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Abstract: This paper presents a Multidisciplinary Design Optimization (MDO) to optimize key component sizes and control 

strategy for a hybrid electric vehicle, Honda Insight 2000. A pheromone-based Bees Algorithm (PBA), where the food foraging 

behavior of honey bees combined with evolutionary computation, is used as an optimizer within a MDO system. The PBA uses 

pheromones, chemical substances secreted by bees and other insects into their environment, enabling them to communicate 

with other members of their own species. The values of the key component size and control strategy parameters are adjusted 

according to PBA to obtain the minimization of Fuel Consumption (FC) while dynamic performances have to satisfy the 

Partnership for a New Generation of Vehicles (PNGV) constraints. In this research, ADVISOR software has been used as the 

simulation tool, where driving cycles, FTP and HWFET are employed to evaluate FC and dynamic performances. Following a 

description of the MDO system, the paper shows the results obtained for only the control strategy parameter optimization and 

the simultaneous optimization of key component sizes and control strategy parameters for the Honda Insight 2000. The results 

demonstrate the effectiveness of PBA when it is used as the optimizer within a MDO system for determining the optimal 

parameters of component sizes and control strategy resulting in the reduction of FC and improvement of vehicle performances. 

In this research, the new version, PBA, showed an improvement of about 20-25% over the Basic Bees Algorithm (BBA) in 

convergence speed with the nearly same results of optimization targets. 

Keywords: Hybrid Electric Vehicles, Multidisciplinary Design Optimization, Basic Bees Algorithm,  

Pheromone-Based Bees Algorithm, Intelligent Optimization, HEV Control Strategy, Honda Insight 2000 

 

1. Introduction 

Currently, many researchers worldwide are looking for 

new solutions to reduce vehicle emissions, while reducing the 

consumption of fossil fuels. Hybrid Electric Vehicle (HEV) 

systems became one of the best working solutions by 

utilizing the advantages of both Internal Combustion Engine 

(ICE) and electric energy source. A hybrid vehicle is one that 

employs two or more power sources to improve the overall 

efficiency of the system. By designing suitable component 

sizes and control strategy, the HEV can not only reduce toxic 

exhaust gas emissions but also minimize Fuel Consumption 

(FC) while maintaining on-road vehicle performances. When 

an HEV is designed, it is necessary to determine the optimal 

sizes of key power sources of powertrain system. In addition, 

the management of energy flow also plays an important role 

in improving HEV efficiency. These problems can be solved 

by a parameter optimization of control strategy [13]. A 

survey of the existing literature indicates that optimization of 

the power management logic of hybrid electric vehicles is 

mostly performed after the design of the powertrain 

architecture or the power source components are finalized. 

The majority of power management control logic systems 

can be classified under two types: (i) a rule-based approach 

and (ii) an optimization-based approach. Rule-based control 

strategies consist of deterministic and fuzzy logic rule-based 

methods, while optimization-based approaches typically 

utilized global optimization when determining the control 
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strategy parameters [14]. 

In order to optimize the key component sizes and control 

strategy parameters of an HEV, number of methods have been 

used. Assanis et al. (1996) tried to find optimal input variables 

including the sizes of ICE, Electric Motor (EM) and battery 

pack. The optimization objective was to improve the FC when 

the driving performances were kept within the standard limits. 

However, they did not account for the exhaust emissions [1]. 

Montazeri et al., (2006) used a Genetic Algorithm (GA) to find 

optimal component sizes and control strategy [6]. Their 

objective was to minimize a weighted sum of FC and 

emissions while the PNGV performance requirements were 

considered as constraints [4]. Wu et al., (2008) used Particle 

Swarm Optimization to achieve optimal parameters for both 

the powertrain and control strategy, and vehicle performances 

were also defined as constraints. Their research aimed to 

reduce FC, emissions, and manufacturing costs of HEVs. To 

solve this problem, they used a single objective function with a 

goal-attainment method to replace the original multi-objective 

optimization problem [15]. 

In 2012, Long et al (2012), used a Basic Bees Algorithm to 

optimize parallel HEV component sizes and control strategy. 

