:  

xv(h ⋅ (��′)) = w(�(h′ ⋅ �′))
v(gO) = w(�g′) ⇔ e⋅(ccQ)f^ = c⋅(eQ_)f`Q` . 

So 

TO ⋅ (�� ×n �′�′) = �� ×n (TO ⋅ �′�′). 
In the same way we show that 

_̂ ⋅ (c̀ ×n cQ`Q) = (_̂ ⋅ c̀) ×n cQ`Q. 
So 

_̂ ⋅ (c̀ ×n cQ`Q) = (_̂ ⋅ c̀) ×n cQ`Q = c̀ ×n (_̂ ⋅ cQ`Q), ∀	 _̂ ∈ ����, ∀	 c̀, cQ`Q ∈ ���". 

Therefore ���" is a left ����-algebra. ∎ 

Proposition 3.1 Let % and � two rings. 

(1). If )  is a right � -module and ℬ  is a (% −�)-bialgebra, then the group ����(), ℬ) is a unitary left %-algebra by the following operations: 

(V ⋅ |)(�) = V|(�), ∀� ∈ ), ∀| ∈ ����(), ℬ), ∀V ∈ %, 
(|	!)(�) = |(�)!(�), ∀� ∈ ), ∀|, ! ∈ ����(), ℬ). 
(2). If ) is a left �-module and ℬ is a (� − �)-bialgebra, 

then the group ����(), ℬ) is a unitary left �-algebra by the 

following operations: 

(T ⋅ |)(�) = T|(�), ∀� ∈ ), ∀| ∈ ����(), ℬ), ∀T ∈ �, 
(|	!)(�) = |(�)!(�), ∀� ∈ ", ∀|, ! ∈ ����(), ℬ). 
Proof • the group ����(), ℬ) is a unitary left %-algebra. ∗ After [18] ����(), ℬ) is a left %-module. ∗ Show that ����(), ℬ) has a structure of ring via the 

operation defined above. 

Let |, !, ℎ ∈ ����(), ℬ), � ∈ ), we have: 

[(|!)ℎ](�) = (|!)(�)ℎ(�) = (|(�)!(�))ℎ(�) 

= |(�)(!(�)ℎ(�)), because ℬ is a ring 

= |(�)(!ℎ)(�) = [|(!ℎ)](�). 

So (|!)ℎ = |(!ℎ) , so the internal composition law is 

associative. 

Whereas also: 

[|(! + ℎ)](�) = |(�)(! + ℎ)(�)= |(�)(!(�) + ℎ(�)) 
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/ |���!��� + |���ℎ��� / �|! + |ℎ����. 

So |�! + ℎ� / |! + |ℎ, so the internal composition law 

is distributive compared with the addition. 

Therefore, �����), ℬ)  has a structure of ring of unit 

element, 1: ) ⟶ ℬ. � ⟼ 1ℬ ∗ Show that the two laws are compatible 

Let V ∈ %, |, ! ∈ ����(), ℬ), � ∈ ) 

whereas [V ⋅ (|!)](�) = V(|!)(�) = V(|(�)!(�)) =(V|(�))!(�) 

because ℬ  is a left % -algebra = (V ⋅ |)(�)!(�) = [(V ⋅|)!](�) 

whereas also [V ⋅ (|!)](�) = V(|!)(�) = V(|(�)!(�)) = |(�)(V!(�)) because ℬ is a left %-algebra. = |(�)(V ⋅ !)(�) = [|(V ⋅ !)](�). 

So V ⋅ (|!) = (V ⋅ |)! = |(V ⋅ !)). 

So after the proposition 2.2 ����(), ℬ)  is a left %-algebra. • The item 2. is showing the same way. ∎ 

Corollary 3.1 

(1). If "  is a right � -algebra and ℬ  is a (% −�)-bialgebra, then the group ����(", ℬ) is 

a unitary left %-algebra by the following operations: 

(V ⋅ |)(�) = V|(�), ∀� ∈ ", ∀| ∈ ����(", ℬ), ∀V ∈ %, 
(|	!)(�) = |(�)!(�), ∀� ∈ ", ∀|, ! ∈ ����(", ℬ). 

