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Abstract: The objective of this paper is to analyze the influence of thermo-diffusion on magnetohydrodynamics (MHD) flow 

of fractional second grade fluid immersed in a porous media over an exponentially accelerated vertical plate. In addition, other 

factors such as heat absorption and chemical reaction are used in the problem. More exactly, the fractional model has been 

developed using the generalized Fick’s and Fourier’s laws. The Caputo-Fabrizio (CF) fractional derivative has been used to 

solved the model. Initially, the flow modeled system of partial differential equations are transformed into dimensional form 

through suitable dimensionless variable and then Laplace transform technique has been used to solved the set of dimensionless 

governing equations for velocity profile, temperature profile, and concentration profile. The influence of different parameters 

like diffusion-thermo, fractional parameter, magnetic field, chemical reaction, heat obsorption, Schmidt number, time, Prandtl 

number and second grade parameter are discussed through numerous graphs. From figures, it is observed that fluid motion 

decreases with increasing values of Schmidt number, Prandtl number, magnetic parameter, and chemical reaction, whereas 

velocity field decreases with decreasing values of diffusion-thermo and mass grashof number. In order to check the athenticity of 

present work, we compare the present work with already published model graphically. 
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1. Introduction 

Now a days, magnetohydrodynamic (MHD) has been 

extended into wide areas of basic and applied research in 

sciences and engineering. The study of non-Newtonian fluid 

becomes very interested due to variety of technological 

applications like making of plastic sheets, lubricant’s 

performance and motion of biological fluid. 

Numerous fluid models have been presented to demonstrate 

the distinction between Newtonian and non-Newtonian fluids. 

Kai-Long Hsiao [1] worked on magnetohydrodynamics 

Maxwell fluid. Shah et al. [2] discussed the influence of 

magnetic field of fractional order. The model on Jeffrey fluid be 

the simplest and most popular, and it has attracted the interest of 

researchers in the field. Some of the work on Jeffrey fluid are of 

Das [3] and Qasim [4]. Ahmad et al. [5] compared the 

generalized form of Jeffrey fluid flow acquired by 

contemplating fractional derivative of singular kernel (Caputo) 

and non-singular kernel (Caputo-Fabrizio). During the last 

decade, different generalized fractional derivatives have 

appeared in the literature that are derivatives of Caputo, 

Caputo-Fabrizio, constant proportional Caputo [6, 7]. Some 

studies of free convection on an inclined plane invarious 

thermal and mechanical situations have recently been presented 

by mathematicians [8-14]. Some mathematical models of 

second grade fluids are industrial oils, slurry streams, and dilute 

polymer solutions with different geometry and boundary 

conditions. The Sheikh et al. [15] discussed the casson fluid. 

Ahmed et al. [16] has analyzed MHD heat transfer into 

convective boundary layer with a minimal pressure gradient. 

Convective mixed MHD flow studied by Narayana [17], while 

Authors in [18] worked on MHD fluid over a plate. Khan et al. 

[19] presented a fractional flow of fluid on a vertical surface 
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driven by temperature as well as concentration gradients. Khan 

et al. [20] discussed magnetohydrodynamic flow in the 

existence of permeable media through plate. Seth et al. [21] 

discussed the magnetohydrodynamics flow over a plate. Tran et 

al. [22] worked on mandatory stability of fractional derivatives 

for fractional calculus equations, and the mathematical model 

used for transference of COVID-19 with Caputo fractional 

derivatives also discussed by Tuan et al. [23]. 

Y. Liu et al. [24] presented the flow of fluid using a heat 

generation. Ramzan et al. [25] reported the behaviour of heat 

consumption/generation on the MHD flow of Brinkman fluid. 

Khan et al. [26] investigated the Brinkman fluid effect 

between two side walls. Ali et al. [27] discussed on the 

magnetohydrodynamics fluid with heat transport. Ahmad et al. 

[28] discussed the nanofluid over a plate. Sheikh et al. [29] 

studied the MHD flow with heat transfer. Ahmat et al. [30] 

discussed the flow over a heated plate. Ali et al. [31] studied 

the water based fluid. Razzaq et al. [32] discussed the 

nanofluid with newtonian heating over a plate. 

In this problem, an unsteady MHD flow of second grade 

fluid over a vertical plate is considered with Dufour effect. 

Initially, non-dimensional the giving equations and solved 

these equations via Laplace transform. All concentration, 

Temperature, and velocity distribution results have been 

obtained and evaluated graphically. From figures, it is seen 

that fluid motion decreases with larger values of Schmidt 

number and chemical reaction, whereas velocity field 

decreases with decreasing values of diffusion-thermo. 