The design factors included three parameters of component 

size and six parameters of control strategy [8], [9]. In this 

paper, the component sizes and control strategy parameters of 

a commercial HEV, Honda Insight 2000, are optimized 

simultaneously by using a new version of Bees Algorithm, the 

Pheromone-based Bees Algorithm (PBA), to obtain the 

minimization of weighted sum of FC and emissions when the 

PNGV driving performances such as acceleration and 

gradeability of parallel HEVs are maintained. The goal of this 

research is to utilize Multidisciplinary Design Optimization to 

automate and optimize only the control strategy parameters at 

first and then simultaneously find the optimum values for 

powertrain component sizes and control strategy parameters. 

The powertrain configuration of Honda Insight 2000 is 

shown in Fig. 1. In this configuration, both ICE and EM are 

mechanically connected to the driving wheels. The EM plays 

the role of assisting the ICE in supplying the required power. 

The ICE can also drive the EM as a generator to charge the 

battery [2], [3]. In this research, the ICE, EM and battery are 

treated as key components in the design process of Honda 

Insight 2000. 

2. Honda Insight 2000 

2.1. The Powertrain Configuration 

 

Figure 1. The configuration of Honda Insight 2000 [2]. 

2.2. The Control Strategy 

Based on the working of the Honda Insight 2000, a scalable 

control strategy was developed in ADVISOR software (Fig. 2). 

The electric motor of Honda’s Integrated Motor Assist (IMA) 

provides approximately 10Nm of assist in most cases when a 

large torque (approximately > 20Nm) is demanded of the 

vehicle (This is physically interpreted as an indication for 

acceleration through depressing the accelerator pedal) [7]. 

 

Figure 2. The control strategy of Honda Insight 2000 [2], [7]. 
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The electric motor of the Integrated Motor Assist (IMA) 

performs regeneration when the vehicle slows down, as 

there is torque from the inertia of the vehicle coming into 

the driveline. When the brakes are depressed, there is heavy 

deceleration, and a lot of negative regenerative torque is 

seen at the driveline. The controller senses the braking, and 

allows the motor to return a part of that energy back to the 

battery. This ensures that the battery is charged and that not 

all of the energy is lost in the form of heat. During braking, 

a small portion of the braking force is provided by the 

electric motor, and the remaining part from the friction 

brakes [5]. 

In Fig. 2, the parameters shown are used in determining 

the behavior of the electric motor, based on the vehicle 

torque demand. The solid line in the upper right quadrant of 

the graph, defines the level of assist provided by the electric 

motor. When the driveline torque required exceeds the 

parameter “cs_dl_assist_trq_threshold,” the motor provides 

assist, starting at a level indicated by 

“cs_mc_assist_min_frac,” and increases according to the 

parameter “cs_mc_assist_slope,” which indicates how much 

assist the motor should provide, based on the driveline 

torque. The maximum assist of the motor can be limited by 

using the parameter “cs_mc_assist_max_frac.” The motor 

torque limits are represented as a fraction of the max torque 

capacity of the motor. Similarly, the solid line in the lower 

left quadrant defines the level of regeneration provided by 

the electric motor. When regenerative torques seen by the 

driveline exceed the parameter “cs_dl_min_trq_threshold,” 

the motor starts regenerating with a minimum value equal 

to “cs_mc_regen_min_frac,” and increases according to 

“cs_mc_regen_slope.” This parameter defines the amount 

of regeneration the motor provides, based on what is seen at 

the driveline. As in the case of assist, motor regeneration 

torque can be limited using the parameter 

“cs_mc_regen_max_frac.” 

These limits are a function of the maximum regenerative 

capacity of the motor. Table 1 provides key component sizes 

and a summary of the parameters used in this scalable control 

strategy. For the Honda Insight 2000, the control strategy 

parameters are given in the 3
rd

 column of Tab. 1. 