(2). If " is a left �-algebra and ℬ is a (� − �)-bialgebra, 

then group ����(", ℬ) is a left �-algebra by the following 

operations: 

(T ⋅ |)(�) = T|(�), ∀� ∈ ", ∀| ∈ ����(", ℬ), ∀T ∈ �, 
(|	!)(�) = |(�)!(�), ∀|, ! ∈ ����(", ℬ), � ∈ ". 

Proof 

Just consider the � -algebra "  as a � -module and you 

have the results 1 and 2.∎ 

Proposition 3.2 Let % and � two rings. 

(1). If "  is a right % -algebra and ℬ  is a (% −�)-bialgebra, then the group " ⊗# ℬ is a 

right �-algebra of unit element 1" ⊗ 1ℬ by the following 

operations: 

(� ⊗ Z). T = � ⊗ (Z. T), ∀� ∈ ", ∀Z ∈ ℬ, ∀T ∈ � 

(� ⊗ Z)(�′ ⊗ Z′) = (��′ ⊗ ZZ′), ∀�, �′ ∈ ", ∀Z, Z′ ∈ ℬ. 
(2). If " is a left �-algebra and ℬ is a (% − �)-bialgebra, 

then the group " ⊗� ℬ is a 

unitary left %-algebra by the following operations: 

V ⋅ (� ⊗ Z) = � ⊗ (V. Z), ∀� ∈ ", ∀Z ∈ ℬ, ∀V ∈ %, 
(� ⊗ Z)(�′ ⊗ Z′) = (��′ ⊗ ZZ′), ∀�, �′ ∈ ", ∀Z, Z′ ∈ ℬ. 
Proof 

• 	" ⊗# ℬ is a right �-algebra. ∗ After [1] " ⊗# ℬ is a right �-module. ∗ It’s not difficult to show that " ⊗# ℬ has a structure of 

ring. ∗ Show that the two laws are compatible. 

Let � ⊗ Z, �′ ⊗ Z′ ∈ " ⊗# ℬ and T ∈ �. 

whereas [(� ⊗ Z)(�′ ⊗ Z′)]. T = (��′ ⊗ ZZ′). T = (��′) ⊗((ZZ′). T) = (��′) ⊗ (Z(Z′. T))  because ℬ  is a right �-algebra. = (� ⊗ Z)(�′ ⊗ Z′. T) = (� ⊗ Z)[(�′ ⊗ Z′). T] 
whereas [(� ⊗ Z)(�′ ⊗ Z′)]. T = (��′ ⊗ ZZ′). T = (��′) ⊗((ZZ′). T) = (��′) ⊗ ((Z. T)Z′)  because ℬ  is a right � -algebra. = (� ⊗ (Z. T))(�′ ⊗ Z′) = [(� ⊗ Z). T](�′ ⊗Z′) 

So [(� ⊗ Z)(�′ ⊗ Z′)]. T = (� ⊗ Z)[(�′ ⊗ Z′). T] =[(� ⊗ Z). T](�′ ⊗ Z′). 

So after the proposition 2.2 " ⊗# ℬ is a right �-algebra. • The item 2. is showing the same way.∎ 

Theorem 3.2 Let % a duo-ring, � a subring of %, ℬ a left % -algebra relatively to j , �  a central saturated 

multiplicatively closed subset of � and �$ the set of regular 

elements of �. Then ���ℬ is a left �$��%-algebra. 

Proof 

After the theorem 3.1 ���ℬ  is a left ���� -algebra ⇒	���ℬ is a ring. 

Since �$ is the set of regular elements of the duo-ring %, 

so �$  is a saturated multiplicatively closed subset of % 

satisfying the Ore conditions, so after [13] �$��% is also a ring. 