2. Mathematical Model 

A magnetohydrodynamic flow of second grade fluid over a 

plate is considered. The �∗-axis is taken vertically upward 

along fluid motion and the �∗-axis is perpendicular to the 

plate. The fluid and plate have ��∗  concentration and ��∗  

temperature at time 0 = �	∗ with zero velocity. But for �	∗ > 0, 

the plate starts to move in the plane with uniform velocity �	�
��∗ . The level of concentration is raised to ��∗  and 

temperature of the plate is increased or decreased to ��∗ +(��∗ + ��∗ )�	∗/��∗ when �	∗ ≤ ��∗ and ��∗  for �	∗ > ��∗ . In view 

of above assumption and using Boussinesq’s approximation, 

linear momentum Eq. (15) is: 

���(�∗,��∗)���∗ = (1 + �� ����∗) ��(�∗,��∗)��∗ + �� ∗(�∗ − ��∗ ) − "#$%��(�∗,��∗)& − '��(�∗,��∗)&(% + ��)∗(�∗ − ��∗ )          (1) 

shear stress * is: 

* = + ���(�∗,��∗)��∗                     (2) 

Thermal Eq. is: 

� ∗(�⋅,��∗)���∗ = − 	&).
�/�(�∗,��∗)��∗ − 0	(�∗ − ��⋅ ) − 1$(2&)3

�4�(�∗,��∗)��∗    (3) 

According to Fourier’s Law: 

5	(�∗, �	∗) = −6� � ∗(�∗,��∗)��∗             (4) 

Diffusion Eq. is: 

�)∗(�∗,��∗)���∗ = − �4�(�∗,��∗)��∗ − 7	(�∗ − ��∗ )        (5) 

8	(�∗, �	∗) defined by Fick, s law: 

8	(�∗, �	∗) = −9: �)∗(�∗,��∗)��∗            (6) 

The conditions for model are: 

;	(�∗, 0) = 0, �∗(�∗, 0) = ��∗ , �∗(�∗, 0) = ��∗ , �∗ > 0 (7) 

;	(�∗, �	) = �	<(�	∗), 
�∗(�∗, �	∗) = =��∗ + (��∗ − ��∗ )�	∗�� , 0 < �	∗ ≤  ��;

��∗ , �	∗ > ��, , 
�∗(�∗, �	∗) = ��⋅ , �∗ = 0             (8) 

;	(�∗, �	∗) → 0, �∗(�∗, �	∗) → 0, �∗(�∗, �	∗) → 0, 
�∗ → ∞, �	∗ > 0                   (9) 

3. Generalized Model 

Dimensionless parameters are: 

�∗ = ��∗+ , �∗ = �B�	∗+ , ;∗ = ;	∗� , 7∗ = 7	+�B , 
CD∗ = +� ∗(��∗ − ��∗ )�E , 0∗ = 0�+�B , �∗ = �∗ − ��∗��∗ − ��∗ , 

F∗ = #$%"&G% , CH∗ = I#J∗()K∗ L)M∗ )GN             (10) 

Eq. (2) is fractionally generalized by [29, 33] 

* = O#9�# ���� , 1 ≥ � > 0               (11) 

where O# = 1 when � → 1. Put Eq. (11) into Eq. (1) and 

using non-dimensional parameter from Eq. (10), we found: 

���� = O#(1 + Q ���) ��� [9�# ����] − (F + TL	); + CD� + CH� (12) 

Eq. (4) is generalized by [34, 35] 

5	 = −9U9�U � �� , 1 ≥ V > 0           (13) 

where thermal conductivity has generalized coefficient 9U. 

Eq. (6) is generalized as: 

8	 = −TW9�W �)�� , 1 ≥ 6 > 0          (14) 

where molecular diffusion has generalized coefficient TW . Put 

Eq. (14) and Eq. (15) into Eq. (3) and making 

non-dimensional results, we have: 
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� �� = XDL	 ��� [9�U � ��] − 0� + 9; ��� [9�W �)��]    (15) 

where XD = I&).1Y  is the generalized parameter. 