3. Optimization Targets 

As the emission map of HC, CO and NOx in exhaust gas 

has not been integrated in ADVISOR software, the research 

objective in this research is only to minimize FC while still 

satisfying charge sustaining requirements and dynamic 

performances. The PNGV passenger car constraints 

described in Tab. 6 [4], [14] are used as dynamic 

performance requirements to show that vehicle performance 

is not sacrificed during optimization. 

The objective function is defined as follows: 

G (x) = FC                                     (1) 

Min G (x), x = (x1, x2,…, x14)                      (2) 

subject to hi (x) ≤ 0, i = 1, 2,…, 7 

where, x1, x2,…, x14 are parameters of component sizes and 

control strategy parameters described in Tab. 1 

hi (x) are constrains listed in Tab. 6 

Table. 1. Parameters of component size and control strategy. 

Parameters Description Honda Insight 

fc_trq_scale Scaling factor for torque range of ICE 1.0 

mc_trq_scale Torque scaling factor of EM 1.0 

ess_module_num Number of battery modules in a pack 20 

cs_dl_assist_trq_threshold Driveline torque threshold below which the electric machine does not assist 25 Nm 

cs_mc_assist_min_frac 
Minimum torque normally provided by the electric motor when driveline torque exceeds 

threshold (as a fraction of max torque) 
0.1290 

cs_mc_assist_slope 
Fraction (slope of the line) of the driveline torque provided by the electric motor when the 

driveline torque exceeds threshold 
0.0909 

cs_mc_assist_max_frac Maximum motor torque requested from the motor during assist (as a fraction of max torque) 0.3200 

cs_dl_regen_trq_threshold 
Driveline regenerative torque threshold above which the electric machine does not regenerate at 

low speeds 
-15 Nm 

cs_mc_regen_min_frac 
Minimum regenerative torque normally provided by the electric motor when driveline torque 

exceeds regenerative threshold (as a fraction of max regen torque) 
0 

cs_mc_regen_slope 
Fraction (slope of the line) of the negative driveline torque regenerated by the electric motor when 

the driveline torque exceeds threshold 
0.7 

cs_mc_regen_max_frac 
Maximum regenerative motor torque requested from the motor during regeneration/braking (as a 

fraction of max regenerative torque) 
1.0 

cs_decel_regen_threshold Speed during deceleration below which the electric motor does not regenerate 10 Nm 

cs_lo_soc Lowest desired battery state of charge 0.2 

cs_hi_soc Highest desired battery state of charge 0.8 
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4. A Simultaneous Multidisciplinary 

Design Optimization System for 

Honda Insight 2000 

 

Figure 3. A simultaneous Multidisciplinary Design Optimization system for 

Honda Insight 2000. 

An HEV is very complex and contains different 

components from various disciplines such as ICE, EM, 

generator, etc.. Optimal design of HEVs usually requires 

various engineering teams specializing in different disciplines 

collaborating to provide a solution. In order to increase the 

efficiency of the design process, this research proposes an 

optimization method in attempt to solve various disciplines 

simultaneously for Honda Insight 2000, termed 

Multidisciplinary Design Optimization as described in Fig. 3. 

An optimization software platform utilizing multidisciplinary 

design optimization approach is implemented containing the 

Honda Insight 2000 model and an optimization unit. The 

Honda Insight 2000 model created by National Renewable 

Energy Laboratory, USA in ADVISOR software is used for 

the simulation tool. The powertrain component properties and 

control strategy parameters of Honda Insight 2000 model can 

be changed easily following the optimization unit by using 

m-files. The calculations of output variables Y including FC 

and dynamic performances of the vehicle system are 

performed in ADVISOR simulation tool. The vector of 

design variable X in Tab. 1 is provided by the optimization 

unit to the coupled system of analysis disciplines (Simulation 

Tool), and a complete multidisciplinary analysis is performed 

by the Simulation Tool to obtain the system output variable Y 

= F(X). The system output variable Y is then subsequently 

used to evaluate the objective function G(X) and the 

constraints (hl(X), kq(X)). Based on the values of G(X) and 

constraints (hl(X), kq(X)), the optimization tool will change 

the value of X to provide for the Simulation Tool again. The 

process is repeated until the convergence criteria are 

satisfied. 