So it is enough to show that this following correspondence 

is a morphism of rings: 

j′: �$��% ⟶ ���ℬ 

VO ⟼ j(V)O  

So after the remark 1 ���ℬ is a left �$��%-algebra.∎ 

Theorem 3.3 Let % a ring, ℬ a left %-algebra relatively to j and � a saturated multiplicatively closed subset of 1(%). 

Then ���ℬ is a left ���%-algebra. 

Proof 

The proof is similar to the previous one.∎ 

Theorem 3.4 Let %  a duo-ring, �  a subring of % , �  a 

central saturated multiplicatively closed subset of �, �$ the 

set of regular elements of �, "  right �-algebra and ℬ  a (% − �) -bialgebra. Then ���&'(�(���", ���ℬ)  is a left �$��%-algebra, 

Proof 

After the theorem 3.1, ���" is a right ����-algebra and ���ℬ is a right ����-algebra. 

After the theorem 3.2, ���ℬ  has a structure of left �$��%-algebra. 

So ���ℬ  is a (�$��% − ����) -bialgebra, so after the 

proposition 3.1, ���&'(�(���", ���ℬ) has a structure of 

left �$��%-algebra.∎ 

3.2. Relationship Between Functors ���(), ���	(−, �) 

and − ⊗ � in the Category 	 − 	�� (resp. 	�� − 	) 

Proposition 3.3 Let ℬ  a (% − �) -bialgebra.Then the 



6 Moussa Thiaw et al.:  Functors �����, �����
, ℬ), − ⊗� ℬ and �����(−, ℬ) in the Category of � − � !  

 

correspondence 

����(−, ℬ): )�A − � → % − � ! 

(1). who has any right �-module ), we associate the left %-algebra ����(), ℬ), 

(2). who has any morphism of right �-modules |: ) → )′, 
we associate |∗����(|, ℬ): ����()′, ℬ) → ����(), ℬ) 

is a contravariant functor. 

Proof ∗  After the proposition 3.1 ) ∈ ~V()�A − �) 	⇒����(), ℬ) ∈ ~V(% − � !). ∗ Let |: ) → )′ a morphism of right �-modules, show 

that |∗ = ����(|, ℬ): ����()Q, ℬ) → ����(), ℬ)  is a 

morphism of left B-algebras.. 

Let J, � ∈ ����(), ℬ), � ∈ ). 

We have 

[|∗(J�)](�) = [(J�) ∘ |](�) = J(|(�))�(|(�)) 

= (J ∘ |)(�)(� ∘ |)(�) 

= [(J ∘ |)(� ∘ |)](�) 

= [|∗(J)|∗(�)](�). 

So we have |∗(J�) = |∗(J)|∗(�). 

Let J ∈ ����(), ℬ), V ∈ ℬ, � ∈ ). 

We have 

[|∗(VJ)](�) = [(VJ) ∘ |](�) = (VJ)(|(�)) = V(J ∘ |)(�) 

= [V(|∗(J)](�). 
So we have |∗(VJ) = V(|∗(J). 

Therefore |∗ , for all � ≥ 0 , is a morphism of left %-algebras. ∗ Let |: ) → )′ and !: )′ → )′′ two morphism of right �-modules, � ∈ ), we have: 

����(! ∘ |, ℬ)(J)(�) = [J ∘ (! ∘ |)](�)= [����(|, ℬ) ∘ (J ∘ !)](�) 

= [����(|, ℬ) ∘ ����(!, ℬ)(J)](�) 

= [����(|, ℬ) ∘ ����(!, ℬ)](J)(�). 

So we have ����(! ∘ |, ℬ) = ����(|, ℬ) ∘����(!, ℬ). ∗ Let J: ) → ℬ a morphism of left %-algebras, � ∈ ) , 

we have: 

[����(1� , ℬ)(J)](�) = J ∘ 1�(�) = J(�) 	⇒	����(1� , ℬ)(J) = J. 