Put Eq. (15) into Eq. (5) and making non-dimensional 

results, we have: 

�)�� = Z[L	 ��� [9�W �)��] − 7�            (16) 

whereZ[ = I(\ is the generalized parameter. 

with the following conditions: 

;(�, �) = �(�, �) = �(�, �) = 0, � > 0, � = 0   (17) 

;(0, �) = �
� , 
�(0, �) = ]�, 0 < � ≤  1;1, � > 1, �(0, �) = 1, � > 0   (18) 

;(�, �) → 0, �(�, �) → 0, �(�, �) → 0, � → ∞   (19) 

where Gm, Q , M, Q, Du, and ;  represents the mass 

Grashof number, second grade parameter, magnetic field, 

non-dimensional heat absorption parameter, 

Diffusion-thermo parameter, and motion of fluid 

respectively. and 9�#<(�)  reports the (CF) derivative of <(�) as: 

9�#<(�) = 	(	L#) ^  �� (�(_`(a_b)�_` ))<(′D)d�        (20) 

4. Solution of Problem 

4.1. Calculation of Concentration 

Applying Laplace transform on Eq. (16), we have: 

e�f(�, e) = Z[L	( gWhg(	LW)) �%)f(�,g)��% − �f(�, e)7     (21) 

with 

�f(0, e) = eL	, �f(�, e) → 0, � → ∞         (22) 

Put Eq. (22) in Eq. (21), we have: 

�f(�, e) = eL	�L�i(ghj)kl(\m3(�_\)3 )
          (23) 

The semi -analytical solution of Eq. (23) is given by 

algorithm [37, 38]. 

4.2. Calculation of Temperature 

Applying Laplace transform on Eq. (15), we have: 

e�n = XDL	( gUhg(	LU)) �% n��% − 0�n + 9;( gWhg(	LW)) �%)f��% (24) 

with 

�n(0, e) = eLB(1 − �Lg), �n(�, e) → 0, � → ∞ (25) 

Put Eq. (25) in Eq. (24), which result is: 

�n(�, e) = 	Lo_3
g% �L�ipa3 (ghq)(Uhg(	LU)) + parstu(3mv)3% (Uhg(	LU))

kl(ghj)Lwx(ghq) [�L�ipa3 (ghq)(Uhg(	LU)) − �L�irs3 (ghj)(Whg(	LW))]       (26) 

for 6 = V, suitable form of Eq. (26) is: 

�n(�, e) = 	Lo_3
g% �L�ipa3 (ghq)(Whg(	LW)) + parstu(3mv)3% (Whg(	LW))

kl(ghj)Lwx(ghq) [�L�ipa3 (ghq)(Whg(	LW)) − �L�irs3 (ghj)(Whg(	LW))]     (27) 

The semi -analytical solution of Eq. (27) is given by algorithm [37, 38]. 

4.3. Calculation of Velocity 

Applying Laplace transform on Eq. (12), we have: 

e;n(�, e) = O#(1 + Qe)( g#hg(	L#)) �%�y(�,g)��% − (F + TL	);n(�, e) + CD�n(�, e) + CH�f(�, e)                    (28) 

with conditions 

:;n(0, e) = 	gL
 , ;n(�, e) → 0, � → ∞                                          (29) 

Put Eq. (29) in Eq. (28), we obtain: 

;n(�, e) = 	gL
 �L�z[({m3m�|)(`m3(�_`))3(�m}3)~` ] + [ �x�`[ 3(�m}3)`m3(�_`)][\m(�_\)3 ](qhg)wxL(gh�h(_�)][	Lo_3
g% + parstu(vm3)3% (Whg(	LW))

kl(jhg)Lwx(qhg) ][�L�z[({m3m�|)(`m3(�_`))3(�m}3)~` ] −
�L�i[pa3 (qhg)(Whg(	LW))]] + [ 	�`[ 3(�m}3)`m3(�_`)][\m(�_\)3 ](jhg)klL(�hgh(_�)][�:g − �aparstu(vm3)3% (Whg(	LW))

kl(ghj)Lwx(qhg) ][�L�z[(3m�|m{)(`m3(�_`))3(�m}3)~` ] −
�L�i[rs3 (jhg)(Whg(	LW))]]                                                (30) 
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for 6 = � = V, suitable form of Eq. (30) is: 

;n(�, e� � 	gL
 �L�zR
�3m{m�|��\m3��_\��3��m}3�~` S � R �x�	h�g��`�ghq�wxL�gh�h(_��SR	Lo_3g% � parstu�3mv�3% �Whg�	LW��

kl�jhg�Lwx�qhg� SR�L�zR�3m{m
�|��\m3��_\��3��m}3�~` S !