The Pheromone-Based Bees Algorithm is used for the 

optimization unit and its detail is described as follows. 

4.1. Basic Bees Algorithm 

The Basic Bees Algorithm is an intelligent optimization 

tool imitating the food foraging behaviour of honey bees 

found in nature. In the natural environment bees are able to 

discover food sources using two kinds of search methods, 

namely, a global random search and a local search. The 

former consists of sending the bees at random around the 

hive. Once these bees, which are called the scout bees, 

discover potential food sources they return to their hive and 

start recruiting more bees to exploit those food sources 

which were discovered during the random search attempt. 

The bees waiting in the hive receive their instructions from 

the returning scout bees in the form of a waggle dance 

which gives them the following useful information: the 

location of the nearest food source, the quality of that food 

source, and the amount of energy needed to harvest the 

food. Logically, the better the food source and the closer to 

the hive the more numerous the recruited bees will be. The 

search performed by the recruited bees is similar to a local 

search. While some bees are recruited to conduct local 

search, a percentage of the bee population continues the 

global random search to look for other promising food 

sources. This ensures that the search continues cycle after 

cycle in an iterative manner until all the good food sources 

including the best food source in the vicinity of the hive are 

found. This is similar to an intelligent optimization process 

and can be formulated into an algorithmic form as in the 

Basic Bees Algorithm [10], [11], [12]. 

4.2. Pheromone-Based Bees Algorithm 

In nature, bees are known to secrete pheromones in a 

liquid form which is transmitted by coming into direct 

contact with it or as its vapor. The pheromones release 

chemical signals proportional to the amount which has been 

deposited by scout bees for marking potential food sources, 

marking their hive, scenting potential hive sites, and 

assembling or recruiting other bees. The scent arising from 

the secreted pheromones can intensify or diminish over time 

depending on the level of bee activity at that site. A strong 

scent will help to recruit bees in larger numbers to the food 

source while a mild scent will indicate the depletion of nectar 

in a previously marked food source [10]. 

In the Pheromone-based Bees Algorithm (PBA) the 

number of scout bees allocated for global random search is 

defined by parameter “n” and the number of bees assigned to 

search around the selected site “e” is defined by parameter 

“m”. In order to facilitate the search within a sphere centered 

on the selected sites, the parameter “ngh” is used to define the 

neighborhood size. In the Pheromone-based Bees Algorithm, 

pheromones are used to recruit bees to search around each 
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selected site. In every iteration, the bees deposit pheromones 

on the sites they are drawn to and the exact amount on a 

particular site depends on the quantity of pheromones already 

present on that site which is influenced by a decay rate, the 

fitness of that site, and the number of bees found on that site. 

The amount of pheromones found on a site will gradually 

evaporate to nothing, over time, if there is no bee activity 

there. Due to pheromone evaporation, the older the site, the 

less attractive it is (because it has been exploited and the 

nectar in it might have exhausted). As a consequence, the 

number of bees recruited to each site will be proportional to 

the quantity of pheromone already present on that site, and 

the fitness of that site. Thus the use of pheromones allows an 

automatic and dynamic recruitment of bees across the search 

space. The pheromones are used to recruit bees to a particular 

site, uses not only the quality of that site, i.e. fitness, but also 

the amount of pheromone found on the site. The precise 

amount of pheromone accumulated on each site will be 

calculated in each iteration using a pheromone update 

equation which will show either an increase or decrease in its 

level [10]. 

The Pheromone-based Bees Algorithm is shown as in Fig. 

4, and its parameters are described in Tab. 2. 

 

Figure 4. The flowchart of PBA [10]. 

The algorithm starts with the initial population of n scout 

bees to search randomly in the solution space. Then, the fitness 

of the scout bees associated with their respective sites is 

evaluated in step 2. However, only bees with the highest 

fitness are chosen as “selected bees” and sites visited by them 

are selected for neighborhood search in step 3. After that, in 

steps 4, 5 and 6, the algorithm will search in the neighborhood 

of the selected sites, the number of bees “m” recruited for each 

selected site depends on the pheromone deposited on that site. 