So ����(1�, ℬ) = 1��]�(�,ℬ)  and therefore ����(−, ℬ) is a contravariant functor.∎ 

Theorem 3.5 Let "  a � -bialgebra and �  a central 

saturated multiplicatively closed subset of �. Then it exists an 

isomorphism of left ����-algebras, 

" ⊗� ���� ≅ ���". 
Proof 

Consider �": " × ���� ⟶ ���" 

(�, _̂) ⟼ c_̂
. 

We have �"  is �-bilinear, so according to the universal 

property of the tensor product it exists a map � -linear �": " ⊗ ���� ⟶ ���" such that 

�"(� 	�� ⊗ T�O� ) = � 	��T�O� . 
Let J": ���" ⟶ " ⊗ ���� 

�� ⟼ � ⊗ ��. 

It is clear that J"  is well defined. 

We have 

J" ∘ �"(∑ 	�� ⊗ _�^�) = J"(∑ 	c�_�^� ) = ∑ 	J"(c�_�^� ) =∑ 	��T� ⊗ �̂
� = ∑ 	�� ⊗ _�^� . 

So J" ∘ �" = 1"⊗&'(�, J"  and �"  are inverse of each 

other. 

Therefore " ⊗� ���� ≅ ���". ∎ 

Theorem 3.6 Let %  a duo-ring, �  a subring of % , �  a 

central saturated multiplicatively closed subset of �, �$ the 

set of regular elements of � , "  a finitely presented right �-algebra and ℬ a (% − �)-bialgebra. Then there exists the 

isomorphisms of left �$��%-algebras, 

����(", ℬ) ⊗# �$��% ≅ �$������(", ℬ)≅ ���&'(�(���", ���ℬ). 
Proof •  Since "  is a right � -algebra and ℬ  is a (% −�)-bialgebra, then after the proposition 3.1, ����(", ℬ) is 

a left % -algebra, we have also �$��%  is a (�$��% −%)-bialgebra, so after the proposition 3.2 and the theorem 3.5 

we have, 

����(", ℬ) ⊗# �$��% ≅ �$������(", ℬ). 
•  Show that �$������(", ℬ) ≅ ���&'(�(���", ���ℬ) 

is an isomorphism of left �$��%-algebras. 

After [6] �$������(", ℬ) ≅ ���&'(�(���", ���ℬ)  is 

an isomorphism of left �$��% -module and since ���&'(�(���", ���ℬ)  is a left �$��% -algebra, so by 

structure transport �$������(", ℬ) is a left �$��%-algebra. 

Therefore �$������(", ℬ) ⟶ ���&'(�(���", ���ℬ) 

is the isomorphisms of left �$��%-algebras.∎ 

Theorem 3.7 Let % a ring, � a saturated multiplicatively 

closed subset of 1(%) , "  a finitely presented right 1(%)-algebra and ℬ  a (% − 1(%)) -bialgebra. Then there 

exists the isomorphisms of left ���%-algebras, 



 International Journal of Theoretical and Applied Mathematics 2019; 5(1): 1-9 7 

 

���2�#��", ℬ) ⊗# ���% ≅ ������2(#)(", ℬ)≅ ���&'(2(#)(���", ���ℬ). 
Proof • The first isomorphism is shown in the same way as that of 

the previous theorem. • We have " is a right 1(%)-algebra ⇒	���" is a right ���1(%)-algebra. 

Also ℬ  is a (% − 1(%))-bialgebra ⇒	���ℬ  a (���% −���1(%))-bialgebra. So ���&'(2(#)(���", ���ℬ) is a left ���% -algebra and since there is a bijection between ������2(#)(", ℬ) and ���&'(2(#)(���", ���ℬ), then by 

structure transport ������2(#)(", ℬ) ≅ ���&'(2(#)(���", ���ℬ)  is an 

isomorphism of left ���%-algebras.∎ 

Proposition 3.4 Let % a duo-ring, . a prime ideal of %, "  a finitely presented right % -algebra, ℬ  a (% −%) -bialgebra, � = (% − .) ∩ 1(%)  and �$  the set of 

regular elements of �. Then it exists the isomorphisms of left ���%-algebras, 

���#(", ℬ) ⊗# ���% ≅ ������#(", ℬ)≅ ���&'(#(���", ���ℬ). 
Furthermore it exists the isomorphisms of left �$��%-algebras, 