�L�ipa3 �ghq��Whg�	LW��S � R 	�	h�g��`�ghj�klL�gh�h(_���	h�g�SR�:g ! �aparstu�3mv�3% �Whg�	LW��
kl�ghj�Lwx�ghq� SR�L�zR�3m{m

�|��\m3��_\��3��m}3�~` S !
�L�irs3 �ghj��Whg�	LW��S                                                 (31) 

The semi -analytical solution of Eq. (31) is given by 

algorithm [37, 38]. 

5. Results and Discussion 

The solution for the impact of diffusion-thermo, magnetic 

field, and heat consumption on flow of second grade fluid past 

over a vertical plate are developed by using Laplace transform 

technique. The effect of numerous parameters used in the 

governing equations of velocity fields have been analyzed in 

Figures. 

The impact of F on ;��, �� is reported in Figure 1. Graph 

shows that fluid speed u(x,t) is reduced with accelerating 

values of parameter F. Resistivity becomes dominant with 

raising F  which reduced the speed of fluid. Figure 2 

indicates the effect of porosity on velocity fields. It is noted 

from this Figure that speed of fluid becomes higher for larger 

values of K. Physically, it happened that the resistivity of 

porous medium is higher for lower values of K which 

decreased the flow regime. 

Figure 3 represent the result of Gr on fluid velocity u(x,t). 

The fluid motion rises up with maximizing the values of Gr, 

and it represents the impact of thermal buoyancy force to 

viscous force. Therefore maximizing the values of Gr exceed 

the temperature gradient due to which velocity field rises. The 

impact of Gm on fluid velocity u(x, t) is illustrate in Figure 4. 

It is highlighted that fluid motion raises as values of Gm 

increasing. Physically higher the values of Gm increase the 

concentration gradients which make the buoyancy force 

significant and hence it is examined that velocity field is 

raising. 

The effects of Du on u(x,t) is shown in Figure 5. Figure 

shows that speed of fluid increases by increasing value of Du. 

The reason behind this is that the rate of mass diffusion is 

raised with an increasing value of Du, which decreases the 

fluid viscosity and hence velocity of fluid is increased. Figure 

6 is drawn for negative values of 9;  which shows the 

opposite behavior. 

A decreasing value of 0 increases the u(x,t) as appeared in 

Figure 7. An increasing value of 7 decreases the u(x,t) as 

appeared in Figure 8. 

Figure 9 represents the behavior of Z[ on the ;��, ��. It is 
highlighted that maximizing the values of Z[ slow down the 

fluid motion due to decay of molecular diffusion. The impact 

of XD  on ;��, ��  is displayed in Figure 10. Figure 11 

highlight the behavior of �  on ;��, �� . From Figure, it is 

observed that ;��, �� is accelerated for larger time t. Figure 

12 shows the influence of 6 on ;��, ��. From Figure, it is 

noted that fluid motion ;��, �� decays with raising values of 6. 

The behavior of parameter XD on ���, �� is reported in 

Figure 13. This Figure indicates that temperature decreases 

with larger XD . Figure 14 indicates the impact of 0  on ���, ��. Figure 15 indicates the effect of Z[  on ���, ��. 

Temperature increases with reducing values of Z[  as 

highlight in Figure 16 indicates the impact of 9;  on ���, ��. Temperature rises with increasing 9;. Figure 17 

shows the effect of � on ���, ��. From Figure, it is noted 

that ���, ��  falls down with reducing values of time t. 

Figure 18 shows the influence of 6  on ���, �� . From 

Figure, it is noted that ���, ��  decays down for larger 

values of 6. 

Figure 19 shows the influence of 6  on ���, ��. From 

Figure, it is noted that concentration level decays down 

with raising values of 6. Figure 20 shows the influence of � on ���, ��. From Figure, it is noted that concentration 

level rises with raising time � . The behavior of 7  on ���, �� are shown in Figure 21. Figure 22 shows the effect 

of Z[  on ���, �� . Figures 23 to 25 represents the 

authenticity of inversion algorithms for C(x,t), T(x,t), and 

u(x,t). Figure 26 gives the comparison of present work with 

Shah et al. [36]. Figure represents that in the absence of 

fractional parameters, dufour effect, second grade 

parameter, and porous media, we obtained the identical 

fluid motion. 

 

Figure 1. Velocity profile u(x,t) for parameter M at R=1.2, Q=4, Gr=6, 

Gm=6, Du=2, Sc=2.5, Pr=0.5, K=3. 
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Figure 2. Velocity profile u(x,t) for parameter K at R=1.2, Q=4, Gr=6, Gm=6, 

Du=2, Sc=2.5, Pr=0.5, M=0.4. 