At the end of each neighborhood search, the bee having the 

highest fitness value associated with its visited patch is 

selected to form the next bee population [10]. 

In order to avoid local optima, in step 7, the remaining 

bees (n-e) in the population have to search randomly around 

the solution space to find new potential sites. The iteration of 

these above steps will not be finished until a stopping 

criterion is met and the best bee of the last population is 

treated as the optimal solution [10], [11], [12]. 

Table 2. The parameters of PBA [10]. 

Parameters Description 

n number of scout bees 

e number of sites selected out of n visited sites 

m number of bees recruited for selected e sites 

ngh size of patches, which includes site and its neighborhood 

4.3. Pheromone-Based Bees Algorithm in Parallel HEV 

Optimization 

In order to apply PBA to the simultaneous optimization of 

parallel HEVs, the fitness in step 2 is the inverse of the 

objective function G(x) in Equation (1). However, the 

optimization task is required to maintain the on road 

performances such as acceleration and gradeability of parallel 

HEVs. In order for the PBA to deal directly with constraints 

it is necessary to add penalty functions given in Equation (3) 

into the objective function G(x) [16]. 
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where, Ci(Sj)(x), αi and Fi(x) are penalty function, desired value 

and evaluated value related to i
th 

constraint hi(x) in Tab. 6 

The penalty functions are used to penalize infeasible 

solutions by reducing their fitness values. Ci(Sj)(x) = 0, if the 

constraint hi(x) is satisfied. 

ki is penalty factor chosen by trial and error as given in 

Tab. 6 

fitness(Sj)(x) is the fitness value of site Sj 

The optimization process using PBA for parallel HEVs can 

be stated as follows: 

� Step 1: Initialize the population of scout bees, each 

scout is a set of specific values of all variables of 

component sizes and control strategy in Tab. 1 

� Step 2: Evaluate the FC and penalty functions Ci(x) for 

each scout bee by combining between PBA and 

ADVISOR software 

� Step 3: Calculate the fitness value of all scout bees 

according to Equation (3) and (4) 



6 V. T. Long and M. S. Packianather:  Application of a Pheromone-Based Bees Algorithm as an Optimizer Within a Multidisciplinary  

Design Optimization System for Powertrain Component Sizing and Control Parameters for Hybrid E-Vehicles 

� Step 4: Choose e bees with highest fitness 

� Step 5: Recruit bees for selected “e” sites according to the 

pheromone levels at those sites (local search) to conduct 

searches in the neighborhood of the selected e sites and 

choose a bee with the highest fitness for each site. The 

number of bees given by nb(Sj, t) recruited for a site Sj of 

e sites at time t is calculated from Equation (5) 

� Step 6: Assign the remaining (n-e) bees to search 

randomly around the search space for new potential 

solutions 

� Step 7: At the end of the local and global search, the best 

bees from all the sites are sorted according to their fitness 

� Step 8: Update new population 

� Step 9: Update pheromone level on each site by using 

Equation (7) 

� Step 10: Stop the program if the convergence criteria is 

satisfied, otherwise go to step 4. 

1
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where, fs(Sj) is the fitness score of site Sj,. Se+1 is the best 

performing site among the non-selected sites. Note that the 

fitness score fs(Sj) is normalized to smooth noise and 

suppress systematic variations. 

The optimization process is programmed and linked with 

ADVISOR by using *. m file in Matlab [5]. The linkage 

configuration between ADVISOR and PBA is described in 

Fig. 3. The parameters of PBA used in this optimization are 

chosen as in Tab. 3. 

Table 3. The parameters of PBA. 

n e m ngh(i) 

22 7 5 (up. bound(i)-lo. bound(i))/40 

where, up. bound(i) and lo. bound(i) are the upper bound and 

lower bound of the i
th

 variable listed in Tab. 4. It is necessary 

to continuously adjust component sizes in the search space in 

ADVISOR software. To vary component size, the baseline 

ICE of Honda Insight 1.0L VTEC-E SI engine is used. The 

engine torque scale factor, fc_trq_scale, is also used to vary 

the ICE size. 