���#(", ℬ) ⊗# �$��% ≅ �$�����#(", ℬ)≅ ���&'(#(���", ���ℬ). 
Proof 

Since %  is a duo-ring, then % − .  is saturated 

multiplicatively closed subset, so � = (% − .) ∩ 1(%) is a 

central saturated multiplicatively closed subset of %. 

So after the theorem 3.6 we have, 

���#(", ℬ) ⊗# �$��% ≅ �$�����#(", ℬ) ≅���&'(#(���", ���ℬ) and 

���#(", ℬ) ⊗# �$��% ≅ �$�����#(", ℬ) ≅���&'(#(���", ���ℬ). ∎ 

Proposition 3.5 Let % a ring, . a prime ideal of 1(%), " 

a finitely presented right % -algebra and ℬ  a (% −%) -bialgebra. Then it exists the isomorphisms of left 1(%).-algebras, 

���2(#)(", ℬ) ⊗# %. ≅ ���2(#)(", ℬ).≅ ���2(#).(". , ℬ.). 
Proof 

Since " is a right %-algebra and ℬ a (% − %)-bialgebra, 

then in particular "  is a right 1(%) -algebra and ℬ  a (% − 1(%))-bialgebra. 

Pose � = 1(%) − .	 ⇒ 	�  is a saturated multiplicatively 

closed subset of 1(%). So after the theorem 3.7 we have: 

���2(#)(", ℬ). = ������2(#)(", ℬ) ≅���&'(2(#)(���", ���ℬ) = ���2(#).(". , ℬ.) and 

���2(#)(", ℬ) ⊗# %. = ���2(#)(", ℬ) ⊗# ���% ≅������2(#)(", ℬ) = 	���2(#)(", ℬ)..∎ 

4. Functor ���() and Functor ���	(−, �) in the Category 	 − 	�� 

(resp. 	�� − 	) 

4.1. Construction of the Derived Fonctor ���	(−, �) in the 

Category 	 − 	�� (resp. 	�� − 	) 

Theorem 4.1 Let "  a right � -algebra, ℬ  a (% −�)-bialgebra and 3: 3� ⟶56 3��� ⋯ ⟶ 38 ⟶59 3� ⟶5( 3: ⟶; " ⟶ 0  a 

complex projective resolution of a right �- 

module ". Then 

[>?@A�B�∗ ]/〈G�A�∗ 〉 
is a unitary left %-algebra, where 

A�∗ = ����(A�, ℬ): ����(3���, ℬ) ⟶ ����(3� , ℬ) 

	J� ⟼ J� ∘ A� 

[>?@A�B�∗ ] is the unitary algebra generated by >?@A�B�∗  

and 〈G�A�∗ 〉 is the ideal of [>?@A�B�∗ ] generated by G�A�∗ . 

Proof 

By applying the contravariant functor we have, 

����(3, ℬ): 0 ⟶ ����(", ℬ) ⟶⋯ ����(3���, ℬ) ⟶56∗ ����(3�, ℬ) ⟶56�(∗ ����(3�B�, ℬ). 

So after the proposition 3.1 ����(3� , ℬ) has a structure of 

left %-algebra, for all � ≥ 0. 

Show that A�∗ , for all � ≥ 0 , is a morphism of left %-algebras. 

Let J, � ∈ ����(3���, ℬ), � ∈ 3� . 

whereas 

[A�∗ (J�)](�) = [(J�) ∘ A�](�) = J(A�(�))�(A�(�)) 

= (J ∘ A�)(�)(� ∘ A�)(�) 

= [(J ∘ A�)(� ∘ A�)](�) 

= [A�∗ (J)A�∗ (�)](�). 

