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Abstract: The sources and application fields of nonlinear matrix equations are quite extensive, including control theory,
statistics, dynamic programming, etc. A large number of problems can be transformed into solving matrix equations. In this
paper we establish some necessary and sufficient conditions for the existence of positive definite solutions to the nonlinear matrix
equationATXA = ηX. The existence of positive definite solutions to corresponding inequalities were discussed too. In addition,
some examples are presented to illustrate the main results of this paper.
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1. Introduction
In practical applications such as bioscience, physics [1],

dynamic programming, engineering technology, and economic
theory, nonlinear phenomena [2–6] are very common. In
recent years, the study of nonlinear matrix equations has
become one of the most active topics in mathematics.
Nonlinear matrix equations play an important role in control
theory [7–9], network optimization, statistics and difference
methods for partial differential equations [10–12] and other
fields.

The existence of the positive definite solution of the matrix
equation is one of the hot point problems studied in the field
of matrix theory. There have been some research results on
positive definite solutions of nonlinear matrix equations [13–
17]. For instance, Hermitian positive definite solutions of
matrix equation

A−A∗X−2A = I

was studied by Zhang Yuhai [13], the necessary conditions
and sufficient conditions for the existence of positive definite
solutions for the matrix equation

X ±A∗X−qA = Q

was derived by
Hasanov [14]. More, the nonlinear matrix equation

X +A∗X−nA = Q

and the properties of its positive definite solutions are studied
by Ivanov [15].

In this paper, we study the positive definite solution of the
nonlinear matrix equation

ATXA = ηX,

where A is an n × n invertible real matrix, η > 0. We
also discussed the existence of positive definite solutions to
corresponding inequalities. Finally, several examples are
provided to illustrate the main conclusions obtained.

Throughout this paper, we denote the real number field by
R. The notationsRm×n,ORn×nstand for the sets of allm×n
real matrices and all n × n orthogonal matrices, respectively.
The identity matrix of order n is denoted by In. For a matrix
A, the symbols AT , A−1 and r(A) stand for the transpose, the
inverse, the rank of A, respectively. If A is a square matrix ,
det(A) means to take the determinant of A. We denote A > 0
stands for A is a positive definite matrix. If A−B is a positive
definite (semidefinite) matrix, then we write A > B(A ≥ B).
Similarly, if A−B is a negative definite (semidefinite) matrix,
then we denote A < B(A ≤ B). Furthermore, the symbol
pλ(A), |λ| represent the geometric multiplicity and the module
of eigenvalue λ of A, respectively. And the symbols λmax(A)
and λmin(A) denote the maximal and minimal eigenvalues of
real symmetric matrix A, respectively.



Innovation 2023; 4(2): 25-28 26

2. Existence of Positive Definite
Solutions to Inequalities
ATXA ≤ ηX

In this section, we consider the existence question of
positive definite solutions for the following inequality equation

ATXA ≤ ηX

where A is an n× n real matrix, η > 0.
Firstly, based on the orthogonal similarity standard form

of the real symmetric matrix and orthogonal similarity
transformation preserves the semi positive determinacy of real
symmetric matrices, we have the following lemma directly.

Lemma 2.1. Suppose A ∈ Rn×n is a real symmetric matrix,
there

λmin(A)In ≤ A ≤ λmax(A)In,

where λmax(A) and λmin(A) respectively represent the
maximum and minimum eigenvalues of matrix A.

Theorem 2.1. For any A ∈ Rn×n, there exist 0 < X ∈
Rn×n and 0 < η ∈ R such that

ATXA ≤ ηX.

Proof For any A ∈ Rn×n, then ATA ∈ Rn×n is obviously
a positive semidefinite matrix. So the eigenvalues of ATA are
all non negative real numbers. Set

X = In, η = λmax(A
TA) + 1,

there X > 0, η ≥ 1 > 0.
Applying Lemma 2.1 to matrix ATA, we can immediately

obtain the following inequality

ATXA ≤ ηX.

3. Existence of Positive Definite
Solutions to EquationATXA = ηX

In this section, we derive some necessary and sufficient
conditions for the existence of positive definite solutions to the
nonlinear matrix equation ATXA = ηX.

For the sake of simplicity, we provide the following
definition.

Definition 3.1. Let A ∈ Rn×n be given. A is said to be
positive definite solvable (PDS) if there exist 0 < X ∈ Rn×n
and 0 < η ∈ R satisfy

ATXA = ηX. (1)

Because the positive definiteness of the matrix is invariant
under orthogonal similarity transformation, we have the
following Lemma.

Lemma 3.1. Let A ∈ Rn×n be given. A is PDS if and only

if there exists Q ∈ ORn×n such that QTAQ is PDS.
In order to derive our main results, we provide the following

two lemmas that will be used.
Lemma 3.2. (See [18]) Let A ∈ Rn×n be given, λ1, λ2, . . .,

λr are the real eigenvalues of A, aj ± ibj are the imaginary
eigenvalues of A, aj , bj ∈ R, j = 1, 2, . . . ,m, r + 2m = n.
Then there exists Q ∈ ORn×n, such that

QTAQ=



λ1 ∗
. . .

0 λr

 ∗

0

A1 ∗
. . .

0 Am




,D, (2)

whereAj are real matrix of order 2, aj±ibj are the eigenvalues
of Aj , j = 1, 2, . . . ,m. And through the suitable selection of
the matrix Q, we can enable the diagonal block of D to be
arranged in any specified order.

Lemma 3.3. (See [19])
Let

A =

(
A11 A12

AT12 A22

)
is a real symmetric matrix,
where A11 ∈ Rs×s, A22 ∈ Rt×t. Then A > 0 is equivalent to

A11 > 0, A22 −AT12A−1
11 A12 > 0.