In addition, for the baseline electric motor, a Preliminary 

Model of Honda 10 KW is employed. The same as ICE, the 

motor torque scale factor, mc_trq_scale, is used to vary the 

EM size. Similarly, the Spiral Wound NiMH battery is used 

for battery sizing. To vary the battery size, the number of 

battery modules, ess_module_num, is changed [7]. The range 

of input variables for component size and control strategy 

parameters, is given in Tab. 4. 

Table 4. The range of input variables X. 

Parameters Lower bound Upper bound 

fc_trq_scale 0.8 2 

mc_trq_scale 0.8 3 

ess_module_num 15 60 

cs_dl_assist_trq_threshold 5 60 

cs_mc_assist_min_frac 0 0.2 

cs_mc_assist_slope 0 1 

cs_mc_assist_max_frac 0.21 1 

cs_dl_regen_trq_threshold -40 -5 

cs_mc_regen_min_frac 0 0.2 

cs_mc_regen_slope 0 1 

cs_mc_regen_max_frac 0.21 1 

cs_decel_regen_threshold 0 30 

cs_lo_soc 0.15 0.57 

cs_hi_soc 0.58 0.95 

5. Experimental Results and Analysis 

The experimental process of MDO to optimize for Honda 

Insight 2000 includes two steps. 

Step 1: Optimize only control strategy. In this step, the size 

of ICE, EM and the number of battery modules is fixed as in 

the original Honda Insight 2000, it means that the structure of 

Honda Insight 2000 is not changed. So, the control strategy 

parameters are optimized as described in Section 4. After this 

step, if FC is improved and the dynamic performances satisfy 

PNGV constraints, the experimental process can be stopped, 

otherwise go to step 2. 

Step 2: Optimize simultaneously component sizes and 

control strategy parameters. It means that all parameters in 

Tab. 4 are optimized simultaneously. 

 
Figure 5. The experimental process. 
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In order to eliminate the influence of energy from the 

battery on FC, the simulation has been run several times 

starting with different initial SOC (battery state of charge) 

values until the final SOC is close to the initial SOC. The 

optimization program was run with PBA parameters in Tab. 3 

following two driving cycles, FTP (Federal Test Procedure) 

and HWFET (Highway Fuel Economy Test). Optimize only 

the control strategy. 

The control strategy parameters of Honda Insight 2000 

have been optimized by Honda Company’s engineers. 

However, as shown in Tab. 6, there are three requirements 

which the original Honda Insight 2000 do not fulfill. After 

optimizing only its control strategy parameters by using 

MDO method, the FC is reduced to 0.1liter/100km when 

running FTP driving cycle (Tab. 7) and most of requirements 

of PNGV constraints are improved but have not satisfied the 

PNGV constraints. So, it is necessary to go to step 2, 

simultaneous optimization of key component sizes and 

control strategy parameters. 

Table 5. The value of optimal parameters. 

Parameters FTP HWFET 

cs_dl_assist_trq_threshold 5.28 17.37 

cs_mc_assist_min_frac 0.11 0.17 

cs_mc_assist_slope 0.32 0.24 

cs_mc_assist_max_frac 0.64 0.89 

cs_dl_regen_trq_threshold -5.48 -5.00 

cs_mc_regen_min_frac 0.10 0.05 

cs_mc_regen_slope 0.88 0.95 

cs_mc_regen_max_frac 0.96 0.94 

cs_decel_regen_threshold 4.21 5.37 

cs_lo_soc 0.34 0.35 

cs_hi_soc 0.86 0.95 

 

Table 6. The PNGV performance constraints. 