So A�∗ (J�) = A�∗ (J)A�∗ (�). 

Let J ∈ ����(3���, ℬ), V ∈ %, � ∈ 3�. 

whereas 
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=A�
∗ �VJ�D��� / =�VJ� ∘ A�D��� / �VJ��A�����

/ V�J ∘ A����� / =V�A�
∗ �J�D���. 

So A�
∗ �VJ� / V�A�

∗ �J�. 

Therefore A�
∗ , for all � � 0 , is a morphism of left 

%-algebras. 

It should be noted that >?@A�B�
∗  is not in general a unitary 

algebra, so take =>?@A�B�
∗ D the subalgebra of the unitary left 

%-algebra �����3� , �� generated by >?@A�B�
∗ . 

On the other hand we have G�A�
∗ ⊂ >?@A�B�

∗ ⊂
=>?@A�B�

∗ D. 
It should be noted that G�A�

∗  is not in general an ideal, so 

take the ideal 〈G�A�
∗ 〉 of =>?@A�B�

∗ D generated by G�A�
∗ . 

Therefore =>?@A�B�
∗ D/〈G�A�

∗ 〉  is a unitary left 

%-algebra.∎ 

In this paper we note by ����
��", �� / =>?@A�B�

∗ D/
〈G�A�

∗ 〉. 
Proposition 4.1 Let �  a �% 
 �� -bialgebra.Then the 

correspondence 

����
��
, ��: )�A 
 � ⟶ % 
 � ! 

(1). who has any right �-module ), we associate the left 

%-algebra ����
��), ��, 

(2). who has any morphism of right �-modules |: ) ⟶
)′, we associate ����

��|, ��: ����
��)′, �� → ����

��), �� is 

a contravariant functor. 

Proof 

∗ After the theorem 4.1 we have ) ∈ ~V�)�A 
 �� 	⇒
	����

��), �� ∈ ~V�% 
 � !� , so the action of ����
��
, �� 

on the objects of % 
 � ! makes sense. 

∗ Let |: ) → )′ a morphism of right �-module. After the 

comparison theorem the following commutative diagram is 

obtained 

 

By applying the contravariant functor �����
, ��  we 

have 

 

So �����|�, ��: �����3�, �� ⟶ �����3�Q, ��  is a 

morphism of chain complex. 

Whereas 

��������|�, ���: ��������3� , ���
⟶ ��������3�Q, ��� 

h� ⟼ �����|��, ��h�. 

After the theorem 4.1 �����|, �� / |∗  and 

�����|��, �� / |��
∗ are morphism of left %-algebras. 

So ��������|�, ��� / ����
��|, �� is a morphism of left 

%-algebra, so the action of ����
��
, �� on the arrow makes 

sense. 

∗ Whereas 

����
��! ∘ |, �� / ��������!� ∘ |, ���

/ ��������!� ∘ |�, ��� 

/ ��=�����|�, �� ∘ �����!�, ��D 

/ ��������|�, ��� ∘ ��������!�, ��� 

/ ����
��|, �� ∘ ����

��!, ��. 

∗ Whereas 

����
��1�, ���h�� / ������1����, ���h��

/ 1��]���,���h�� / h� . 

So ����
��1� , �� / 1�c`�

6��,��. 

Therefore ����
��
, ��: )�A 
 � ⟶ % 
 � !  is a 

contravariant functor.∎ 

Theorem 4.2 Let %  a duo-ring, �  a subring of % , �  a 

central saturated multiplicatively closed subset of �, �$ the 

set of regular elements of �  and �  a �% 
 �� -bialgebra. 

Then the correspondence 

���&'(�
� �
, �����: )�A 
 ���� ⟶ �$

��% 
 � ! 

is a contravariant functor. 

Proof 

just see that after the theorem 3.2, ����  is a ��$
��% 


�����-bialgebra .∎ 

Corollary 4.1 Let %  a duo-ring, � a subring of % , �  a 

central saturated multiplicatively closed subset of �, �$ the 

set of regular elements of �  and �  a �% 
 �� -bialgebra. 