3.1. Sufficient Conditions

Proposition 3.1. Let A ∈ Rn×n be an orthogonal matrix,
then A is PDS.

Proof For any 0 < η ∈ R, set X = ηIn, we always get

ATXA = ηX,

so A is PDS.
Proposition 3.2. Let A11 ∈ Rs×s, A12 ∈ Rs×t and A22 ∈

Rt×t be given. Suppose thatA =

(
A11 A12

0 A22

)
is PDS, then

A11 is PDS.
Proof Assume A is PDS, then there exist X =(
X11 X12

XT
12 X22

)
> 0 and η > 0

such that

(
A11 A12

0 A22

)T(
X11 X12

XT
12 X22

)(
A11 A12

0 A22

)
=η

(
X11 X12

XT
12 X22

)
. (3)

On the one hand, it follows from Lemma 3.3 that X11 > 0.
On the other hand, based on computation and equation (3), we
derive

AT11X11A11 = ηX11.

Therefore A11 is PDS.
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3.2. Necessary Conditions

Theorem 3.1. Let A ∈ Rn×n be a PDS matrix that satisfies
equation (1), then η = (det(A))

2
n , det(A) 6= 0.

Proof By taking the determinant at both ends of equation
(1), it can be obtained that

det(ATXA) = ηndet(X).

Since

det(ATXA) = det(AT )det(X)det(A)

and

det(X) > 0, η > 0 ,

then we derive Theorem 3.1 immediately.
Theorem 3.2. Let A ∈ Rn×n be a PDS matrix, then the

module of each eigenvalue of matrix A is (|det(A)|) 1
n .

Proof According to Lemma 3.2, there exists Q ∈ ORn×n

satisfies equation (2), where λ1, λ2, . . ., λr are the real
eigenvalues of A, and each 2 × 2 matrix Aj on the diagonal
has a pair of conjugate imaginary roots aj ± ibj , aj , bj ∈ R,
j = 1, 2, . . . ,m.

By Lemma 3.1 we obtain that A is PDS iff D is PDS,
notice that the eigenvalues of matrices A and D are identical,
without loss of generality, let’s assume A = D.

Firstly, we prove the case m = 0. The conclusion is
immediate for the case r = 1. Suppose that the conclusion

is true for the matrix of order r, now let’s prove the case r+1.
Let A1 ∈ Rr×r be given, set

A =

(
A1 ∗
0 λr+1

)
.

Assume A is PDS, from Proposition 3.2, we know that A1

is PDS. Then by induction hypothesis and Theorem 3.1, we
obtain

|λ1| = |λ2| = . . . = |λr| = η
1
2 . (4)

In view of Theorem 3.1,

η = (λ1λ2 . . . λrλr+1)
2

r+1 . (5)

As can be seen from (4) and (5),

|λr+1| = η
1
2 = (|det(A)|)

1
r+1 .

Secondly, suppose that the conclusion is true for the matrix
of order r + 2m, now let’s prove the case r + 2(m + 1). Let
A2 ∈ R(r+2m)×(r+2m) be given, set

A =

A2 ∗ ∗
0 am+1 bm+1

0 −bm+1 am+1

.

Suppose A is PDS, by Proposition 3.2 we obtain that A2

is PDS. Then by induction hypothesis and Theorem 3.1, we
derive

|λ1| = |λ2| = . . . = |λr| =
√
a21 + b21 = · · · =

√
a2m + b2m = η

1
2 . (6)

Using Theorem 3.1, we have

η = [λ1 · · ·λr(a21 + b21) · · · (a2m + b2m)(a2m+1 + b2m+1)]
2

r+2(m+1) . (7)

It follows from (6) and (7) that√
a2m+1 + b2m+1 = η

1
2 = (|det(A)|)

1
r+2(m+1) .

The proof is completed.

4. Examples

In this section, we give two numerical examples to verify
the efficiency of the results.

Example 4.1. Let A =

1 1 1
0 −1 0
0 0 −1

. There exists

X =

1 1
2

1
2

1
2 1 0
1
2 0 1

 > 0, such that ATXA = X , A is

PDS. Notice that det(A) = 1 6= 0, all characteristic values of
A are 1,−1,−1, i.e. the module of each eigenvalue of matrix
A is (|det(A)|) 1

3 = 1.

Example 4.2. Let A =

λ1 . . .
λn

 ∈ Rn×n be a

diagonal matrix. If A is PDS, i.e. there exist 0 < X =
(xij − n× n) ∈ Rn×n and 0 < η ∈ R satisfy

ATXA = ηX.

By comparing the elements in the i-th row and jth column
on both sides of the matrix equation mentioned above, it can
be concluded that

λiλjxij = ηxij

for any 1 ≤ i, j ≤ n. Because X is a positive definite matrix,
then xii > 0 for any 1 ≤ i ≤ n. So λ21 = λ22 = · · · = λ2n =

η > 0, i.e. det(A) 6= 0, η = (det(A))
2
n , the module of each

eigenvalue of matrix A is (|det(A)|) 1
n .
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5. Conclusions
In this paper, we obtain that for any real matrix A, the

inequality ATXA ≤ ηX always has a positive definite
solution. Secondly, we derive some necessary and sufficient
conditions for the existence of positive definite solutions to
the nonlinear matrix equation ATXA = ηX. After that, we
give some examples to illustrate the main results of this paper.
Next, we will continue to explore, hoping to find necessary and
sufficient conditions that are easy to distinguish the existence
of positive definite solutions to the above matrix equation.
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