 

Parameters Description ki 

Honda Insight 2000 

(Original value) 

Honda Insight 2000 

(The value after the optimization of 

control strategy) - FTP 

Honda Insight 2000 

(The value after the optimization 

of control strategy) - HWFET 

Value Evaluation Value Evaluation Value Evaluation 

Acceleration 

time 

Time for 0–96.6 km/h 

≤ 12s 
3 11.8 Fulfilled 11.8 Fulfilled, no change 11.8 Fulfilled, no change 

Time for 64.4–96.6 

km/h ≤ 5.3s 
3 5.5 

Not 

fulfilled 
5.46 

Not fulfilled, improvement 

of 0.04s 
5.46 

Not fulfilled, 

improvement of 0.04s 

Time for 0–136.8 

km/h ≤ 23.4s 
3 24.3 

Not 

fulfilled 
24.21 

Not fulfilled, improvement 

of 0.09s 
24.21 

Not fulfilled, 

improvement of 0.09s 

Grade ability 

6.5% grade ability at 

88.5 km/h, 272kg 

additional weight for 

20 min 

3 11.7 Fulfilled 11.74 
Fulfilled, improvement of 

0.04% 
11.74 

Fulfilled, improvement 

of 0.04% 

Maximum 

speed 
≥ 137 km/h 3 192.6 Fulfilled 194.5 

Fulfilled, improvement of 

1.9 km/h 
194.5 

Fulfilled, improvement 

of 1.9 km/h 

Maximum 

acceleration 
≥ 5 m/s2 5 4.5 

Not 

fulfilled 
4.53 

Not fulfilled, improvement 

of 0.03 m/s2 
4.53 

Not fulfilled, 

improvement of 0.03 

m/s2 

Distance in 5 

sec 
≥ 42.7m 3 44.4 Fulfilled 44.51 

Fulfilled, improvement of 

0.11 m 
44.54 

Fulfilled, improvement 

of 0.14 m 

Table 7. The fuel consumption (FC). 

Parameters 

Honda Insight 2000 - FTP 

(The value after the optimization of control strategy) 

Honda Insight 2000 – HWFET 

(The value after the optimization of control strategy) 

Original 

Value 

Value after 

optimization 
Evaluation 

Original 

Value 

Value after 

optimization 
Evaluation 

FC (liter/100km) 3.7 3.6 Improvement of 0.1 l (2.7%) 2.8 2.8 No change 

 

6. Optimize Simultaneously Both Key 

Component Sizes and Control Strategy 

Parameters 

As presented in Tab. 8, in order to improve the FC and 

dynamic performances, the size of EM requires to become 

bigger and the number of battery module has to be 

increased. 

Tab. 9 presents the results of the dynamic performances 

of the original Honda Insight 2000 and key component sizes 

and control strategy parameters simultaneously optimized 

for Honda Insight 2000. The data in this table demonstrate 

the effectiveness of Pheromone-based Bees Algorithm used 

as an optimizer within a MDO system. The results show 

that after optimization, the FC is reduced to 0.41liter/100km 

(11.1%) and 0.15liter/100km (5.1%) when running FTP and 

HWFET driving cycle respectively. The dynamic 

performances are also improved strongly, all PNGV criteria 

are improved and six of them satisfy PNGV constraints. 

Only the maximum acceleration does not fulfill its 
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constraint, however, it is acceptable as it is only 1.8% lower 

than its criterion. 

Table 8. The value of optimal parameters. 

Parameters FTP HWFET 

fc_trq_scale 0.90 0.90 

mc_trq_scale 1.96 1.96 

ess_module_num 50 50 

cs_dl_assist_trq_threshold 9.60 8.18 

cs_mc_assist_min_frac 0.06 0.09 

cs_mc_assist_slope 0.54 0.64 

cs_mc_assist_max_frac 0.58 0.42 

cs_dl_regen_trq_threshold -5.96 -5.74 

cs_mc_regen_min_frac 0.19 0.18 

cs_mc_regen_slope 0.65 0.67 

cs_mc_regen_max_frac 0.99 0.96 

cs_decel_regen_threshold 9.60 9.67 

cs_lo_soc 0.48 0.57 

cs_hi_soc 0.95 0.95 

The FC and vehicle performances obtained by using PBA 

with the driving cycles FTP and HWFET are nearly same as 

ones employed by BBA. However, the rate of convergence of 

PBA is faster than that optimized by BBA [15] and [16]. The 

optimization process in this research was stopped after about 

45 iterations and 65 iterations when optimizing only the 

control strategy parameters and simultaneous optimization 

respectively or when the value of objective function does not 

change after 15 iterations. The set of component size and 

control strategy variables of the last best bee at the last 

iteration is considered as the best solution for optimization of 

Honda Insight 2000. Compared to the BBA, the new version, 

PBA, showed an improvement of about 20-25% in 

convergence speed. This indicates the good performance of 

the PBA approach in saving time to achieve the optimal 

parameters. 