Then the correspondence 

���&'(�
� �
, �����: � ! 
 ���� ⟶ �$

��% 
 � ! 

is a contravariant functor. 

Proof 

Whereas ���" ∈ ~V�� ! 
 ����� 	⇒ 	���" ∈
~V�)�A 
 �����, so the conditions of the theorem 4.2 are 

verified.∎ 

4.2. Relationship Between Functor ����� and Functor 

���	�
, �� in Category 	 
 	�� (resp. 	�� 
 	) 

Theorem 4.3 Let % a noetherian duo-ring, � a subring of 

%, � a central saturated multiplicatively closed subset of �, 

�$ the set of regular elements of �, " a finitely generated 

right �-algebra and � a �% 
 ��-bialgebra. Then it exists 

the isomorphisms of left �$
��%-algebras, 

����
��", �� ⊗# �$

��% ≅ �$
������

��", ��
≅ ���&'(�

� ����", �����. 

Proof 
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After the theorem 3.5 we have the following isomorphism 

of left �$
��% -algebra 

����
��", ℬ) ⊗# �$��% ≅ �$�������(", ℬ). ∗  Since %  is a noetherian ring and "  is a finitely 

generated left % -algebra, then "  admits a projective 

resolution 3. 

Also since "  is a finitely generated left algebra over a 

noetherian ring %, then " is finitely presented. 

So after the theorem 3.6 we have the following 

isomorphism of left �$��%-algebra, 

�$������(", ℬ) ≅ ���&'(�(���", ���ℬ). 
So we can deduce the following complex isomorphism: 

�$������(3" , ℬ) ≅ ���&'(�(���(3"), ���ℬ). 
So, 

��(�$������(3" , ℬ)) ≅ ��(���&'(�(���(3"), ���ℬ)). 
Since the homological functor ��  commutes with the 

functor ���(), then we have on the one hand, 

��(�$������(3" , ℬ)) ≅ �$����(����(3" , ℬ))= �$�������(", ℬ). 
On the other hand we have, 

��(���&'(�(���(3"), ���ℬ))) = ���&'(�� (���", ���ℬ). 
Therefore �$�������(", ℬ) ≅ ���&'(�� (���", ���ℬ). ∎ 

Corollary 4.2 Let %  a noetherian duo-ring, .  a prime 

ideal of % , "  a finitely generated right % -algebra, ℬ  a (% − %)-bialgebra, � = (% − .) ∩ 1(%) and �$  the set of 

regular elements of % − .. Then it exists the isomorphisms of 

left ���%-algebras, 

�$�����#�(", ℬ) ≅ ���&'(#� (���", ���ℬ). 
Proof 

Since %  is a duo-ring, then % − .  is saturated 

multiplicatively closed subset, so � = (% − .) ∩ 1(%) is a 

central saturated multiplicatively closed subset of %. 

So after the theorem 4.3 we have, �$�����#�(", ℬ) ≅���&'(#� (���", ���ℬ). ∎ 

5. Conclusion 

In this work the functors����(−, ℬ): � ! − � → % − � !, − ⊗� ℬ: % − � ! → � ! − �  and �����(−, ℬ): � ! − � →% − � !  are built and their relationship with the functor ���()  has been studied. The following algebra 

structures: ����(), ℬ) , �����(), ℬ) , ����(", ℬ) , " ⊗� ℬ  and �����(", ℬ) has been defined where )  is a 

module and " and ℬ are algebras. 

The covariant functors ����(", −) , " ⊗�−  and �����(", −) will be studied in the category � − � ! (resp. � ! − �) and their relationship with the functor ���() will be 

studied. In the future the result in [6] on the adjunction 

between the functors �����(", −)  and ��@��(", −)  (resp. 

�����(−, ℬ)  and ��@��(−, ℬ) ) done in the category of � − )�A will be generalized in the category � − � !. 
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