 

Figure 3. Velocity profile u(x,t) for parameter Gr at R=1.2, Q=4, K=3, Gm=6, 

Du=2, Sc=2.5, Pr=0.5, M=0.4. 

 

Figure 4. Velocity profile u(x,t) for parameter Gm at R=1.2, Q=4, Gr=6, K=3, 

Du=2, Sc=2.5, Pr=0.5, M=0.4. 

 

Figure 5. Velocity profile u(x,t) for parameter Du at R=1.2, Q=4, Gr=6, 

Gm=6, K=3, Sc=2.5, Pr=0.5, M=0.4. 

 

Figure 6. Velocity profile u(x,t) for parameter Du at R=1.2, Q=4, Gr=6, 

Gm=6, K=3, Sc=2.5, Pr=0.5, M=0.4. 

 

Figure 7. Velocity profile u(x,t) for parameter Q at R=1.2, Du=2, Gr=6, 

Gm=6, K=3, Sc=2.5, Pr=0.5, M=0.4. 
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Figure 8. Velocity profile u(x,t) for parameter R at Gm=1.2, Q=4, Gr=6, K=3, 

Du=2, Sc=2.5, Pr=0.5, M=0.4. 

 

Figure 9. Velocity profile u(x,t) for parameter Sc at R=1.2, Q=4, Gr=6, K=3, 

Du=2, Gm=6, M=0.4, Pr=0.5. 

 

Figure 10. Velocity profile u(x,t) for parameter Pr at R=1.2, Q=4, Gr=6, K=3, 

Du=2, Sc=2.5, Gm=6, M=0.4. 

 

Figure 11. Velocity profile u(x,t) for parameter t at R=1.2, Q=4, Gr=6, K=3, 

Du=2, Sc=2.5, Pr=0.5, M=0.4. 

 

Figure 12. Velocity profile u(x,t) for parameter α at R=1.2, Q=4, Gr=6, K=3, 

Du=2, Sc=2.5, Pr=0.5. 

 

Figure 13. Temperature profile T(x,t) for parameter Pr at R=1.2, Q=4, 

t=0.65, Sc=2.5, β=0.5. 
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Figure 14. Temperature profile T(x,t) for parameter Q at R=1.2, Pr=0.5, 

t=0.65, Sc=2.5, β=0.5, Du=2. 

 

Figure 15. Temperature profile T(x,t) for parameter Sc at R=1.2, Q=4, 

t=0.65, Du=2, β=0.5, Pr=0.5. 

 

Figure 16. Temperature profile T(x,t) for parameter Du at R=1.2, Q=4, 

t=0.65, Sc=2.5, β=0.5, Pr=0.5. 

 

Figure 17. Temperature profile T(x,t) for parameter t at R=1.2, Q=4.0, 

t=0.65, Sc=2.5, β=0.5. 

 

Figure 18. Temperature profile T(x,t) for parameter α. 

 

Figure 19. Concentration profile C(x,t) for parameter α. 
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Figure 20. Concentration profile C(x,t) for parameter t. 

 

Figure 21. Concentration profile C(x,t) for parameter R. 

 

Figure 22. Concentration profile C(x,t) for parameter Sc. 

 

Figure 23. Concentration obtain by Stehfest’s and Tzou’s Algorithm. 

 

Figure 24. Temperature obtain by Stehfest’s and Tzou’s Algorithm. 

 

Figure 25. Velocity obtain by Stehfest’s and Tzou’s Algorithm. 
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Figure 26. Velocity profile for comparisian of our work with Shah et al. [36]. 

6. Conclusion 

A magnetohydrodynamics flow of second grade fluid 

model has been taken and solved using Laplace transform 

with solution. The conditions of flow problem are satisfied by 

the results. Different graphs have been plotted for flow 

parameters and then discussed. The key points of this flow 

model are: 

1. With increasing values of fractional parameter, the 

velocity distribution slows down. 

2. Thermal buoyancy forces accelerate the fluid motion. 

3. The velocity of fluid decreases as Schmidt number, 

magnetic parameter, and heat consumption parameter 

rises. 

4. The fluid velocity is increased for raising values of Du. 

5. The temperature profile increases by the smaller values 

of Pr. 

6. The temperature profile is a decreasing function of 6. 

7. The T(x,t) is an increasing function of 9;. 

8. The concentration profile decreases with larger values 

of Sc. 

9. The concentration profile reduces with larger values of 

R. 

10. The concentration level is a decreasing function of 6. 
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