7. Conclusions 

The paper presents a simultaneous optimization of Honda 

Insight 2000’ key component sizes and control strategy 

parameters to minimize FC without sacrificing dynamic 

performance by using a new approach, a Pheromone-based 

Bees Algorithm. Similar to the BBA, the PBA employs a type 

of neighborhood search (local search) combined with a 

random search (global search) in the solution space, so the 

results of component size and control strategy parameters of 

Honda Insight 2000 are ensured to be global solutions. 

However, as the PBA employs pheromones to attract bees to 

explore promising regions of the search space, it can find the 

best solution approximately 20-25% faster than the Basic 

Bees Algorithm. The results show that, the PBA approach is 

powerful in searching the best parameters of Honda Insight 

2000’ powertrain system in the solution space resulting in 

improvement of FC, while PNGV constrains are maintained. 

Table 9. The PNGV performance constraints. 

Parameters Description ki 

Honda Insight 2000 

(Original value) 

Honda Insight 2000 – FTP (The 

value after the simultaneous 

optimization of component sizes 

control strategy parameters)  

Honda Insight 2000 - HWFET 

(The value after the simultaneous 

optimization of component sizes 

control strategy parameters) 

Value Evaluation Value Evaluation Value Evaluation 

Accelera-

tion time 

Time for 0–96.6 km/hr ≤ 

12s 
3 11.8 Fulfilled 11.0 

Fulfilled, improvement 

of 0.8s 
11.0 

Fulfilled, improvement 

of 0.8s 

Time for 64.4–96.6 km/hr 

≤ 5.3s 
3 5.5 

Not 

fulfilled 
5.23 

Fulfilled, improvement 

of 0.27s 
5.23 

Fulfilled, improvement 

of 0.27s 

Time for 0–136.8 km/hr ≤ 

23.4s 
3 24.3 

Not 

fulfilled 
22.83 

Fulfilled, improvement 

of 1.47s 
22.83 

Fulfilled, improvement 

of 1.47s 

Grade 

ability 

6.5% grade ability at 88.5 

km/hr, 272kg additional 

weight for 20 min 

3 11.7 Fulfilled 10.22 
Fulfilled, reduction of 

1.48% 
10.22 

Fulfilled, reduction of 

1.48% 

Maximum 

speed 
≥ 137 km/hr 3 192.6 Fulfilled 196.3 

Fulfilled, improvement 

of 3.7 km/h 
196.3 

Fulfilled, improvement 

of 3.7 km/h 

Maximum 

accelera-

tion 

≥ 5 m/s2 5 4.5 
Not 

fulfilled 
4.91 

Nearly fulfilled, 

improvement of 0.41 

m/s2 

4.91 

Nearly fulfilled, 

improvement of 0.41 

m/s2 

Distance in 

5 sec 
≥ 42.7m 3 44.4 Fulfilled 48.94 

Fulfilled, improvement 

of 4.54 m 
48.94 

Fulfilled, improvement 

of 4.54 m 

Table 10. The fuel consumption (FC). 

Parameters 

Honda Insight 2000 

(The value after the simultaneous optimization of 

component sizes control strategy parameters) - FTP 

Honda Insight 2000 

(The value after the simultaneous optimization of component 

sizes control strategy parameters) - HWFET 

Original 

Value 

Value after 

optimization 
Evaluation 

Original 

Value 

Value after 

optimization 
Evaluation 

FC (l/100km) 3.7 3.29 Improvement of 0.41 l (11.1%) 2.8 2.65 Improvement of 0.15 l (5.1%) 
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